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ABSTRACT

This research is devoted to investigating the thermal buckling analysis behaviour of laminated composite
plates subjected to uniform and non-uniform temperature fields by applying an analytical model based on a
refined plate theory (RPT) with five unknown independent variables. The theory accounts for the parabolic
distribution of the transverse shear strains through the plate thickness and satisfies the zero-traction boundary
condition on the surface without using shear correction factors; hence a shear correction factor is not required.
The governing differential equations and associated boundary conditions are derived by using the virtual work
principle and solved via Navier-type analytical procedure to obtain critical buckling temperature. Results are
presented for: uniform and linear cross-ply lamination with symmetry and antisymmetric stacking, simply
supported boundary condition, different aspect ratio (a/b), various orthogonality ratio (E1/E>), varying ratios
of coefficient of uniform and linear thermal expansion (o01), uniform and linearly varying temperature
thickness ratio (a/h) and numbers of layers on thermal buckling of the laminated plate. It can be concluded
that this theory gives good results compared to other theories.

Keywords: Uniform and non-uniform thermal buckling, critical buckling temperature, five-variable refined
plate theory
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1. INTRODUCTION

Fiber-reinforced composite laminates, which have high strength-to-weight and stiffness-to-weight
ratios, are becoming important in weight-sensitive applications such as aircraft and space vehicles.
As a result, thermal buckling analysis of composite laminates is very important, especially in thin-
walled members, since structural components of these highspeed machines are usually subjected
to nonuniform temperature distribution due to aerodynamic and solar radiation heating. (Chen,
W. J,, et al., 1991), studied thermal buckling behaviour of composite laminated plates subjected
to uniform or non-uniform temperature fields is analyzed with the aid of finite elements. (Shi, et
al., 1999), developed the thermal post-buckling fabricated from thin composite plates using the
method of finite element formulation in brand coordinates. The shapes of linear buckling modes
used to model the post-buckling deflection studied post-buckling of laminations that are
symmetrically laminated, antisymmetric angle ply, and investigated the stiffness and deflection
unsymmetrically laminated composite plates subjected to mechanical and thermal loads.
(Mansour, M., et al., 2010), Studied thermal buckling behavior of the symmetric cross-ply
laminated rectangular thin plates subjected to uniform and or non-uniform temperature fields.
based on differential quadrature method (DQM) is implemented for analysis. The procedure is
divided into two stages: (1) solving the in-plane thermoelasticity problem to obtain the in-plane
force resultants, and (2) solving the buckling problem using the force distribution obtained in the
previous step. By discretizing, numerical solutions can be obtained. (Le-Chung Shiau, et al.,
2010) studied the thermal buckling behavior of composite laminated plates by using the finite
element method. The thermal buckling mode shapes of cross-ply and angle-ply laminates with
various Ei/E> ratios, aspect ratios, fiber angle, stacking sequence and boundary condition were
studied in detail. The results indicate that the high E1/E> and a»/a; ratios of AS4/3501-6 and T
300/5208 laminates produce higher bending rigidity along the fiber direction and higher in-plane
compressive force in a direction perpendicular to the fiber direction. (Nsaif and Jameel, 2013)
studied buckling analysis of composite laminates for critical thermal (uniform and linear) and
thermo-mechanical loads. The analytical investigation involved certain mathematical
preliminaries, a study of equations of orthotropic elasticity for classical laminated plate theory
(CLPT), higher-order shear deformation plate theory (HSDT), and numerical analysis (Finite
element method). The equation of motion is derived and solved using the Navier method and Levy
method for symmetric and anti-symmetric cross-ply and angle-ply laminated plates to obtain
buckling load by solving the eigenvalue problem for different boundary conditions under different
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thermomechanical loading. The experimental investigation is to find mechanical properties at
room temperature of glass-polyester. ( Bourada, M., et al., 2012) performed an analysis of thermal
buckling analysis on sandwich plates made of functionally graded material (FGM) using a novel
four-variable refined plate theory. Thermal loads are assumed to be uniform, linear, and nonlinear,
in addition to an overall rise in the thickness direction. (Fazzolari, et al., 2013) studied buckling
of composite plate assemblies using higher-order shear deformation theory, an exact method of
solution For the first time, a comprehensive use of symbolic algebra is developed to perform a
buckling analysis on composite plate assemblies. To derive the governing differential equations
and natural boundary conditions, the principle of minimum potential energy is applied. (Fazzolari
and Carrera, 2014) investigated the thermal stability of functionally graded material (FGM)
isotropic and sandwich plates using refined quasi-3D Equivalent Single Layer (ESL) and Zig-Zag
(Z2) plate models developed within the Carrera Unified Formulation (CUF) and implemented
within the Hierarchical Trigonometric Ritz Formulation (HTRF).Uniform, linear, and non-linear
temperature rises through-the-thickness direction are taken into account. (Cetkovic, 2016) studied
thermal buckling of laminated composite plates based on layer-wise theory of reddy and a new
version of layer-wise theory of Reddy. From the strong form, analytical solution is derived based
on Navier's type, while the weak form is analysed using the isoperimetric finite element
approximation. (Xing and Wang, 2017) investigated the critical buckling temperature of thin
rectangular plates with functionally graded surfaces. Closed form solutions are obtained for the
plate with a critical thermal parameter. different barrier conditions using the separation-of-
variables method, under uniform, linear, and nonlinear temperature fields. (Vescovini, R., et al.,
2017) discussed the analysis of composite plates and sandwich panels for thermal buckling using
a Ritz-based variable-kinematic formulation applying refined, higher-order theories to specific
regions, such as the core of sandwich panels, is possible. (Sadiq and Majeed, 2019) studied A
new higher-order displacement field that is used to calculate the critical buckling temperature of
an angle-ply laminated plate. The equations of motion for simply supported laminated plates based
on higher-order theory angle-ply plates are derived using Hamilton's principle and solved using a
Navier-type solution. (Aditya Narayan, D., et al., 2019) investigated thermoelastic buckling
properties of variable stiffness composite shells, cylindrical and spherical shell frames subjected
to uniform and non-uniform thermal fields are investigated using a finite element approach that
incorporates higher-order theory accounting for the thickness effect. The critical buckling
temperature is determined by solving the governing equations developed using the principle of
energy minimization via the eigenvalue approach. (Emmanuel Nicholas, P., et al., 2019)
optimized laminated composite plates subjected to nonuniform thermal loads, using the finite
element method to analyze the plate during the optimization process. (Balakrishna A., and Singh,
B. N., 2020) studied the thermal response of a laminated functionally graded carbon nanotube-
reinforced composite (FG-CNTRC) plate structure under various types of non-uniform edge
compression loading is predicted using finite element discretization and type polynomial-based
higher-order shear deformation theory (HSDT). The application of non-uniform edge loads results
in a non-uniform in-plane stress distribution. These in-plane stresses are determined using either
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the finite element method or the in-plane elasticity approach. In present work, critical temperature
of simply supported composite cross-ply plate is obtained using refined five-parameter plate theory
(RPT). The significant advantage of our proposed theory is that five unknown variable exists in its
displacement formula and governing equation. The effect of thickness ratio (a/h), aspect ratio(a/b),
orthogonality ratio (EvE2), coefficient of thermal expansion ratio (ava2) and numbers of layers on
thermal buckling of laminated plate for symmetric and antisymmetric thin and thick plate are
investigated.

