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ABSTRACT

This paper presents a study of a syndrome coding scheme for different binary linear error-

correcting codes that refer to the code families such as BCH, BKLC, Golay, and Hamming. The
study is implemented on Wyner’s wiretap channel model when the main channel is error-
free and the eavesdropper channel is a binary symmetric channel with crossover error
probability (0 < Pe < 0.5) to show the security performance of error correcting codes while
used in the single-staged syndrome coding scheme in terms of equivocation rate. Generally,
these codes are not designed for secure information transmission, and they have low
equivocation rates when they are used in the syndrome coding scheme. Therefore, to
improve the transmission security when using these codes, a modified encoder which
consists of a double-staged syndrome coding scheme, is proposed. Two models are
implemented in this paper: the first model utilizes one encoding stage of the conventional
syndrome coding scheme. In contrast, the second model utilizes two encoding stages of the
syndrome coding scheme to improve the results obtained from the first model. The C++
programming language, in conjunction with the NTL library, is used for obtaining simulation
results for the implemented models. The equivocation rate results from the second model
were compared to both the results of the first model and the unsecured transmission
(transmission of data without encryption). The comparison revealed that the security
performance of the second model is better than the first model and the insecure system, as
the equivocation for all the simulated codes over the proposed model reaches at least %97
at the Pe = 0.1.
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Hamming.
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1. INTRODUCTION

Physical layer security of wireless communication is a problem that has been studied by
specialists who were working on ensuring the confidentiality of data transmission between
legitimate users. The issue of secure communication was first studied by Shannon
(Shannon, 1948) from an information theoretical perspective. To achieve secure
communication in Shannon’s model, a secret key is shared between the legitimate users
while it is concealed from the eavesdropper.

Secure and reliable communication is made using coding techniques for data transmission.
The basic physical layer model that contains theoretical foundations to capture the essence
of communication security and reliability is called the wiretap channel, which Wyner
introduced (Wyner, 1975). In Wyner’s model, the transmitter (Tr.) transmits confidential

113



Volume 29  Number 2 February 2023 Journal of Engineering

information to the legitimate receiver (Re.) through the main channel without sharing a
secret key between them, and the eavesdropper (Ev.) obtains information from another
channel called the wiretap channel which is assumed to be a degraded version of the main
channel. To increase transmission security, Ozarow and Wyner (Ozarow & Wyner, 1984)
proposed the syndrome coding scheme for a special case of the wiretap channel when the
main channel is noiseless, and the eavesdropper channel is a Binary Symmetric Channel
(BSQ).

In the syndrome coding scheme, the message is conveyed as the syndrome of the code. The
transmission security is measured in terms of the equivocation rate at the eavesdropper’s
side. There are codes designed especially for a syndrome coding scheme that give high
equivocation rates (Gazi, 2020). Error-correcting codes are used for reliable
communication between legitimate users (Kadum, et al., 2020). Furthermore, they can be
used in a syndrome coding scheme to increase transmission security. Still, they cannot give
high equivocation rates as specially designed codes for syndrome coding schemes (Moon,
2021). Thus, to increase the security performance of error-correcting codes while used in
syndrome coding schemes, additional encoding techniques or modifications to the code can
be made at the encoder which makes the equivocation rate at the eavesdropper’s side higher
and the amount of information leakage to the eavesdropper lower.

Numerous researchers have investigated data transmission over the wiretap channel and its
coding schemes for different tapping channels. The problem of strong secrecy has been
studied over arbitrarily varying wiretap channels (Chen, et al., 2022). From an information
theoretic perspective for providing security of data transmission and on the bases of
randomized coset coding, finite length codes have been studied for Gaussian wiretap channel
(Nooraiepour, et al,, 2020). Additionally, (Harrison, et al., 2019) achieved reliable and
secure communication over the Gaussian wiretap channel have been studied by considering
the pros and cons of applying different keyless coding layers. A technique to extend the
columns of the parity-check matrix was proposed (AL-Hassan, et al., 2014). The utilized
technique increased the equivocation rate compared with codes in Grassl’s online database,
which is available at (Grassl, 2007). (Zhang, et al.,, 2013) used an encoder with two
encoding stages to improve the security of data transmission. The first stage of syndrome
coding was with (23, 12, 7) Golay code, and the second with modified McEliece public-key
encryption. Increasing the security in this proposal brought down the information rate on
the eavesdropper’s side. Additionally, (Al-Hassan, et al.,, 2013) presented a system of
twencoding stages to minimize the information leakage and maximize the equivocation rate
at the eavesdropper’s side. The first stage of the encoder was based on the syndrome coding
scheme of (23, 12, 7) Golay code, and the second stage employed two models using the
technique of McEliece cryptosystem with two types of Best Known Linear Codes (BKLC).
Compared with the results of (Zhang, et al., 2013), the equivocation results of (Al-Hassan,
et al., 2013) showed better equivocation rates.

