University of Baghdad
College of Engincering Journal of Engineering

y journal homepage: www.joe.uobaghdad.edu.ig
J E Number 9 Volume 26 September 2020

JOURNAL OF ENGINEERING

Electrical, Electronics and communications, and Computer Engineering

Performance Evaluation of Scalar Multiplication in Elliptic Curve
Cryptography Implementation using Different Multipliers Over Binary Field

GF (2233)
Alaa Mohammed. Abdul-Hadi Yousra Abdul-Sahib S.aldeen Firas Ghanim Tawfeeq
Dr Dr Master Student
Computer Engineering Dept. College of Science for Women Computer Engineering Dept.
Irag, Baghdad Irag, Baghdad Irag, Baghdad
alaa.m.abdulhadi@ yousraalkaalesi@ f.ghanim1205@
coeng.uobaghdad.edu.iq gmail.com coeng.uobaghdad.edu.iq
ABSTRACT

T his paper presents a point multiplication processor over the binary field GF (22%) with internal
registers integrated within the point-addition architecture to enhance the Performance Index (PI)
of scalar multiplication. The proposed design uses one of two types of finite field multipliers,
either the Montgomery multiplier or the interleaved multiplier supported by the additional layer
of internal registers. Lopez Dahab coordinates are used for the computation of point multiplication
on Koblitz Curve (K-233bit). In contrast, the metric used for comparison of the implementations
of the design on different types of FPGA platforms is the Performance Index.

The first approach attains a performance index of approximately 0.217610202 when its realization
is over Virtex-6 (6vIx130tff1156-3). It uses an interleaved multiplier with 3077 register slices,
4064 lookup tables (LUTs), 2837 flip-flops (FFs) at a maximum frequency of 221.6Mhz. This
makes it more suitable for high-frequency applications. The second approach, which uses the
Montgomery multiplier, produces a Pl of approximately 0.2228157 when its implementation is on
Virtex-4 (6vIx130tff1156-3). This approach utilizes 3543 slices, 2985 LUTSs, 3691 FFs at a
maximum frequency of 190.47MHz. Thus, it is found that the implementation of the second
approach on Virtex-4 is more suitable for applications with a low frequency of about 86.4Mhz and
a total number of slices of about 12305.
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1. INTRODUCTION

Elliptic Curve Cryptography (ECC) is a type of asymmetric key (Jwad, Abdulaah, and Effing,
2012) cryptography that provides higher security than Rivest—Shamir—Adleman (RSA) for a
smaller key size. A short key is a proper choice for hardware implementations of ECC,
especially in devices with restricted resources as they require less area and processing time
(Kilts, 2006), (Kawther E. Abdullah, 2018). Hardware implementations of cryptosystems
produce systems with higher speeds and better security than software implementations. Point
Multiplication (PM) is the heartbeat of ECC. Different projective coordinates can be used for
point representation, but this work uses the Lopez Dahab coordinate system to skip the inversion
process that consumes lots of resources (Bilal and Rajaram, 2010). The efficiency of the high-
performance hardware implementation of scalar multiplication depends on the polynomial
representation. Both performance metrics, time, and area are desirable to be considered during
the design. Still, incompatible features, as in some projects, can deliver a high speed within a
compacted area while others attain lower area and speed. Consequently, hardware
implementations require the consideration of speed and area parameters (Strukov, 2006).
Different architectures are adopted to design and realize a multiplier unit such as a Montgomery,
Karatsuba, Mastrovito, bit-parallel, and digit serial. This work considers two types of binary
fields for GF (22%) multipliers: Interleaved and Montgomery.

This paper aims to enhance the performance index of PM by adding internal registers within
the data path of point multiplication, and the proposed designs of PM are implemented on
different FPGA platforms. The FPGA which are appropriate for intensive computations
(Hassan, 2010).
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The rest of this paper presents previous work in this field, the mathematical background of finite
field and elliptic curves, simulation, implementation of the proposed design, followed by the
results and discussion then finalized by the conclusion.

2.RELATED WORK

A proposed design by (Urbano-Molano, Trujillo-Olaya, and Velasco-Medina, 2013),
presented parallel multiplication and bit-serial multipliers then obtained an execution time of
0.025us and 1.62us, respectively, with a value of k equal to 9. (Fournaris, Dimopoulos, and
Koufopavlou, 2017) presented a strategy for digit serial multiplier based on binary Edwards
curve scalar multiplier architectures. It relied on the use of GF (2¥) digit serial multiplication
with a balance in speed and consumption resources in addition to parallelism for distributing
GF (2¥) operations while keeping a high level of usability of units in each layer.