2 .THEORETICAL ANALYSIS
2.1. Displacement field

Consider a rectangular plate of a total thickness (h) composed on (n) orthotropic layers with the
coordinate system (see Fig. 1) (S.-E. Kim, 2009). Refined plate theory fulfills equilibrium
conditions at the plate's top and bottom forces without using a shear correction factor.

N

Figure 1. Coordinate system and layer numbering used for a typical laminated plate.

The oblique displacement W is composed of three components: extension wa, bending wb, and
shear ws. According to (Kim, S.-E., 2009), the displacement field can be expressed as follows:

1 5

_ _[aws 1 5(z 2 owg
U(x;y'z) _u’(x'y) z ax]+Z[4 3(h) ] ox

5

V(x,y,z) =v(x,y)—z [%] 1z E B g(%)2] Z—‘A;

W(X'Y'Z) :Wa(x'}’)‘*‘Wb(x»Y)"‘Ws(x:J’) (1)

For small strain Linear, the strain-displacement relations take the for (Reddy, J. N., 2004)

ou ov 1/0u ov 1 1 /0v ow 1 1/0u ow
5x—&'5y—a—y'€xy—5(a+a)—zyxwgyz—a(a—ﬁ@)—zyyz'gxz—a(wa)—
1

E Vxz (2)
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The strain components will be derived, based on the displacement Refined of plate, from eq. (1)
and eq. (2) as:

2 27 52 2 27 52
gx=au_zawb+z[l_5(5)]aws < _ v zawb+z[3—§(f)]a‘”5

ax dx2 4 3\hn axz 'Y T 3y “Tay2
_6u+6v_2Z(02wb)+ZZ1_5(2)2 82wy _ Wa 5_5(2
Yxy = dy = 9x axdy 4 3\h axay'YYZ T oy 4 h

owg 5 7\?2 owg
Yaz = ax+[Z_5(H)]E @)

The strains associated with the displacements are:

Ex = EQ + 7KL +1K5, &) = E) +2KD + 1K, vy = YOy + zkEy + kS,

Yyz = Yyz + 8Yyz, Yxz = Yz + 8Vxz, €2 =0 4
Where:
O_u _(’)zwb _azws

P [ ] (k@ (%) k§ (~% ] a owa) ows

o\ _ ov kb \ — _azwb ks { _ _azws Yxz) ) ox Yxz) ) ox

4 O DR 0 I R T I 1o S T (0 7-2% B Y O 07 R o

Yxy Ou v ) kg, _p %wn Kyy 0w ay ay

dy = 0x axay} 6X6y)
1 5 Z 2 5 Z 2

f=-jz+32(;), g=3-5() ©)

2.2 Hamilton’s principle

Hamilton’s principle is used herein to derive the equations of motion appropriate to the
displacement field. The principle can be stated in analytical form as (Reddy, J. N., 2004).