This paper investigated the syndrome coding scheme with a single-staged encoder for the
binary linear error correcting codes such as Bose-Chaudhuri-Hocquenghem (BCH), BKLC,
Golay, and Hamming codes for the wiretap channel. The system model in Fig. 1 shows that
the main channel is error-free, and the eavesdropper channel is a BSC with a crossover
probability (0 < Pe < 0.5). Then, we propose a system that employs an encoder with two
encoding stages of the syndrome coding scheme: the first stage with the abovementioned
codes and the second with different BKLCs compatible with the output from the first stage.
Compared with the syndrome coding system of single-stage encoding and the unsecured
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system, the proposed system with two encoding stages has a higher equivocation rate and
lower information leakage. By this outcome, this study adds another secure system to be
ready for implementation in real wireless communication applications.

Tr Re

T . M =SV
M=35 Main channel: | & Decoder F—>
Error- free

———| Encoder
. V.
: ) r) .ﬂ-? — s‘-‘;’v‘—K
[ Eavesdropper channel: J@ Decoder |—>

BSC

Figure 1. The block diagram of the syndrome coding scheme over the wiretap channel

2. METHODS AND MATERIALS
2.1 The Syndrome Coding Scheme Concept

A syndrome coding scheme over the wiretap channel is employed to increase the security of
data transmission. Error-correcting codes having parameters (n, k, d) are used mainly for
reliable communication between the transmitter and the legitimate receiver and to combat
noisy transmission problems when information is transmitted over noisy channels. These
codes can also be used in syndrome coding schemes to increase the security of information
transmission. In the syndrome coding scheme, the message is encoded as the syndrome of
the code and then transmitted. To measure the security level for error-correcting codes
when they are used in the syndrome coding scheme, the equivocation rate (secrecy capacity)
or the information leakage (channel capacity) at the eavesdropper side should be measured.
The wiretap channel model presented in this paper has three users; the transmitter (Tr.), the
legitimate receiver (Re.), and the eavesdropper (Ev.). It is assumed that the channel between
the transmitter and the legitimate receiver is error-free, while the eavesdropper obtains a
degraded version of the transmitted codewords from a BSC. Two models of encoder have
been used over the wiretap channel. The first model consists of one encoding stage of the
syndrome coding scheme, which is used to know how binary error correcting codes such as
BCH, BKLC, Hamming, and Golay codes perform in terms of equivocation rate. The second
model is implemented to improve the obtained results from the first model. This model
consists of an encoder with two encoding stages: the first stage consists of a syndrome
coding scheme using the binary linear BCH, BKLC, Hamming, and Golay codes, and the
second stage consists of a syndrome coding scheme using BKLCs (those are compatible with
the output from the first stage). The equivocation rate of the utilized codes for both models
has been compared with the insecure system results. The NTL library, which is a C++
portable library with high performance in mathematical calculations and arithmetic, is used
with C++ coding language for writing the simulation codes. The results are plotted using NTL
in conjunction with GMP (the GNU multi-precision and high-performance tool for plotting).
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The system is running (Ubuntu 20.04.1 LTS) operating system. Moreover, the Magma
software suite obtained the generator and parity-check matrices for all codes.

Based on the crossover probability of the BSC, the maximum transmission rate which can be
achieved from this channel when perfect secrecy has been maintained is defined as the
secrecy capacity of the wiretap channel. Wyner (Wyner, 1975) showed the secrecy capacity
as:

Cs_psc = —Fe.logy, P, — (1 — B,).log,(1 = F,) (1)

Where; Pe is the error probability of transmission through the BSC. Then, the BSC capacity
can be shown as:

Cpsc =1 —Cs_gsc =1+ Pe.logy P, + (1= FR,).log,(1—F,) (2)

For binary (n, k, d) error correcting codes the block length of the codeword c is n-bits, the
block length of the information m is k-bits, the length of the parity bits that will be added to
the information is (s = n — k), and the minimum hamming distance of the code is d. On the
receiver side, the error detection and correction capability of the code can be obtained from
d. Error-correcting codes can correct errors up to t bits, and

Where t is the number of errors that occurred in the error pattern, and [-]| is the floor
function. Error-correcting codes can be classified into perfect and non-perfect codes. The
perfect codes satisfy the Hamming bound (i.e., the number of codewords is equal to the
Hamming bound); however, non-perfect codes are not. The hamming bound and several
correctable error patterns are given by Eq. (4) and (5).

cl< 2 4)
T XD

n!
izo (1) = Zico 770 5)
For binary linear code C, which has parameters (n, k, d), the generator matrix [G], and the
parity-check matrix [H] over the field F2, the codeword ¢ € F}* and the syndrome s € F)* %
of ¢ € C over F2 can be defined as:

c =m.[G] (6)

s=c.[HT] (7)
The generator matrix and the parity-check matrix of the linear code are orthogonal, therefor
[G] X [HT] = [0]. The length of a binary linear code syndrome is equal to the length of the
parity bits added to the information bits (s = n - k). The received vector R at the receiver
combines a transmitted codeword C and an unwanted error pattern E as the effect of adding
noise by the channel during transmission (i.e., R = C + E). The syndrome results from a parity
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check performed on R to know whether R is a vector of the codeword set or not. If R is a valid
codeword, the value of S will be an all-zero vector. If R contains errors, the syndrome will
contain some non-zero elements. The non-zero syndrome will allocate the particular error
pattern if the detectable error is correctable, and the forward error correcting decoder
corrects the error. The parity check for the received codeword is as follows:

s=R.HT =(C+E).HT =0whenR € C (i.e.E = 0) (8)
s=R.H" # 0whenR # C (i.e.E # 0) (9)