The design of point multiplication over the binary field GF (22%) is presented by (Kadu and
Adane, 2018) as a secured curve based on the recommendations of NIST.

Performances obtained from this design were assessed by comparing them with the Karatsuba-
based point multiplier for area and delay. The results show that the Vedic multiplier occupied
22% less area on FPGA and caused 12% less delay than the Karatsuba-based scalar multiplier.
The proposed design was coded using Verilog HDL and simulated and synthesized on Virtex-6.

A design by (Imran, Rashid, and Shafi, 2018) presented a bit-parallel hybrid Karatsuba
multiplier in the finite field layer. This design attained the number of slices, time of PM, and PI
= (slice * (K - p))/10° ].where k - P represent the time point mutliplication

(1) On Virtex-4, the result was (6884 slices, 53.5us, 0.368); (2) On Virtex-5, the obtained results
were (3636 slices, 32.3us, 0.117); (3) On Virtex-6, the proposed design attained (3144 slices,
26.9us, 0.084); (4) On the newer Virtex-7, it attained 3657 slices, 25.3us, 0.092. Finally, the
proposed Elliptic Curve Processor (ECP) outperforms on Virtex-6 in terms of both area and area
performance index and is approximately 0.084 compared to the most relevant work.

The architecture of the proposed design by (Rashidi, 2018) was built on Virtex-5 XC5VLX110
and Virtex-4 XC4VLX100 FPGAs to achieve two fields, F2!% and F2%3. The results show
enhancement in execution time and area when compared to previous work.

Finally, the proposed design of a coprocessor by (Parrilla et al., 2019) allowed the acceleration
of secure services that can be applied in the next generations of FPGA. Thus, permitting to host
in the same chip, a secure web or database server, and the cryptographic processor. This
coprocessor provided an improvement over other hardware implementations in terms of area,
performance, and scalability.

The purpose of the paper is to enhance the Pl of scalar multiplication by adding a layer of
registers, then compare the outcome Pl among different FGPAsS.

3. MATHEMATICAL BACKGROUND
3.1 Finite Field

A field with a finite number of elements is called a Finite Field Fq. It is used in cryptography,
where g=2", to implement software or hardware with fast performance. The elements in a
binary representation can be presented in a binary representation degree less than m, where
A(X)=Xm,1 a;x"; the arithmetic operations in a binary field are reduced using an irreducible
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polynomial that have an m degree. A polynomial with degree m can represented in the following
formula:

) =apmo1 ™+ Ay _2x™ 2 + apy_3x™3 L agxt + agx® (1)
where x' is called the ith terms of polynomial, and a; represents the coefficient and m represents
the length of key size.

For example, an 8-bit word is represented by a polynomial as follows in Fig.1:

1 0 0 1 1 0 0 1

l A\ 4 l A\ 4 \4 A\ 4 \4 A\ 4

1x7 | 0x% | 0x5 | 1x* | 1x3 | 0x% | Oxl! | 1x°

First Simplification : 1x7 + 1x* + 1x3 + 1x°

Second Simplification: x7 +x*+ a3 +1

Figure 1. Polynomial representation of 8bit.

It is clear from Fig.1 that the term of 0 coefficient is omitted; moreover, x° is 1.

3.2 Arithmetic Operation on Polynomials
3.2.1 Addition of Polynomials

Adding two polynomials elements C(x) and d(x) requires a bitwise exclusive-or. For
example, if C(x) and D(x) are two polynomials, then C(x) = x°+ x2 + x and D(x) =
x3 + x? + xin GF (28),s0 E(x) = C(x) @ D(x)

0x7 4+ 0x° 4+ 1x° + O0x* + 0x3 + 1x% + 1x* + 0x°
Ox7 4+ 0x® + 0x® + 0x* + 1x3 + 1x?2 + 0x* + 1x° P

Ox7 +0x0 4+ 1x°+0x*+1x3 4+ 0x?2 +1x P +1x°>x> +x3 4 x4+ 1

Also, there is a simple way to add two polynomials in the field — by deleting common terms
and retaining the uncommon terms.