0= [, (U +6V)dt (6)
The strain energy §Ucan be written as:
U = fV(ax&?x + 0,6Ey, + 04y 0¥y + 0120V, + 05205z )AV (7
Substituting Eqg. (4) into Eq. (7) we get:

8U = [ [oxx(8EQ + z8KE + f6KkS) + 0y (8E) + z8KY + 8K) + 0y (8y2y + 28KEy + Ok ) +
Gyz(SY;Z + g6Y§/z) + Oxz (5\’?(2 + gSY§z)]dV

8U = [,[NyBEY + NySEY + Ny 8ygy + MESKE + MPSKD + MR, 8kEy, + MESKkS + M58k + M5y 6k, +
Q328Y3, + Q&,6v%, + Q528Y5, + Q5z8vx,] 0x dy (8)
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Substituting Eqg. (5) in Eq. (8) and by using by parts integrating we get the final strain energy as
below:

N N N 2MmS
8U_—fA[aNX8 + 518V + B+ 5 B +6MX8 b+ = Swy, + S Sw +
aZMS 2MS Q 6Q Q 6Q
—r 8wS +2- Xy 8 652 Sw, + —2£8w, + 652 Sws + SWS] 0x dy 9)

The Work done by applied thermal Forces can be written as:

sV = f [NTa (wa+wb+ws) NTE) (Wa;'V\;b"'WS) + ZNT ‘”V"aa"'—‘g}l:"""’s)] dA (10)

2.3. Equation of motion

Substituting Egs. (9)-(10) into Eq. (6) and then collecting the coefficient of
(8u, 6v, dw,, 8wy, and dwy) to zero separately, the equation of motion for the ply plate are
obtained as follows:

. ONy | ONyy . Ny ny 9°My azMg Mxy T() —

Su: pra 3y =0,6v: + =0,8wy: oz T +2- +N'(w)=0 (11
. 9%M5 "zMsy 9*Mzy anz aQyz T _ 9Q%; 6Qyz T _

Sws: ——+ oy +2— ~y + + + N (w) =0, 5wy, o T3, TN (w)=0 (12)

The transformed stress-strain relations of an orthotropic lamina in a plane state of stress are (Reddy
J. N., 2004)

gx _ 911 912 916 zx zXX 0-yz _ 644 645 YYZ
Al LI [ S B o e I B [ (13
Oxy Qs Q26 Qeel Y% 20ty 45 eSS

The force results are:

(( N _ s s s - €
Nx A1 Az Aye Byr Biz By Bip Bip Big s)‘;
S S S
N y A1z Azz Aye Biy By By Bi; B3y Byg g
X S S S
g Aie Az Ags Bis Bas Bes 16 26 66 Yxy
S S S b
M’é Bi1 Biz Bie D11 Diz Dy Di; Di; Dig ky
— S S S
131 My 3 =[By; Bas By Dy Dy Dy Df, D3, D3g|3 k%} g
S S S
M};’y Bic Bas Bss Dis D26 Des Dis D36 Dige kgy
S S S S S S S S S
M3 Bi1 Bi, Bie Di; Di, Die Hj; Hi, Hie kS
S S S BS S S S S S S X
My 12 22 26 12 22 26 12 22 26 kS
S s s BS s s s s s s sX
Mgy D16 26 66 16 26 66 16 26 66- kxy )
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Qa A A a a Ya _ _ _
| _[ve he e Rl ) e @ dee
%2 = | aa a s s s i Ny ¢ = 1f o Qiz Q22 Qz6|] Yy (AT dz
Qy 44 Ays ALy Ays||Vyz T 2a
a a s s s Nyy Q16 Q26 Qes xy
Q52 45 55 45 554 \ Yz
My , Qi1 Q12 Que]( %xx
T < < M
My, ¢ = 11¥=1fzkk+1 Q12 922 926 Ayy (AT z dz
ng Q6 @26 Ueo 2axy
AT = A%(z+g) for linear temperature rise, AT = T, — T; for the uniform temperature rise  (14)

Eq. (12) can be expressed in terms of displacements (u, v, wy,, wg, w,) by substituting for the stress
resultants from Eq. (14). the equations of motion (12) take the form:

3
awb+3B 0wy

A11 ox2 >+ 2A16 axay + A66 ay? S+ A16 ox2 >+ (A + A66) axay A26 ay [Bll 16 3x2 0y

3wy 3wy 3w, 3w, 3w, 3w _
(Bia + 2Bes) 5gs + Bas it | — [BIi 5% + 3Bl e + (B, + 2Be) 525 + B3 S| = 0
9%u a%v a%v 3wy
A16 P 2+ (Arz + Age) o o ay Az ozt sz T 2026550t Azz 6y [B16 PYCRLE
3wy, 3wy, 3wy 3w, 3w, 3w,
(B1z + 2Bee) 555 + 3Bac 5500 t BZZa_y3] - [ t6 5 T (Biz +2Bge) 5500 + 3By 5 o5 +
s 3wy _
BZZ ay3 ] =0
o3u o3u 2%v 2%v 23v
Bi1 3 3316 o + (B2 + 2Bg) 55 axay + 3266_3,3 + BlGF + (B12 + 2Bee) %70y + 3By %072 +
23v o*w a*wy *wyp a*wyp
Byo—= 93 [Dnﬁ +4D16 55, 50y +2(Dyp + 2D66) za 2o+ 4Dy 5 —2 %0y + Dy, oy ] -
o*w o*w o*w o*w o*w
|Dfy S0+ 4Dge s+ 2(D5, + 2D86) 3505 + 456 5 + DS, ayj] +NT(w) = 0