Each syndrome corresponds to an error pattern. The number of syndromes for binary error
correcting code is S = 27k, Therefore, there are 27* correctable error patterns. The codeword
set of the binary linear (n, k, d) code is FJ!It contains 2k codewords called the coset, and the
cost leader which is the lightest weight codeword in this coset is the all-zero codeword. If
any correctable error pattern is added to these codewords by the noisy channel during
transmission, the decoder will detect it by parity-check procedure on the received vector.
In this paper syndrome coding scheme has been implemented. In the syndrome coding
scheme, the message is encoded as the syndrome of the error correcting code (i.e., the length
of the message in this scheme is set to be (m = s = n - k). The transmitter encodes the
information as the syndrome of binary error correcting code that has the length of m-bits,
generates and transmits n-bits codeword C(i) to the legitimate receiver. The information
sequence is m(1).. m(S=2m), and the codeword sequence is c(1)... ¢(S). As the channel
between the transmitter and the legitimate receiver is noiseless, the receiver receives the
same codeword C(i) that Alice transmits. However, the eavesdropper obtains corrupted
codeword Z through the BSC as the BSC adds an error pattern Epsc of length n-bits to the
transmitted codewords according to the Pe. So, the received vector by the eavesdropper is
Z(i) = C(i) + EBsc(i), for i to be an instant time of transmission and equal to S.

To send all 2m syndromes of the binary (n, k, d) code in the traditional syndrome coding
scheme, a look-up table containing all syndromes and corresponding error patterns must be
created and saved by all users. If the number of messages to be encoded by syndrome coding
is equal to the denominator of the Hamming bound (i.e. 2™ = ¥!_, (71.’)), the code is said to

be perfect in the syndrome coding scheme; otherwise, it is a non-perfect code.

For codes with large numbers of syndromes and error patterns, the look-up table is
impractical as the creation of the look-up table is complex and needs large memory space.
Also, for non-perfect codes, when the look-up table is created, there are messages which
cannot be sent, as the match between the messages and error patterns is not one-to-one. For
those reasons, the parity-check matrix of the binary code is put on the standard form [Im |
PTk], the generator matrix is put on the standard form [Pm | Ik] and the corresponding error
pattern of the syndrome (message) can be created by padding the message by k-bits of zero.
The standard form of the parity-check matrix will be sufficient for the encoding and decoding
procedures.

2.2 The First Model

The model that is shown in Fig. 2 implements one stage of syndrome coding for different
binary linear BCH, BKLC, Hamming, and Golay codes with code parameters (n, k, d). The users
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of this model are applying special algorithms to deal with their data. The binary code
parameters of this stage will be recognized as (nj, ki, d1). The length of the codeword C1 is ni-
bits, the message length of error correcting code is ki-bits, the minimum hamming distance
of the code is di-bits, and the syndrome length of the code is m-bits which equals (n: - k). It
is essential to state that the standard form of the generator and the parity-check matrices
are used in this model.

Tr. Re.
. ny
M=n;—I; | Encoder Single- C, A
———>| staged syndrome > Decoder |—>
coding scheme

=

Zm
BsC Decoder

W

Figure 2. Single-stage syndrome coding scheme over the wiretap channel

The block diagrams and the algorithms for the transmitter’s encoder, the legitimate receiver,
and the eavesdropper’s decoders are shown and explained as follows:

2.2.1 The transmitter’s encoder

The transmitter starts encoding m-bits message block of length (n: - k1) to generate Ci-bits
codeword of length (n:) such that M(i) = C,(i).[HT]. The block diagram in Fig. 3 shows the
single-staged encoder using the syndrome coding scheme for binary linear BCH, BKLC, Golay,
and Hamming codes. At first, the transmitter’s encoder generates the binary block messages
of length (M = n: - k1), and generates the error pattern E7 of length n: for each message either
from the syndrome look-up table or by padding the message block by ki-bits of zero,
generates a random vector Cgrs of length n: by multiplying the random data vector DR;: of
length k1 by the generator matrix of the linear code [G:], and finally adds E7 with Cgr: to
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generate the codeword Cz of length n1 and sends it to the legitimate receiver. The encoding
process by the transmitter follows algorithm#1.

Generate n;-bit error [E]4
X N

[

f/-""\l[cﬂ lxky E:; 19 [Cri]
L

f

W

pattern £; for each J

m-bit message

-

[DRy]; . le

Figure 3. The transmitter’s single-staged syndrome coding encoder

[Gl]k,_:r n, from magma @ [Crl1x n, = [DR,]x[G4]

Algorithm#1: The encoding process for the binary linear (ns, ki, d1) code.