3.2.1.1 Multiplication

This refers to multiplying two polynomials C(x) and D(x) based on normal multiplication and
polynomial reduction f(x) and has a specific value based on the curve type.

3.2.1.2 Squaring

The squaring of polynomial C(x)? is too cheap, as it can be accomplished by inserting zero
into the bit vector(Hankerson, 2004).
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3.2.1.3 division

The division of two polynomials can be accomplished by dividing the polynomial on modulo
f(x) and keeping the remainders, for example, the division of polynomial with degree 12 on
modulo with 8 degrees, as shown below:

x*41

A R s R | 712 447 4 52

P af a7 % 4t

x84 x5 4 xt 4 x?

Wratraieasd

Remainder : x° + 23 +x24+x 41

3.3 Elliptic Curve over GF (2M).

The Elliptic curve, from a mathematical aspect, is a cubic equation in the standard form. Eq.
(2) defines the elliptic curve over the binary field GF (2™M); the curve is set with points, and
each point located on the Elliptic curve is represented by the x and y coordinates when using
the Affine coordinate projective. The values of a and b in Eq.(1) specifies the shape of the
curve, while b # 0 f(x) represents an irreducible polynomial.

y?2 +xy =x3+ax?+ bmod f(x) (2)

Operations in the Elliptic curve have a hierarchy model and contain four layers. Layer one
represents the finite field arithmetic operations such as multiplication, addition, division, and
inversion. Layer 2 consists of two main components: point addition and point doubling. Point
multiplication (scalar multiplication) is layer 3 in layer 4 lie security schemes such as Elliptic
Curve Digital Signature Algorithm (ECDSA) and Elliptic Curve Diffe-Halmen (ECDH).
Different kinds of elliptic curves are available. This work is based on the Koblitz curve with
on field 233 and specifications mentioned by NIST. Therefore, Eq. (3) is used instead of Eq.
(2), which is denoted by Eo.

Eo-y*+xy = x3 + bmod f(x) (3
Where b=1, a=0, and f(x) = x?33 + x7* + 1

The Koblitz curve is attractive because of its advantages in computational aspects. These
advantages lie in using Frobenius endomorphism (¢), and the point P (X, y) can be mapped
such that:

¢: (xy) > (x% y) and ¥ - 9 (4)

Clearly, the Frobenius endomorphism is very cheap: two or three square operations are
required depending on the objective coordinates. Using Frobenius endomorphism instead of
point doubling it, which is not a straightforward operation, it requisites a manipulation of the
value of k.

up(p) — @?(P) = 2P where p = (—1)17¢ -
Thus, @ can be realized as a complex number 7, satisfying pr — 7% = 2 that is 7 = (u +

V=7)/2. If k is given in a T — adic representation as k = Y,!3 k;rt. Then, to apply fast
Frobenius endomorphism, k must be converted to T — adic.
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3.4 Multipliers over Finite Field.
3.4.1 Interleaved Multiplier

An easy model of multiplication over the finite field is the interleaved multiplier. The
principal work of this multiplier is based on the shift and add algorithm, and the products of
c(x) and d(x) is E(x) = c(x) d(x) mod f(x), as shown in Fig.2.

-
ETn I U R

Figure 2. Interleaved multiplier for 233 field ,
(J. DESCHAMPS, J. IMANA, 2009).

3.4.2 Montgomery Multiplier

The Montgomery multiplier is a sequential multiplier model, and the products of the two
polynomials c(x) and d(x) are defined in Eq. (6).

E(x) = c(x)d(x) M(x)™" mod f(x) (6)
where M(x) is a constant element in the field and gcd (M(x), f(x)) = 1; one can find two
polynomials M (x) ~ ! and f (x) so that

MQGOM@E) ™+ fGOf ()™ =1 (7)

where M(x)? is the inverse of M(x) modulo f(x). The two polynomials can be computed with
the Extended Euclidean Algorithm (EEA). Therefore, the Montgomery multiplication over GF
(2™) can be computed using algorithm 1 and the data-path, as shown in Fig. 3.

Montgomery Algorithm.1

Step 1: Input Polynomials C(x), D(x), M(x), F(x)*
Step 2: T(X)=C(x)D(x).