+82663+B1663+(B + 2BSy) ———

B1163+3B16a za + (Bf; + 2B3e) s aza

9% dy?2 +3B266x6y2+

v o*w 0w o*w, o*w 9*w
BSZ a_y_?, - [Dil Ix 4b + 4‘Dl6 Ix 3ab + Z(D + ZD 6) Ix zabz %6 axa;S + D%Z ay4b] -
o*w o*w *w 2w o*w %w %w
[Hfl e T 4His o0 + 2(HT, + 2HEe) 5500 + 4H3s 5ok + Hi, ayf] + A% G t AL
%w, %w %w 2w
2455 50ay A8 g T Ala g, + 2445550+ N'(w)= 0
92 9? 9? 9? 92 92
Ass 3t + Mgy 5ot + 2445 52 + A3 =2 + A, a“ZS +24%s 3 “a” +NT(w) =0 (15)

2.4. Navier solution

In Navier's method, the generalized displacements are expanded into a double trigonometric series
in terms of unknown parameters. The choice of function in the series is restricted to those that
satisfy the problem's boundary condition. The Navier method is employed to obtain the closed-
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form solutions of the partial differential equations in Eq. (12) for simply supported rectangular
plates. Two types of simply supported boundary conditions are (Reddy J. N., 2004)

2.4.1 Navier Solution of Cross-Ply Laminated Plates
Assuming the following displacements form to satisfied simply supported boundary conditions for
cross-ply

u= Yo 2 UpncosaxsinBy, v= Yr_1 Y1 Vmn sin ax cos fy

Wy = Ym=1Xn=1 Wpmn sinax sin By, Ws = X1 Xn=1 Wemn sinax sin By

Wy = $0my 3521 Wan sin ax sin By (16)
3. EIGENVALUE PROBLEM

Equations of motion Eq. (12) can be expressed in terms of displacements by substituting the force
and moment resultants from Eq. (14) and using Eq. (15), from using boundary conditions for cross-
ply result an eigenvalue as follows.

S11 S12 S13 S14 0 (Umn
S12 S22 S23 S2 0 an
S13 Sz3 S3z3—C 534 in f (17)
S14 Sza S3a—C Sy — = Cl | Womn
lo 0 —C si- —cl\w,..

And s;; is the element of stiffness.

4. NUMERICAL RESULTS AND DISCUSSION

Thermal buckling analysis of cross-ply plates under uniform and non-uniform temperature distribution
is obtained by program above analytical solution of the refined theory using MATLAB 18. as shown
in Fig. 2
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Input geometrical and mode
specifications

a b, h, N, mn

Calculate Input material properties
transformed El, E2,

stiffness
vl2,v13,u23,G12, G13,

G23

Calculate stiffness Calculate stiffness

Aij , Bij , Dij , matrix given in Appendix

S S S a S
Bij, Dyj, Hj, Ay, Aj

Figure 2. Flow chart for computer programming.

4.1 Cross-ply laminated plate under uniform temperature distribution.

4.1.1 Verification of results

In the present work, the results are verified by comparison with the numerical results obtained
with different theories such as FSDT, HSDT, and refined four parameters plate theory. Thermal
buckling for a uniform temperature rise of simply supported square plate cross-ply (0/90/90/0)
laminated plate for material 1 was analyzed and listed in Table 1. material 1:% = open, i—: =25 E, =

G G G a
1, f = 05, f = 05, ? = 02, v12 = v13 = v23 = 025, 2= 3, a'1 =1
2 2 2 ay

a?

The critical temperature is normalized T, = (# * T). Results show that while the present model
22

of refined plate theory utilized more displacement parameters (five parameters), it is generally
more accurate than (RPT) and less accurate than other higher-order theories.

Table 1. A critical temperature of cross-ply (0/90/90/0) simply supported square plate.

GRT®

a/h Present | LWT! | FSDT? | HSDT® | HSDT* RPT RPT RPT RPT

4 0.06652 | 0.0514 | 0.0613 | 0.0570 | 0.0554 | 0.0711 | 0.05580 | 0.05888 | 0.06109
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10 0.1658 | 0.1400 | 0.1598 | 0.1479 | 0.1436 | 0.1749 | 0.14784 | 0.15344 | 0.15704

20 0.2121 | 0.1976 / 0.2088 / / / / /

50 0.23029 | 0.2245 / 0.2383 / / / / /

100 0.2331 | 0.2291 | 0.2438 | 0.2432 | 0.2431 | 0.2440 | 0.24331 | 0.24378 | 0.24359

ICetkovic, M., 2016; 2 Shukla, K. K., 2001; 3Singh S., Singh J., and Shukla K. K., 2013; “Shu XP, Sun
LX. (1994); *Mansouri MH, Shariyat M., 2014

Table 2 and Table3 show the effects thickness ratio (a/h) on the critical temperature cross-ply of
(0/90) and (0/90/0) simply supported square plate (a/b = 1) and subjected to uniform temperature
respectively, observed that critical temperature decrease with increasing thickness ratio. Material
properties for these tables as given as Material 2: % = open, i—:_ 15,E, = 1Gpa,~* Sz _ 05, 623 =

0.3356,v;, = 0.3,7,3 = 0.49,% = 0.015, =1,a, = 107, The critical temperature is normahzed in the
0
following form (T, = «a,T ).