Input: Generator matrix [G1], transpose of the parity-check matrix [HY], and random data
vector [DRi1] are required for the following encoding steps:

[1] Obtaining [G1] k1xn1and [H1] i1-k1)xn1 from the Magma software suite and putting them on
the standard form of [Pki/Im] and [Im/PTk1], respectively.
[2] Calculating the transpose of the parity-check matrix [HT Inixmi-rn)

[3] Generating [DR1] 1 xk1: (a random data of length k; will be generated)
[4] Calculating [Cri1] 1 xn1

[Cr1l1xn1 = [DR1)1x k1% [G1lk1 xma (10)
[5] Generating the error pattern [E1] 1xn1 for each message [M] 1x 1 - k1) from:

e Either the syndrome look-up table: The error pattern that satisfies this equation for
perfect codes was chosen.

[M]lx(nl—kl) = [Eq]ixn1x [HlT] (11)
e Or by padding the message vector by ki-bits of zero: for non-perfect codes

[E1]1xn1 = M1 - k1)l 00..00,4 (12)
[6] Calculating the codeword to be transmitted [C1] 1xnz

[Ci]ixn1 = [E1]1xn1® [Crilixma (13)

Output: Return [C1] 1xn1 thatis C; (i) = E;(i) + DR, (i).[G4]
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2.2.2 The legitimate receiver’s decoder

The legitimate receiver’s decoder is shown in Fig. 4. The legitimate receiver receives the
same transmitted codeword C: of length n:-bits due to an error-free communication channel,
and he performs syndrome decoding using the transpose of the parity-check matrix [H7] to
obtain the original message M (i.e, m = n1 - ki). The receiver utilizes algorithm#2, which
explains the step-by-step decoding procedure of the received codewords.

Decoder Re.
[Cl] lxmn, ' SR =0 IH[T [M]lx (my-ky)

. .
- - - =>

ar]

Figure 4. Single-stage legitimate receiver’s decoder

Algorithm#2: The decoding algorithm of the received binary codeword vector Ci.

Input: The transpose of the standard form of the parity-check matrix [H7 ] and the received
codeword (1 are required for the following decoding steps:

[1] Obtaining [H1] (n1 - k1) xn1 from Magma, then put it on the standard form [Im | PTk1]

[2] Generating the transpose of the parity-check matrix [HY | n1x (a1 - k1) from [H1] (a1 - k1) x n1
[3] Calculating the received syndrome [SR] 1x (1 -k1) = [C1] 1xn1 X [H1T]| n1x (n1 - k1)

[4] Setting [M] 1x(n1-k1) = [SR] 1x(n1-k1)

Output: Return [M] 1x(n1 - k1)

Because E1 is generated either from the look-up table or padding M by ki-bit zeros, and the
parity check matrix is put on the standard form, the receiver’s recovery of the original
encoded message M by the transmitter can be proved from algorithm#2 and Eq. (10, 11, 12
and 13) as follows:

SR(i) = C;(i) x [H{]

SR() = (E;()) + Cre(D)) x [H]]

SR(i) = (E,(i) + DRy(1) x [G1]) x [H]]

SR(i) = Ey(D)x [HT] + DR,(i) x [G] x [HT], because [G] x [HT] = [0]
SR(i) = E;(D) x[HT]1+0

SR() = M(0)
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2.2.3 The eavesdropper’s decoder
The block diagram of the eavesdropper’s decoder is shown in Fig. 5. Eve receives the
degraded vector Z of length n; instead of C7 as a result of adding random error sequence Essc

of length n; to the transmitted codeword C1 by the eavesdropping channel that is a BSC. The
BSC produces the EBSC based on the crossover probability of the channel (0 < Pe < 0.5).

[Z]1xn1 = [Ci]li xn1 @ [Egsclixna (14)

/ BSC (C1, P \ /" \\
Decoder

C; Z= C;GEBEQ _ Ev.
~.. . [Z]lxn,_ Z SRg=ZxH,T

[Cl]lx ny - - [ﬂ]j_x(n,_—k,_}
— S|r/ > —>®—>T s
Binary Error H,T

Sequence
[Ezscl s S /
o

Figure 5. The block diagram for the eavesdropper’s channel and decoder

Eve follows the step-by-step procedure in algorithm#3 to decode the corrupted vector Z.
Algorithm#3: The decoding algorithm of the received binary vector Z from the BSC.