Step 3: Temp(x) = T(x) F(X)™* mod M(x)

Step 4: E(X) = [T(X) + Temp(x) F(X)}/M(x)
Output: E(x) = C(X)D(x) M(x)™* mod F(x)
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Initial

C(x) D(x)
shift-Register 233-bit Yo |' Register 233-bit
Shift Right

Eo Co Do

03 %34
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new_Em.2 new_Emna new_Co

P new_E (n.1-0)
| E {maso) i A Initial

Reglster 233-bit

!

Figure 3. Internal architecture multiplier.
(J. DESCHAMPS , J. IMANA, 2009).

3.5 Squaring over Finite Field.
Classic squaring

In the classic squaring of polynomials E(x), inserting a zero value in bit vector is all that is
required for getting E(x)2. There is another method for squaring a polynomial, i.e., by applying
the classic multiplication E(x)?=E(x) E(x) mod f(x).

Ty -2 It ay Iy
(] Dip-q 1] [ I a4 0 g

Figure 4. Polynomial squaring (Hossain, Saeedi and Kong, 2016).
3.6 Koblitz Point operations

3.6.1 Koblitz Point addition

This refers to adding two points P (x1, y1) and Q (X2, y2) on the Koblitz curve (Eo: y? + Xy = X3
+ 1). Three arithmetic units are used for point addition: a multiplier, division unit, and squaring
unit. The inversion component is not necessary for point operations when using the Koblitz
curve. From a computational aspect, the third point R (X3, Y3) can be calculated using Eqg. (8)
and Eq. (9).

Xz =2z’+s+x,+ x;+a (8)
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y3 =z(x; +x3) +x3+y, ,wherez = Y2t 9)
x2+x1

Koblitz's point addition consists of two squaring components and one interleaved multipliers
and a reduction component and binary division.

3.6.2 Koblitz point multiplication

All the points on the elliptic curve, including the infinity points, form a finite communicative
group in point addition and point doubling. If there is a Generation point on the curve called
P, and there is a positive number k, then the Q can be calculated as follows:

Q=k *P = P+P+P....... +P (10)

Algorithm 2: Lopez-Dahab-Algorithm

Input: P=(Xp, Yp) € GF(2™), Where K is a positive integer.
K & (Kis,.....K1, Ko)
Output: K.P=(Xq, Yq)

Stepl:Affine to Lopez Dahab Conversion
1) So=(X1)? 2) X2(S2)?  3) Xo(X2+b)

Step 2: Point Multiplication (PM)
Forinti=j-2 20do

DWi=(XiSy)  We=(XoZi) ) Wa=(XiZi)  4) Te=(Z1)
BTa=(To)?  6)Zo=(WitWs)  7) So=(So)? 8) Z1=(Ws)?
NWi=(WiW,) 10)Wz=(XpSz)  1)Wa=(bTs)  12) Ts=(Xa)?

13) To= (Ts)? 14)Xo=(WitWo)  15)Xa=(Ws+Ts)

Step 3:if (i = 0 & Ki = 1), then swap (X1, X2) and (Z1, S2) end if end for

1) Wi=Inv(Z,) 2) W2=Inv(S;) 3)Ws=Inv(Xp) 4) T1=(X1Wh)

5)W1=W,(XW5) 6) Ts=Inv(Xp) 7)T3=Ts+Y5p 8) W1=(Xp+T1)
9) W2=(Xp+V2) 10) Wi=(WiWs3) 11)Wo=(WiW2)  12)W2=(W2+T53)
13)W2=(W1W2) 14) T2=(W2+YP)

Return: K. p= (Xq, Yo) = (T1, T2)

The equation is called scalar multiplication or point multiplication. It is clear that the point
multiplication is computed by repeating the adding and doubling of points, which absolutely
depends on the components of the finite field arithmetic, such as polynomial multiplication,
addition, inversion, and division.

The inversion module consumes more resources; therefore, most of the design uses projective
coordinates for the representation of the point. Many projective coordinates exist, such as
Affine, Lopez Dahap (LD), and Jacobean. The work in this paper is based on LD as the
projective coordinates are shown in Algorithm3, and by using these types of coordinates, no
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inversion is used during the operation over a finite field, which quickens the point operation
and consumes a few resources such as power, area, and low latency.

X1 X2
%

..’Register 233-bit |

Register-233-bit ‘ *

— Start_div
Register-233-bit
* Div_done

Lamda

Jamda- Register-
233bit

X1eXxa

’ Register-233bit Start_mult

1 1 Mult_done
; X3

_’ Register-233bit

Figure 5. Data-path of point addition using Montgomery Multiplier (22%).