Table 2. Normalized critical temperature of cross-ply (0/90) simply supported square plate (a/b = 1)

a/h

theory 2 10/3 4 5 20/3 10 20 100

Present 0.3544 0.2320 0.1880 0.1394 0.0895 0.0443 | 0.0119 | 4.8657e-4

LwWT! 0.3695 0.2391 0.1926 0.1419 | 0.09052 | 0.04449 | 0.01188 | 0.4858e-3

HSDT? 0.3198 0.2114 0.1729 0.1302 | 0.08524 | 0.04310 | 0.01177 | 0.4856e-3

1Cetkovic, M., 2016; 2Matsunaga, H., 2005

Table 3. A critical temperature of cross-ply (0/90/0) simply supported square plate (a /b =1)

Theory a/h

2 10/3 4 5 20/3 10 20 100

Present 0.3351 | 0.2589 | 0.2261 | 0.1840 | 0.1318 | 0.0729 | 0.0214 | 9.0713e-4

LWT?! 0.3595 | 0.2625 | 0.2272 | 0.1848 | 0.1340 | 0.07628 | 0.02316 | 0.9964e-3

NoorAK,3D? / / 0.2140 | 0.1763 / 0.07467 | 0.02308 | 0.9961e-3

ICetkvic, M., 2016; 2Noor A.K.,3D

Fig.3(a) and Fig.3(b) present the effect of aspect ratio (a/b) and thermal expansion ratio (a,/a;)
cross-ply (0/90)s laminated plate on thermal buckling temperature. The results show good
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agreement with other theories (M. Cetkovic 2016 and Kari RT, Palaninathan and Ramachandran

; . B Gz Gi3 Ga3 a
. . . T = y = 1,— = VU.0," = V.9, — V.90, - - — Y. T —
J 1989 Materlal 3 = 20 EZ = 1 = 0 5 = 0 5 = 0 5 vlz = U13 = 1723 = 0 25 =
E E E. a
2 2 2 2 1
2,a; = 0.1x 107>, a/h =100.
;
5 = © = Present
= iasd . It - @ =Layerwise[11]
- @ = Layerwise & - @ =HSDT[24)
22 —.-HasyDleal ’,,h g09 —\\ 24
E %7 2 \\
g . z‘l’,- “%os%‘\ +
LA 13 ~
S| $, 2 Ne o
S 18 ’, £ e
o Vals < EANN ﬂ\
5 e L = A S
=2 - ] N T,
S 5 E ol %
£ 14 ~ o S “da. >
L2) i B o ‘\x
2 #4 N 06 ~le “o.
& 12 s ‘s i ~o
s o BT £ -,
£ Tl 5 ~
2 1«-.:5:_‘_:::::::, Zos \:&:~:“-~\
o8| E-=-=9 ~“os~we. ¥
g,
0.4 <

25 3 2 4 6 8
(a/b)

(a) Effect of aspect ratio (a/b) (b) thermal expansion coefficient (a,/a,) ratio

Figure 3. Effect of aspect ratio (a/b) and the ratio of thermal expansion coefficient (a,/a;) of
cross-ply (0/90/90/0) Plate on thermal buckling temperature Ter

4.1.2 Effect of design parameters

The effect of design parameters affecting the cross-critical ply's buckling temperature laminated
thick and thin plate are analyzed such as symmetric and antisymmetric ply, number of layers,
orthotropy ratio (E;/E,), thermal expansion coefficient ratio (a,/a;) under uniform temperature
distribution.

Table 4 shows the effect of changing the thermal expansion coefficient ratio (a,/a,) on critical
buckling temperature of four symmetric cross-ply (0/90/90/0) plates for different thickness ratio
(a/h), the critical temperature decrease when (a,/a;) increase. The mechanical properties are the
same in Table 1.

Changing of aspect ratio (a/b) effect on critical buckling temperature of four symmetric and
antisymmetric cross-ply (0/90/90/0) laminated thick and thin plates are listed in Table 5, which
shows that normalized critical temperature increases as aspect ratio (a/b) increase along with the
thickness ratio. The mechanical properties are the same in Table 1.

Table 4. Effect (a,/ a;) on critical temperature of cross-lamina (0/90)s simply supported square plate.

Ter
alh (az/ o)
2 4 6 8 10
5 0.09357 0.0851 0.07806 0.07208 0.06696
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10 0.1741 0.1583 0.14519 0.13408 0.1245
15 0.2076 0.1888 0.1732 0.1599 0.14858
20 0.2227 0.2025 0.1858 0.1715 0.15937
50 0.2417 0.2199 0.2016 0.1862 0.17298
100 0.2447 0.2226 0.2041 0.18852 0.17512

Table 5. thermal buckling of symmetric and antisymmetric cross-lamina [0/90], thick and thin plates

for different aspect ratios simply supported.

Ter
Lay-up a/h a/b
1 2 3 4
4 0.0665 0.07156 0.08053 0.08737
[0/90], 10 0.1658 0.2019 0.2872 0.36024
20 0.2122 0.2777 0.47497 0.70769
100 0.2331 0.31608 0.6037 1.0376
4 0.0192 0.0252 0.0283 0.0301
[0/90], 10 0.0455 0.09215 0.1268 0.1468
20 0.0569 0.1542 0.2773 0.3799
100 0.06189 0.19736 0.4558 0.8133

Table 6. shows the effect of changing (E;/E,) on critical temperature for four, eight, and twenty
layers symmetric and antisymmetric cross-ply plates for different thickness ratio (a/h), notice that
normalized critical temperature decrease when orthotropic ratio increases for both cross-ply
symmetric and antisymmetric laminated plates (D22 increase). Using the mechanical properties are
the same in Table 1.