Input: The transpose of the parity-check matrix [HT ] and the received vector [Z] are
required for the following decoding steps:

[1] Obtaining [H1] (n1 - k1) xn1 from Magma, then put it on the standard form [Im | PTk1]

[2] Generating the transpose of the parity-check matrix [H ] n1 x (1 - k1) from [H1] (n1 -k1) x n1
[3] Calculating eavesdropper’s received syndrome [SRe] 1 x (n1- k1) = [Z] 1xn1 X [HT | n1x (n1 - k1)
[4] Set [M] 1x(n1-k1) = [SRE] 1x(n1 - k1) = [M] 1x (n1 - k) ® [Sc] 1x (n1 - k1)

Output: Return [M] 1x @1 -k1)

Even if the eavesdropper’s decoder is assumed to be the same type as the legitimate
receiver’s, he cannot recover the original message M that is encoded by the transmitter as a
corrupted syndrome Sc will be added to the original encoded syndrome M due to random
error addition by the BSC; instead, he recovers the estimate of the original message M. Based
on Eq. (10, 11, 12, 13, and 14), the proof to show how the eavesdropper cannot obtain the
original encoded message M and can only obtain the estimation of the message is explained
as follows:
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SRE (i) = Z(i) x [HT], from the output of the BSC: Z(i) = C; (i) + Egsc (i)
SRg(i) = (C1(i) + Epsc (1)) x [H{]

SRg(i) = C,(i) x [H{] + Egsc(D)x [H{]

SRe (i) = (E1(i) + DRy (D)x [Gy])x [H{] + Epsc(i)x [H]]

SRp(i) = E{()x[H{] + DRy(i) x [G;] x [H{] + Epsc(D)x [H{]

SRp(i) = M)+ 0+ S:(i)

SRe(i) = M(@) + Sc(i) = M()

2.3 The Second Model

The model shown in Fig. 6 implements an encoder with two stages of syndrome coding: the
first stage with different BCH, BKLC, Golay, and Hamming codes, and the second stage with
different BKLCs compatible with the output of the first stage encoder. (ns, ki, di) are the
parameters of the binary linear codes in the first stage encoder, [G1] is in the standard form
of [Pm|Ix1], [H1] is in the standard form of [Im|PTk1], the input to the encoder is M of length
(m = ny-kq), and the output of this stage is C1 of length ni. (nz, k2, dz) are the parameters of
the BKLC codes used in the second stage, [G2] is in the standard form of [Pn1|Ikz2], [Hz] is in
the standard form of [In1|PTk2], the input to this stage is C1 of length ni, the output of this stage
is C2 of length n.

Tr. Re.
M= nj—k;| Encoder: Double- C,* M
»| staged syndrome Decoder [—
coding scheme

L 4

T

.7
BSC Decoder [—=

2

Figure 6. Double-staged syndrome coding scheme over the wiretap channel

The block diagrams and the algorithms for the transmitter’s encoder, the legitimate receiver,
and the eavesdropper’s decoders are shown and explained as follows:

2.3.1 The transmitter’s encoder

The transmitter starts encoding the message M of length m to generate the codeword Cz of
length nz to be transmitted over the channel to the legitimate party using two stages of the
syndrome coding scheme. The first stage encoder uses binary linear BCH, BKLC, Hamming,
and Golay codes with (ni, k1, di) parameters. The second stage encoder encodes the output
of first stage C1 of length n: using a syndrome coding scheme of appropriate BKLC codes with
parameters (nz, kz, dz) such that nz = nz - k2. The block diagram for the transmitter’s encoder
is shown in Fig. 7. For encoding steps, the transmitter follows algorithm#4.
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Generate Generate
M, Teeor B (G, BT WEl [,
* : pattern E; N N pattern £ “/"’ N
“| for each L/ “|  foreach AL/ -
Message 1 Codeword {\
M Ci

1:|ka mny
® [Crilix n, [DR4]x[G,]

[D'El]k
[GEJJ{:x g ‘h®
f [Crol 1 ng [DRz] x[G2]

[DR:]J

Figure 7: The transmitter’s double-staged syndrome coding encoder
Algorithm#4: The encoding process for the binary message M by the transmitter.
Input: Generator matrix [G:], transpose of the parity-check matrix [H]], and the random data
vector [DRi] is required for the first stage, and the Generator matrix [Gz] and the random
data vector [DRz] are required for the second stage to perform the following encoding steps:
[1] Obtaining [G1] k1 xn1, [H1] (n1-k1) x n1, and [G2] k2 xn2 from the Magma software suite and put
them on the standard form

[2] Calculating the transpose of the parity-check matrix [HT ]nlx(nl—kl)

[3] Generating [DR1] 1 xk1: (a random data vector of length k; will be generated)
[4] Calculating [Cr1] 1xn1

[Cr1l1xn1 = [DR1]1 x k1 X [G1lk1 xm1 (10)

[5] Generating the error pattern [E1] 1xn1 for each message [M] 1x 1 - k1) from:
e Look-up table: for perfect codes, choose the error pattern that satisfies Eq. (11)

[M] 1x(n1-k1) = [E1]1xn1X [H1T] (11)
e Padding the message vector by ki-bits of zero: for non-perfect codes

[Eilixn1 = M(n1—k1)| 00..00k, (12)

[6] Calculate the output of the first stage [C1] 1xn1
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[Cilixn1 = [E1l1 xn1® [Cril1xn1 (13)

[7] Generating [DRz] 1 xk2: (a random data vector of length k2 will be generated)
[8] Calculating [Crz] 1xn2

[Cr2)1xn2 = [DR2)1 x k2X [G2]k2 x n2 (15)

[9] Generating the error pattern [E?2] 1 xnz for each output of first stage [C1] 1xn1 from padding
the codeword vector by kz-bits of zero

[E2]1xn2 = [C1]1xn1] 00..00; (16)

[10] Calculating the output of the second stage [C2]1xn2 which is the output of double stage
encoder

[C2]1xn2 = [E2]1 xn2® [Cr2li xn2 (17)

Output: Return [C2] 1xnz thatis C,(i) = E,(i) + DR,(i).[G,]
2.3.2 The legitimate receiver’s decoder

To recover the original encoded message by the transmitter, the legitimate receiver uses a
double-stage decoder, as it is shown in Fig. 8.