3.7 Scalar Multiplication

Since the point multiplication is based on the Koblitz point addition, which consists of two
squaring components, i.e., the interleaved multiplier, reduction component, and binary
division algorithm. The proposed system can be defined over different scenarios to build the
proposed elliptic curve point multiplication booster with internal registers on different
platforms (Virtex-4, Virtex-5, Virtex-6, and Virtex-7), as shown below:

1. Building ECP with interleaved multiplier and classic squaring on different platforms.
2. Building ECP with Montgomery multiplier and classic squaring on different platforms.

Fig.5 illustrates the data-path of the Koblitz point addition over the 233-bit field and the
proposed design using internal registers. These registers are used to store data after each
operation.

4. RESULTS

The proposed design of scalar multiplication is based on point addition component. So, in
order to get K.P, point P is added k-times to obtain the result. A strategy for architectural
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timing enhancement is to build intermediate layers of registers to the critical-path. This
technique is used in pipeline design when latency, due to a few additional clock-cycles, does
not affect specifications of the design. The throughput of the circuit is obtained using EQg.
(12).

Throug hput — frequency+*number of bits (11)

cycles numbers

To compare with previous work, PI is used instead of the throughput indicator, as Pl is fairer
to use for comparison among different platforms.

4.1 Simulation of the ECP for scenario 1

Fig.6 shows the time required for point multiplication, which is approximately 21.625us.
It also shows the coordinates of the generation point (Xp, Yp) in Hexadecimal, as
follows:

Xp:17232ba853a7e731af129f22ff4149563a419c26bf50a4c9d6eefad6126
Yp:1db537dece819b7f70f555a67c427a8cd9bf18aeb9b56e0c11056fae6a3

The number of registers, lookup tables, and flip-flops after synthesis are shown in Fig.7.
1.Simulation on Virtex-4

21.625000 us|

17232ba843a7e731af129f221f4149563a419c26bf50a4c9d6eefad6126
e E————

e T e re————
1db537decp819b7f70f555a67c427a8cd9bf18aeb9b56e0c11056fae6a3
e

I———erar———
00000000000000000000000000000000000000000000000000000000052

R TR PN TN P PRI
Lo e e R e e i
—o s =]
3 3 <

07404da75fa21cb406023e5319Ha4e 23f6243f97fbagd9a9e 3bb2419334

13fbca6fbaBb9d8754658 1f5e 11Bdecbd9ab2731e56e3346a5131e05335
e = ———————————)
0 1 I

0000 ps

Figure 6. Simulation of ECP using interleaved multiplier.

PDevice utilization summary:

felected Device : 4v1lx80ffii4s-12

Nuntber of Slices: 3193 out of 35840 2%
Numbexr of Slice Flip Flops: 3772 out of 71680 5%
Numbexr of 4 input LUTIs: 5340 out of 716E0 7%
Numbexr of IOs: 474

Number of bonded IOBs: 474 out of 768 61%
Nunmber of GCLXs: 1 out of 32 3%

Figure 7. Number of slices after synthesis.
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Fig.8 shows the RTL schematic of scalar multiplication using interleaved multiplier
with finite field GF (22%) bits. The structure consists of three components, a Koblitz
point addition, and two classic-squaring. The Point-addition in this scenario is
composed of three components as follows: binary division, Interleaved multiplier,
classic squaring, and some other components such as XOR gates for bitwise addition.

Figure 8. RTL schematic of ECP using interleaved multiplier.

2.Simulation on Virtex-5:
21,805000 us

Figure 9. Simulation of ECP using interleaved multiplier.
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Fig.9 shows the time required for scalar multiplication on Virtex-5, where the same
generation point is used in Virtex-4. The maximum frequency of operation over this
type of technology is 115.6MHZ. The number of slices distributed over different
types of logic such as registers, LUTs, and FFs are shown in Fig.10.

elected Device : SviIxXIiScIfsl7ae-3 I

Slice Logic Ucilizaviont

Humber of Slice RegQlscers: 37e8 out of 97280 3%
Numshexr of Slice LUTS: as572 cuct of 827280 1%
Number used a» Logic: as72 cuc of 27280 1%

Slice Logic Discribuction:

Number of LUT Flip Flop pairs used: s338
Number with an unused Flip Flop: is67 out of 3335 Fa-1Y
Hamber with an unused LUT: T62 aut orf 5335 14N
umber of fully used LUT-FF pairsy 30085 out af $335 56N
Number of unique gcontrol sects) 13

10 Ugilizacviont
Nushbes of IO0s: 474
Numthersr of bonded I1083: 474 cut or e=0 a9

Specific Feature Utilizacion:
Number of BUFG/BUFrGCTRL®: i out of az 3N

Figure 10. Number of slices after synthesis process.