Figs. 4(a)-(d) demonstrates four thermal buckling modes (a/h=10) rectangular (a/b=2) laminated
plates that are simply supported.
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Table 6. Effect (E,/E,) on thermal buckling of symmetric and antisymmetric cross Imina [0/90]
thick and thin

Tor
Lay-up E,/E, a’h
5 10 20 100
10 0.2341 0.3493 0.3988 0.4178
[0/90], 20 0.1169 0.2048 0.2531 0.2737
40 0.0469 0.0997 0.1400 0.1610
50 0.0336 0.0761 0.1127 0.1333
10 0.1322 0.1973 0.2253 0.2360
Symmetric [0/90], 20 0.0574 0.1006 0.1243 0.1345
40 0.0210 0.0447 0.0627 0.0721
50 0.0147 0.0334 0.0494 0.0585
10 0.1048 0.1565 0.1787 0.1872
[0/90] 5, 20 0.0440 0.0771 0.0952 0.1031
40 0.0158 0.0335 0.0471 0.0542
50 0.0110 0.0250 0.0370 0.0438
10 0.0854 0.1246 0.1410 0.1471
[0/90], 20 0.0349 0.0590 0.0715 0.0767
40 0.0124 0.0253 0.0345 0.0390
50 0.0087 0.0188 0.0269 0.0313
10 0.0910 0.1354 0.1544 0.1617
Antisymmetric | [0/90]5 20 0.0375 0.0654 0.0806 0.0871
40 0.0133 0.0282 0.0395 0.0453
50 0.0093 0.02100 0.0309 0.0365
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10 0.0918 0.1370 0.1564 0.1638
[0/90]4, 20 0.0379 0.0664 0.0819 0.0886
40 0.0135 0.0286 0.0402 0.0462
50 0.0094 0.02131 0.0315 0.0372

Mode Hight
LR :: ] i -
R -

@ (m=1,n=1) (c)(m=1,n=3)

Mode Hght

(b)(m=1,n=2) (d(m=1,n=4)

Figure 4 Thermal buckling mode for symmetric cross-ply (0/90/90/0) square plate, No. of layers = 4, a/h=10

4.2 Cross-ply laminated plate under nonuniform temperature distribution

4.2.1 Verification of results

The accuracy of the suggested solution of cross-ply plates under non-uniform temperature
distribution is demonstrated using MATLAB 18 is program compared the results with other
theories, which give good agreement as shown in Table 7. and Table 8. The critical temperature
acquired when the temperature distribution is linearly varying is twice that obtained when the
temperature distribution is uniform. This is because the thermal stress produced by a linearly
varying temperature is half that of a constant temperature. Fig. 5 shows the comparison between
(Cetkovic, M., 2016) and the present work for the isotropic ceramic plate that is thin (a/h = 100)
of simply supported boundary condition which displays the influence of changing aspect ratio (a/b)
on critical buckling temperature.
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Table 7. Critical temperature of an isotropic plate when it is subjected to various temperature distributions

Temperature rise | Present | LWT?! FSDT? CLPT® FSDT* FSDT® Lwe
Uniform 57.5329 | 63.3 63.3 63.3 63.3 63.2 62.1
Lineary varying | 132.76 | 126.5 / 126.0 / / /

ICetkovic, M., 2016,°Bouazza, M., 1994, *Kari R.T.,*Maloy K.S. 2001, 5Prabhu M. R., éShariyat, M., 2007

Table 8. Critical temperature convergence of isotropic ceramic plates with varying a / h ratios

theory a/h
10 10 20 40 60 80 100
CLPT! 1709.911 427477 106.869 47.497 26.717 17.099
FSDT? 1593.902 419.739 106.370 47.396 26.684 17.084
uniform HSDT? 1617.484 421.516 106.492 47.424 26.693 17.088
LWTS? 1633.155 422.513 106.556 47.436 26.698 17.091
Present 1455.5 382.4013 96.8331 43.1400 24.2866 15.5494
CLPT! 3409.821 844.955 203.738 84.995 43.434 24.198
FSDT? / / / / / /
Linear HSDT! 3224.968 833.032 202.984 84.848 43.387 24.177
LWTS? 3266.311 845.027 213.113 94.871 53.395 34.182
Present 3358.94 882.464 223.460 99.553 56.045 35.883
LJavaheri R, Elsami MR,, ?Chen CS, Lin CY, Chien RD., 3M. Cetkovic 2016,
450 . T TOTTIN resent H | i H ','
— = = uniform :ZDM Cetkovic 2016) g
400 |— & — L?near present ) ¢¢ N
% —_— _— ® — Linear (M. Cetkovic 20186) ’, |
= >
S 300 | "' 1
s ! - !
(—E 250 "
= 200 [ -~ S
8 1s0 | ," - - s
Té’ 5 - - =t i
S 100 ".¢ —._::3"' ]
501;":;======—, ]
O i | =
1 1:5 2 2.5 3 3-5 <1 4.5 5
(a/b)

Figure 5. Effect of aspect ratio (a/b) of cross-ply (0/90/90/0) Plate for (a/h =100) on critical buckling

4.2.2 Effect of design parameters

The effect of many thick and thin plate parameters such as aspect ratio (a/b), (E,/E,) ratio,
(a,/ay) ratio, number of layers for symmetric and antisymmetric cross-ply on critical buckling
(Ter) under linearly temperature distribution along the thickness are considered.