1*t decoding stage 2% decoding stage Re.
[Coln, | €2 SR:=CoxHT |[SRin, | €1 SR=CixHT  |[MIpn,xp

9

- -

L
b
b

g

7 o

Figure 8: Double-staged legitimate receiver’s decoder

The legitimate receiver receives the same transmitted codeword bits Cz of length nz, which
is the output of the double-stage encoder, due to an error-free communication channel. The
first decoding stage performs a parity-check multiplication over Cz with the transpose of the
parity-check matrix of the BKLC that is used for encoding in the second encoding stage
(i.e. HT). This stage of the decoder returns SRz of length n: equal to C1. The second decoding
stage performs a parity-check multiplication over C: with the transpose of the parity-check
matrix of the binary linear code that is used for encoding in the first encoding stage (i.e. HT).
This stage of the decoder returns M of length (m = n; — k;). To perform this procedure, the
legitimate receiver follows the steps explained in algorithm#5.

Algorithm#5: The legitimate receiver’s double-staged decoding procedure to return M.
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Input: The transpose of the parity-check matrices [H1], [HT ], and the received codeword C
is required to perform the following decoding steps:

[1] Obtaining [Hz] 2 - k2) xnz and [H1] 1 - k1) xn1 from Magma then put them on the standard
form [Inz-kz | PTkz] and [Im | PTk1] respectively

[2] Generating the transpose of the parity-check matrix [HI ] nzx @z - kz) from [Hz] (nz - k2) x n2

[3] Calculating the output of the decoder’s first stage [SR2] 1xn1

[SR2]1xn1 = [Coli xn2 X [HzT] n2 x (n2—k2) (18)

[4] Setting [C1] 1xn1 = [SR2] 1xn1
[5] Generating the transpose of the parity-check matrix [HT | n1 x (1 - k1) from [H1] (n1- k1) x n1
[6] Calculating the output of the decoder’s second stage [SR] 1 x 1 -k1)

[SR]lx(nl—kl) =[C1]ixn1 X [H1T] nlx (n1-k1) (19)
[7] Set [M] 1xn1-k1) = [SR] 1xn1-k1)

Output: Return [M] 1x(n1-k1)

From Eq. (10, 11, 12, 13, 15, 16, 17, 18, and 19), the legitimate receiver’s recovery of the
original message M can be proved as follows:

SR, (i) = C,(i) x [H7 ]
C,()) = Ex(D) + Crp(i) = C1(i)n1|00--0k2 + DR, (D). [G2]
SRy (i) = (€1()1100..0,, + DRy (1). [G,]) x [H]
SRy (i) = C1(D)n1100..04,x [H7 ] + DR, (i). [G,] x [H3]
0

SR, (1) = C1(Dns
SR() = SR, (D)x [H{] = €1 () x [H]]
C:(i) = E1 (D) + Cre (D) = E (i) + DRy (1). [G1]
SR(i) = (E1 (i) + DRy (). [Gy])x [H{]
SR(i) = E;(i) x [H{] + DR, (0).[G]x [H]]
0

SR() = M(Dn1-r1
2.3.3 The eavesdropper’s decoder

The eavesdropper captures a corrupted version of the transmitted vector Z2 of length nz due
to obtaining information through a BSC. After that, he tries to obtain the original encoded
message by implementing the same legitimate receiver’s double-staged decoder. However,
he cannot recover the original encoded message by the transmitter, as the BSC adds random
error sequence Ezpsc to the transmitted codeword through the channel based on the
crossover error probability of the channel. The randomness is added by the BSC as in Eq.
(20). The block diagram for the eavesdropper’s channel and decoder is shown in Fig. 9. To
perform the decoding steps, the eavesdropper follows algorithm#6.
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[Z2]1xn2 = [C2]1 xn2 @ [E2pscli x n2 (20)
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Figure 9: The eavesdropper’s communication channel and double-staged decoder

Algorithm#6: Eavesdropper’s attempt to obtain M.