3.Simulation on Virtex-6:

Figure 11. Simulation of point multiplication using interleaved multiplier.

W2DD point_rmultiplication

Figure 12. RTL schematic of ECP.
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The RTL schematic of point multiplication over Virtex-6 is shown in Fig.12.
K233_point_multiplication-1 represents the top component of the scalar multiplication.

The numbers of Slice-registers, Slice of LUTSs, and FFs over this platform are 3077,
4064, and 2837, respectively, as shown in Fig.13.

top_K233_point_multiplication Project Status (12/28/2019 - 14;56:56)

Project File: ECP-Interleaved-Vi.xee Parser Errors: No Errors
Module Name: top_K233_point_multiplcaton Implementation State: Transiated
T:r;;(—l;—v;oe' ;-."xl)m-}”ll% * Errors: Vu—o'Erron
Product Varsion: iISE M7 * Warnings: 3 Warnings (0 new
Design Goalt Area Reduction * Routing Results:
Design Strategy: Ared Raduction with Physicy! Synthess * Timing Constraints:
Enviroament: System Sattogs * Final Timing Score:

Device Utilization Summary (estimated valoes) | 8]
Logic Utilization Used Available Utilization
Numbes of Sice Registers 77 160000 1%
Number of Sice LUTs 4064 80000 5%
Numbsr of fully used LUT-FF pars 2837 4304 85%
Number of bonded I10Bs 47 0 %
Numbsr of BUFG/EUFGCTRLS ] N %

Figure 13. Virtex-6 Utilization of ECP using interleaved multiplier.

As shown in Table 1, the proposed design on Virtex-4 utilizes 3193 Slices, 340 LUTs, and
3772 Flip-flops and requires 21.805us for point-multiplication. Thus, the Pl approximates
0.38751206. On Virtex-5, the results show that 3768, 4572, and 5335 of a slice, LUTs, and
Flip-flops are required, respectively. And the number of clock-cycles increases, leading to
a maximum frequency of 115.9MhZ and an estimated PI 0. 0.308518945. By changing the
platform to Virtex-6, the value of maximum frequency increases to 190MHz. Thus, the
number of clock-cycles is approximately 4142, and the Pl is 0.217610202. In Virtex-7, the
results show that 3780 slices, 3646 LUTS, and 2682 Flip-flops are used, while the maximum
frequency is 221.6Mhz. It is clear that the proposed design on Virtex-7 is working at a high-
frequency 221.6Mhz of Pl 0.2599156, which is higher than 0.217610202 on Virtex-6.
However, the design on Virtex-6 is appropriate for limited area applications.

A higher Performance Index is obtained on Virtex-4 with a value of 0.38751206 and a low
frequency of 86.6Mhz. In addition to a low number of clock-cycles (1884), when compared
to other platforms. From the above, it can be seen that this proposal is appropriate for low-
frequency applications.
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Table 1. Comparison of Pl among different platforms.

Ref Point Area Information Time Information
multiplication Slices LUTs FFs CCS Max k.p(us)
Algorithm Freq.
Lopez Dahab 3193 5340 3772 1884 86.4 21.805

FF-Multiplier = Interleaved Multiplier
PI=0.38751206, k=52
Platform =Virtex-4 (xc4vIx80-12{£1148)
LopezDahab | 3768 | 4572 | 5335 2527 1159 | 21.805
FF-Multiplier = Interleaved Multiplier
PI=0.308518945, k=52
This Platform = Virtex-5 (5vIx155tff1738-3 )
work LopezDahab | 3077 [4064 | 2837 4142 [190 | 21.8049
FF-Multiplier = Interleaved Multiplier
PI=0.217610202, k=52

Platform = Virtex-6 ( 6vIx130tff1156-3)
LopezDahab | 3780 | 3646 | 2682 4818 | 221 | 21.805
FF-Multiplier = Interleaved Multiplier
PI=0.2599156, k=52
Platform = Virtex-7 (7vx550tffg1927-3)

(Liand | Montgomery | 11708 | 21598 | - 1926 194 9.9
Li, 2016) FF-Multiplier = bit-parallel

PI=0.3297294, k=6

Platform = Virtex-4 (Virtex4VLx-200)

Fig.14 illustrates the total number of slices required by the proposed design using
the first approach. The data shown in the figure demonstrate that the design utilizes
less number of slices on Virtex-6.