Note that the mechanical properties and nondimensional critical temperature for all tables and
figures used in this section are material 1. The results listed of (a/h) and (E1/E>) are inverse because
it is divided by D2).
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Table 9 and Fig. 6 show the effect of thickness ratio on critical temperature under a different
form of temperature distribution; as expected, the critical temperature obtained for the case of
linearly varying temperature distribution is about double the critical temperature for the uniform
temperature distribution.

Symmetric and antisymmetric cross-ply (0/90)2, (0/90)3 and (0/90)4 for thick and thin plate on
critical temperature listed in Table 10, which shows that normalized critical temperature increases
as thickness ratio increase (D22) increase, but it decreases when number of layer increase for
symmetric cross-ply and its larger for antisymmetric laminated plate.

Table 9. Critical temperature (T,,.ah/m?D,,) for cross-ply (0/90/90/0) simply supported square plate.

Tcr
a/h uniform Nonuniform
5 0.10919 0.2069
10 0.1816 0.3849
20 0.21830 0.4925
40 0.2299 0.5297
60 0.2322 0.5372
80 0.2330 0.5399
100 0.2334 0.5412
0.55 T P SR L D= = = = = o — — = =
- -5 = _—r - & =— Nonuniform
i o.as | ,,, -— ® =— Uniform
g 0.4 | 9' -
= ¥
£ 035 ' 4
3(‘% 0.3 [ " 1
EO‘ZS_ : . — | = = m = — -— — — — —®e - — — — &
g oz| ©@ > - 1
0.15 | l' |
0.1 < | ! 1 ! 1 { ! 1 !
o 10 20 30 40 50 60 70 80 20 100

Figure 6. Critical temperature Tcr for a cross-ply (0/90), simply supported plate
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Table 10. nonuniform critical temperature for symmetric and antisymmetric cross-ply simply
supported square plate.

Tor

a’h symmetric cross-ply Antisymmetric cross-ply
(0/90), (0/90)3 (0/90)4 (0/90), (0/90); (0/90)4
5 0.2069 0.1132 0.0955 0.0560 0.0588 0.0598
10 0.3849 0.2105 0.1778 0.1003 0.1077 0.1103
20 0.4925 0.2694 0.2275 0.1255 0.1366 0.1404
40 0.5297 0.2898 0.2447 0.1339 0.1464 0.1508
60 0.5372 0.2939 0.2481 0.1356 0.1484 0.1529
80 0.5399 0.2954 0.2494 0.1362 0.1491 0.1536
100 0.5412 0.2961 0.2500 0.1365 0.1495 0.1539

Table 11 shows the effect of changing (E1/E2) on critical temperature symmetric cross-ply
(0/90), and (0/90),, for thick and thin plates. Since stiffness increases when the orthotropic ratio
increases, therefore, normalized critical temperature decrease (D22 increase).

Table 12. shows the effect of changing (a2/al) on critical temperature symmetric cross-ply
(0/90), and (0/90),,thermal expansion coefficient ratio increase, therefore normalized critical
temperature decreasing.

Changing aspect ratio (a/b) effect on critical buckling temperature of four and eight symmetric
cross-ply (0/90/90/0) laminated thick and thin plates are listed in Table 13, which shows that
critical temperature increases as aspect ratio (a/b) increases, also it increases with increasing (a/h)
ratio which effected critical temperature larger than (a/b) ratio.

Table 11. Effects E1/E> on the dimensionless buckling temperature of the square simply supported

Ter
No. of layer a/h Ei/E2
10 15 25 30 40
5 0.5386 0.2710 0.2069 0.1632 0.1092
10 0.8038 0.6044 0.3849 0.3196 0.2322
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(0/90)¢ 20 0.9177 0.7188 0.4925 0.4226 0.3260
50 0.9558 0.7592 0.5345 0.4648 0.3679
100 0.9614 0.7653 0.5412 0.4716 0.3748
5 0.2987 0.1876 0.0955 0.0735 0.0475
10 0.4459 0.3058 0.1778 0.1438 0.1010
(0/90),, 20 0.5091 0.3637 0.2275 0.1902 0.1418
50 0.5302 0.3841 0.2469 0.2092 0.1600
100 0.5333 0.3872 0.2500 0.2123 0.1630

Table 12. Effects (a,/ ay) on the dimensionless buckling temperature of the square simply supported

Ter
No. of layer a, /oy a/h
5 10 20 50 100
4 0.1970 0.3665 0.4691 0.5091 0.5154
6 0.1799 0.3347 0.4283 0.4649 0.4706
(0/90), 8 0.1655 0.3079 0.3940 0.4277 0.4330
100 0.0353 0.0658 0.0842 0.0914 0.0925
4 0.0912 0.1697 0.2171 0.2357 0.2386
(0/90) 5 6 0.0836 0.1555 0.1990 0.2160 0.2186
8 0.0771 0.1435 0.1836 0.1993 0.2018
100 0.0169 0.0315 0.0404 0.0438 0.0443