Input: The transpose of the parity-check matrices [HZ], [HT], and the corrupted codeword
Z2is required to perform the following decoding steps:

[1] Obtaining [Hz] (n2 - k2) xnz and [H1] (n1 - k1) xn1 from Magma then put them on the standard
form [Inz-kz | PTkz] and [Im | PTk1] respectively

[2] Generating the transpose of the parity-check matrix [HI ] nzx (a2 - kz) from [Hz] (nz - k2) x n2

[3] Calculating the output of the decoder’s first stage [SRzk] 1 xn1

[SR2£)1xn1 = [Z2]1 xn2 % [H3 ] n2 x (n2—k2) (21)
[4] Setting [Z] 1xn1 = [SR2E] 1xn1

[5] Generating the transpose of the parity-check matrix [HT | n1x (a1 - k1) from [H1] (a1- k1) x n1
[6] Calculating the output of the decoder’s second stage [SREg] 1x(n1-k1)

[SRE]lx(nl—kl) =[Z]ixm x [H1T] nlx (n1-k1) (22)

[7]Set [M] 1xn1-k1) = [SRE] 1x(n1 - k1)

~

Output: Return [M] 1x(n1-k1)
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From Eq. (10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, and 22), the eavesdropper’s failure to
obtain the original message M can be proved as:

SR25(i) = Z,(i) x [H;]
Z5(i) = Co(0) + Eppsc(i) = E3(i) + Crp(i) + Ezpsc (i)
Z,(0) = (;'1(ll)n1|00--0k2 + DR, (D). [G2] + EZBSC(i)

SR25(i) = (C1()3100..0x, + DR, (D). [G,] + Ezpsc (D)) x [H7 ]
SR25(i) = C1()n1100..0,x [H7 ] + DR, (D). [G,)x[H] ] + Ezpsc (D) x [H; ]
0

SRZE(i) = Cl(i)nl + Ec(i)nl = Z(l)
SRg()) = Z(Dx [H{] = (C; () + Ec(Dn1)x [H]
SRg(i) = (E1()) + Cre (D) + Ec(Dp1)x [H]
SRg(i) = (Ey(D)p1 + DRy (D). [G1] + Ec()pa)x [H]
SRg(i) = Ey(Dp1x [H{ ] + DRy (D). [G1]x [H{] + Ec(D)n1x [H{ ]
0
SRg(0) = M(Dn1-k1 + Sc2(D) n1-r1
SRg(i) = M(i) + Sc,(i) = M(i) ,which is not the same as the original encoded message.

2.4 Calculations of Equivocation Rate, Channel Capacity, Equivocation Difference,
Equivocation Gain, and Transmission Rate

The security of the syndrome coding scheme will be measured in terms of equivocation rate
H(M(i)|M(i)) at the output of Eve’s decoder. The equivocation can be calculated from:

HM@)| M(@)) = HM (@), M) — H(M () (23)

Where H (.) denotes the entropy, H (-, .) denotes the joint entropy, and H (- | .) denotes the
conditional entropy.

Normalization to equivocation can be obtained after dividing the equivocation rate by the
length of the original encoded message M.

H(M(i)|M(i)>

m

Normalised Equivocation = (24)

Normalization puts the scale of the equivocation rate between 0 and 1, which is the mean of
equivocation per bit of transmitted data. Therefore for different code parameters,
normalization gives a meaningful comparison among them as the comparison is based on
similar measurements.

The amount of information that Eve can obtain from Alice's transmitted codewords can be
calculated from Eq. (25), and the maximum rate of obtained information is called the channel
capacity.

I(M; M) =H(M)+HM)—H(M,M) (25)
The normalized equivocation difference between any two information transmission models
(either secured or unsecured) can be calculated to show the difference between the two
systems. Eq. (26) is used for the calculation of equivocation differences.
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Normalised Equivocation Dif ference = Eq(system2) — Ed(system1) (26)

The equivocation gain, which can be obtained by a modified model with better security than
another model, can be calculated from Eq. (27).

i i i Equivocationmodified model
Equivocation Gain = ———— modifled mode (27)
Equivocation model before modification

The transmission rate of the syndrome coding scheme is calculated by dividing the length of
the original encoded message (m = n1 - k1) over the length of the output of the decoder n (for
the first model, n = nz, and the second model n = n2).

Transmission rate = % (28)

3. RESULTS AND DISCUSSIONS

The normalized equivocation rates with different error probabilities of the BSC for the first
and the second models are presented in Tables 1, 2, 3, 4, 5, and 6. The normalized
equivocation rates for the unsecured system are presented in Table 7. The BCH, BKLC, Golay,
and Hamming binary linear code families have been tested for different code parameters as
they are presented in the result tables. Each table shows results for two different binary
codes when simulated on the first and second models. For all tables, the first column shows
the error probability of the BSC, the second column is the normalized equivocation rates of
the single-stage syndrome coding for the mentioned code in the column header, and the third
column is the normalized equivocation rates of the double-stage syndrome coding using the
code which is mentioned first for the first stage encoding and the code which is mentioned
last for the second stage encoding, and the fourth and fifth columns are the same as second
and third columns in definitions respectively.