Area - Number of Slices

A
16000 T Number of Slices
14000
12000
12305 13675
10000 Vietx-4 Virtex-5
8000
9978 10108
6000 Virtex-6
Virtex-7
4000
2000
’ Works >
1 2 3 -

Figure 14. Slices of scalar multiplication among different FPGAs.
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Figure 15. Clock cycles of ECP among different FPGAs.

Fig.15 shows the number of clock cycles of ECP among different FPGA, which makes it
clear that Virtex-7 attains a high number of clock cycles of approximately 4818 when
compared to others. Virtex-4 achieves the lowest number of the clock cycle with 1884, which
makes suitable choices for low-frequency applications. Fig.16 shows the performance index
for scalar multiplication among different FGPA technologies using an interleaved multiplier,
and the results show that ECP on Virtex-6 represents a better performance index with an
estimated 0.21761202 when compared to the same design applied among different Xining
platforms.

Perfromnace index
Slices

Virtex-4 Virtex-5

04

0.3
Virtex-6 Virtex-7
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2
| | 3 . Works
0.38751206 0.308518945 0.217610202 A
0.2599156

Figure 16. Performance index among different platforms.
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4.2 Simulation of ECP for scenario 2

In this approach, the Montgomery multiplier with internal registers is applied in a Koblitz-
point-addition instead of an interleaved multiplier, and the proposed design is implemented
on different FPGA devices. Fig.17 shows the time required for point multiplication, which
is approximately 21.625000us. The maximum operating frequency is illustrated in Fig.18,
respectively.

Simulation on Virtex-4:

21.625000 us

21.625000 us 21.625001 us 21.625002 us 21.625003 us 21.625004 us
17232ba8Y3a7e731af 1201221414956 3a419c26bf50p4cod6eefad6 126 |
1db537decE8 19b7f70f555a6 7c427a8cdobf18aebob96e0c11056faeta3 |

0000000000000000000000000040000000000000000p000000000000052 |

[ l [ I

07404da75/a21cb 40602353 19Aa4e 231624319 /(bagd9ade 30b 249334 |
13fbca6fbaBbada 754658 1fSe 110decbd9ab273 1e56e8346a5131e05335 |

| | | |

Figure 17. Time of point multiplication.

Timing Summary:

Speed Grade: -12

Minimum period: 11.564ns (Maximum Frequency: 86.475MHZz)
Minimum input arrival time before clock: 2.430nﬂ
Maximum output required time afterxr clock: 5.281ns
Maximum combinational path delay: 5.937n-

Figure 18. Maximum frequency.

As shown in Table.2 and Fig.19, the second proposed design based on the Montgomery
multiplier representing the main component of ECP was implemented on different FGPA
platforms. On Virtex-4, the design utilizes over 3340 slices, 3772 LUTs, and 5575 Flip-flops
and requires 21.805us for scalar multiplication. Thus, the PI approaches 0.276640035. On
Virtex-5, the results showed that 3768, 4573, and 3005 are used from slices, LUTs, and Flip-
flops, respectively. And the number of clock-cycles is increased. Thus, the maximum
frequency was 115.9MhZ, and the estimated P1 was 0.24739953. By changing the platform
to Virtex-6, the value of maximum frequency is increased to 190MHz. Thus, the number of
Clock-cycles approximates 4142, and the PI is 0.222815076. In Virtex-7, the results show

60



Number 9 Volume 26 September 2020 Journal of Engineering

that with 3077 slice, 4065 LUTSs, and 4305 Flip-flop, the maximum frequency is 196Mhz.
It is clear that the proposed design on Virtex-7 is working on a high frequency of 196Mhz
with PI 0.249601835, which is higher than 0.217610202 on Virtex-6. This makes it a better
choice for high-frequency applications. However, the design implemented on Virtex-6 is
appropriate for low area applications occupying a small area. Due to the higher Performance
Index obtained on Virtex-4 with 0.276640035 with a low frequency of 86.6Mhz and a low
number of clock-cycles (1883) as compared to other platforms, this proposed design is more
appropriate for low-frequency applications. The number of slices that represent registers,
LUTSs, and FFs for this approach over Virtex-4, Virtex-5, Virtex-6, and Virtex-7 is clearly
shown in Fig.20. Obviously, the proposed design attains a smaller index of performance
estimated at 0.22815076 as compared to the same design on other platforms.Fig.21 shows
the comparison of PI for the two approaches over different FPGAs.