Table 13. linear temperature of antisymmetric cross-lamina (0/90) to different aspect ratio simply

supported.
Ter
No. of layer a/b a/h
5 10 20 50 100
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1 0.0560 0.1003 0.1255 0.1350 0.1365
2 0.0721 0.1836 0.3072 0.3799 0.3932
(0/90)2 3 0.0808 0.2447 0.5352 0.8137 0.8796
4 0.0858 0.2797 0.7239 1.3540 1.5495
1 0.0598 0.1103 0.1404 0.1521 0.1539
2 0.0775 0.2026 0.3495 0.4401 0.4571
(0/90)4 3 0.0865 0.2675 0.6041 0.9472 1.0316
4 0.09149 0.3037 0.8082 1.5714 1.8206

5. CONCLUSIONS

Thermal buckling analysis of cross-ply laminated thick and thin plates under different temperature
distribution (uniform and nonuniform) by using five variable refined plate theory is considered. The most
important characteristic of this work is that it contains five unknown displacements of refined plate theory,
which is compared with other theories those of the refined four parameters plate theory (RPT), FSDT,
HSDT, and Layerwise Theory (LWT) and give good agreement. As a result, the following conclusions
may be drawn:

1-The critical temperature obtained for the case of linearly varying temperature (132.76) distribution is
about double the critical temperatures for the uniform temperature 57.5329 distribution.

Thermal buckling for uniform temperature rise of simply supported cross-ply (0/90/90/0) laminated plate
was compared with FSDT (Shukla, K. K., 2001) it shows discrepancy for (a/h = 4) is 7.8 %. 2- Depending
on the lamination scheme used, the critical buckling temperature exhibits a monotonic response with respect
to the side to thickness ratio (a/h). This increase/decrease occurs more rapidly with thick (a /nh) laminates
than with thin laminates as compared with other theories.

3- The critical buckling temperature depends on the lamination scheme, especially for thick laminates, and
is greater for [0/90/0], compared to [0/90] laminates, when the same material properties of each layer are
used as compared with other theories for present compared [0/90/] with HSDT (Matsunaga, H., 2005). It
shows a discrepancy of 11.6 %, while for comparison for [0/90/0] with LWT (Cetkvic, M., 2016), it shows
22 %. Especially for thick laminates (a/h = 2).

4- The critical buckling temperature decreases with the increase of the thermal expansion coefficient ratio
(au/a) and is faster for thick, compared to thin laminates.

Again, the increase is greater for thick laminates than for thin laminates. 5- The critical buckling
temperature increases with an increase in aspect ratio (a/b). When (a/b > 2), the critical temperature increase
is nearly linear and thus identical for all buckling mode shapes.
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Appendix
For stiffness cross-ply

S11 = A110% + AgeB?, 512 = (Agz + Age)aB, S13 = =By — (By, + 2Bgg)ap?, s14 =

—Bi10® — (B + 2BE6)at, Sp0 = Age0® + Ay B2, 523 = —(Byy + 2Bgg) B — By, 3,

Spq = —(Biy + 2Bf;)a®B — B3B3, 533 = Dy1a* + 2(Dyy + 2Dgg)a®B? + D%, 534 =

Dfja* + 2(Df, + 2Dgg)a?B? + D3, 8%, 544 = Hija* + 2(HY, + 2HEg)a?B? + H3,p* +
25“2 + AZ482; Sa5 = A?ssaz + Aiz}BZ' Ss5 = Assa® + Ay

A1e = Aze = D16 = Dy = Dfe = D256 = H1S6 = Hége = B16 = By6 = sz = B156 = Bge = Ays =
AZ5 = Ais =0

The plane stress reduced stiffness Qjj are Reddy J. N. (2004)

Eq v12E> Ey
Q11 e Q12 FE— Q11 S Qes 12, Qa4 23, Uss 13
mm mm . .
a=— B = e , and (U, Vi Womns Womn, Wemn) are coeficients

C= (a®(Ny 4+ MI) + B*(Ny + M])) for linear temperature

C = (Nya? + Ny B?) for uniform temperature
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(Ny Ny, Nyy) = h(cx,cy,cxy) dz = YN 1fzk“(ox, Oy, Oxy) dz , (M2, M2, ME)) =
h
h(GX'Gy'GXy)Z dz = Y- 1ka+1(Gx’0y’GXy) zdz , (M3, M5, M3y ) = h(GX'GY'GXy) fdz =
2

Zk 1 kaH(GX § Gy 4 ny)de (sz» yz xz» ) f h(oxz ) Gyz » 80%xz go—yz) dz =

Zk:l fZZkkH(O'xz »Oyz,80%z ,gO'yz) dz

92 (wg+wp+wyg) 92 (wa+wp+wg) 6(w+w+w) 0% (wg+wp+wg)

T _ T a b S T a b S T a b S T a b S

N"(w) = Ny —6 > + N, A + 2Ny, oxdy + M, %2 +
% (Wa+wp+ws) 2 (Wa+wp+ws)

MT ——a b7 75 ZMT _— =

y dy? + dxdy

Uy = @1€05%0 + a,sin’0 ayy = a;5in*0 + ayc0s%0 , 2ay, = 2(a; — ay) sin O cos6

(Ai],BU,DU,BlS],DlS],HS) f Qu(l z,z%, f,zf, f*)dz (i,j = 1,2,6), (AU'A?].AS) _

b
/%01, 9,9 dz  (i,j =45)
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