Table 2. Comparison of Pl among different platforms.

Ref Point Area Information Time Information
multiplication Slices LUTs FFs CCS Max k. p (us)
Algorithm Freq.
Lopez Dahab 3340 3772 5575 1883 86.4 21.605

FF-Multiplier = Montgomery Multiplier
PI= 0.276640035, k=52
Platform =Virtex-4 (xc4vIx80-12{f1148)
LopezDahab | 3768 | 4573 | 3005 2507 115.9 21.805
FF-Multiplier = Montgomery Multiplier
This | PI=0.24739953, k=52
work Platform = Virtex-5 (5vIx155tff1738-3 )
LopezDahab | 3543 | 2985 | 3691 4142 190 21.80499
FF-Multiplier = Montgomery Multiplier
PI=0.222815076, k=52
Platform = Virtex-6 ( 6vIx130tff1156-3)
LopezDahab | 3077 | 4065 | 4305 4273 196 21.805
FF-Multiplier = Montgomery Multiplier
PI=0.249601835, k=52
Platform = Virtex-7 (7vx550tffg1927-3)

Montgomery | 11708 | 21598 [ - 1926 194 9.9
(Liand | FF-Multiplier = bit-parallel
Li, PI1=0.3297294, k=6

2016) Platform = Virtex-4 (Virtex4VLx-200)
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Figure 19. Performance Index among different FPGAs.

The total number of slices utilized in this approach is 12687, 11346, 10219, and 11447
on Virtex-4, Virtex-5, Virtex-6, and Virtex-7, respectively. It can be seen that the proposed
design on Virtex-6 consumes a lesser number of slices (10219) as compared to the same
design on other platforms.

Number Slices
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3772

B Virtex-4 Virtex-5 Virtex-6 Virtex-7
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Figure 20. Slices utilization on different FPGAs.
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Figure 21. Performance index using different multipliers among different FPGAs.
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To achieve fair comparison for the results obtained in this paper, with those obtained from the
more related work done by (Li and Li, 2016) and implemented on Virtex-4, the proposed design
(1) of both approaches in this work is chosen. The authors in the previous work chose k=6, while
in this proposed design, k=52. This explains the difference between the time consumed in their
work 9.9 us and the time consumed in design (1) which was approximately 21.805 us for both
multipliers, as shown in Tables 1 and 2.

The PI of the previous work is 0.3297294, while the PI of design (1) using the first approach is
0.38751206, and of the second approach, 0.276640035.

So, their design is better than design (1), as shown in Table.1, when using an interleaved
multiplier, but the design (1) shown in Table.2 provides better PI than that obtained from previous
work.

5. CONCLUSIONS

This paper presents the implementation of scalar multiplication based on the Lopez-Dahab
algorithm. This algorithm uses point addition and squaring units as the cornerstone of point
multiplication. The proposed design relies on the Koblitz curve with a binary field GF (22%%) bit.
The index of performance equation was used as an analysis tool for comparison of the proposed
design among different Xilinx’s platforms using two different types of multipliers, either
Montgomery or interleaved. It is shown that the proposed design on Virtex-6 with interleaved
multiplier outperforms the other designs of the two approaches with a performance index of
approximately 0.217610202 and a low number of total slices 9978. However, in general, ECP with
Montgomery multiplier achieves a good performance index among all different technologies
compared to ECP with the interleaved multiplier. The proposed design implemented on Virtex-7
in the first approach is appropriate for applications with high frequency since its maximum
operational frequency approximately 221.6Mhz. In contrast, the proposed design on Virtex-4 is
more suitable for applications with low-frequency, since its maximum frequency is approximately
86.4Mhz. Design (1) in Table.2, when using the Montgomery multiplier, provides a performance
index better than the previous design of Li and Li in 2016.
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