The results obtained from the second model are compared with the results of the uncoded
transmission for each code family. For all codes, when the BSC adds no errors to the
transmitted codewords, the equivocation rate at the eavesdropper is zero, and Eve can
recover the original encoded massage. In general, when the BSC adds random error
sequences to the transmitted codewords with high crossover probability (Pe > 0.2), the
equivocation rate at the eavesdropper side will be high, and the channel is inappropriate to
obtain information. In other words, the equivocation rate by Eve will be high for any used
system by the transmitter. Therefore, for comparing the obtained equivocation rates, we
focus on the crossover probability of the BSC from (0.01 to 0.1) as the security performance
of these codes appears in the low Pe of the BSC. The code that gives higher equivocation rates
at low Pe performs better security.

Itis very hard to compare the obtained results of the second model and present a code as the
best in its family. The results show that the BCH code (31, 26, 3) with BKLC (144, 113, 9) has
the best security performance in the BCH family. The BKLC (21, 15, 4) with BKLC (128, 107,
7) has the best security performance in the BKLC family. The Hamming code (15, 11, 3) with
BKLC (130, 115, 5) has the best security performance in the Hamming family. The Golay code
(23,12, 7) with BKLC (100, 77, 8) has the best security performance in the Golay family. In
addition, among these four code families, we represent the Hamming code (15, 11, 3) with

128



BKLC (130, 115, 5) as the best codes to transmit information for our proposed model as they
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Number 2

give the highest equivocation rates.

The System with minimum information leakage is considered the best for security
constraints. Besides the obtained security, the normalized information leakage can be
calculated to Eve from the normalized equivocation results as (normalized information
leakage = 1 - normalized equivocation rate) and presented on a graph. Moreover, the
equivocation difference and the equivocation gain between our model and the unsecured

system can be calculated.

February 2023 Journal of Engineering

Table 1. Normalized equivocation rate for BCH code family-Part 1

Normalized equivocation results of the:
P.of | 1st model with 2" model with 1st model with 2" model with
BSC | BCH(31,26,3) BCH(31,26,3) BCH(31,21,5) BCH(31,21,5)
T BKLC(144,113,9) T BKLC(144,113,9)
0.01 0.43305 0.89886 0.24365 0.78649
0.02 0.65968 0.99091 0.41907 0.95704
0.03 0.79603 0.99897 0.55881 0.98775
0.04 0.87914 0.99954 0.67027 0.99200
0.05 0.92985 0.99955 0.75750 0.99245
0.06 0.96012 0.99955 0.82448 0.99247
0.07 0.97803 0.99955 0.87481 0.99247
0.08 0.98837 0.99955 091174 0.99249
0.09 0.99401 0.99955 0.93842 0.99250
0.10 0.99688 0.99955 0.95711 0.99250
0.20 0.99954 0.99955 0.99239 0.99250
0.30 0.99955 0.99958 0.99248 0.99250
0.40 0.99956 0.99958 0.99249 0.99250
0.50 0.99956 0.99958 0.99249 0.99250

Table 2. Normalized equivocation rate for BCH code family-Part 2

Normalized equivocation results of the:
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=5 - s - 50~

35 q ERS e ER

Peof | BB TUAG T 0 R

BSC £ 5w SZgw S S
LET ESg ES £S5 0

&AM - M S

0.01 0.14991 0.79864 0.11994 0.74045
0.02 0.26188 0.96148 0.20995 0.93736
0.03 0.35766 0.99238 0.28792 0.98267
0.04 0.44201 0.99707 0.35791 0.99107
0.05 0.51699 0.99765 0.42197 0.99232
0.06 0.58361 0.99767 0.48103 0.99247
0.07 0.64278 0.99769 0.53562 0.99247
0.08 0.69500 0.99770 0.58610 0.99247
0.09 0.74110 0.99770 0.63269 0.99247
0.10 0.78139 0.99771 0.67555 0.99249
0.20 0.97198 0.99771 0.93093 0.99249
0.30 0.99675 0.99771 0.98851 0.99249
0.40 0.99766 0.99771 0.99247 0.99249
0.50 0.99770 0.99771 0.99249 0.99249

Table 3. Normalized equivocation rate for BKLC code family-Part 1

Normalized equivocation results of the:

=N SR E=ATY ER =R =R

28 | 383 | 24 | 2dS | 328 | 28R
Pof | 85 | 358 | %8 | $5% | €8 | =%

=S | ES5 | B3 | E3S5| EZ | EZ3

3 % -~ 3 = -~ 3 = L

m m

0.01 0.27180 0.84304 0.18549 0.77111 0.30204 0.78015
0.02 0.45220 0.97651 0.32281 0.95073 0.49217 0.95020
0.03 0.58838 0.99667 0.43794 0.98846 0.62985 0.98988
0.04 0.69255 0.99902 0.53627 0.99490 0.73160 0.99790
0.05 0.77177 0.99923 0.62047 0.99576 0.80792 0.99931
0.06 0.83182 0.99923 0.69202 0.99586 0.86344 0.99954
0.07 0.87698 0.99923 0.75231 0.99586 0.90379 0.99956
0.08 0.91087 0.99923 0.80256 0.99586 0.93312 0.99956
0.09 0.93598 0.99926 0.84414 0.99586 0.95433 0.99956
0.10 0.95433 0.99926 0.87814 0.99586 0.96917 0.99956
0.20 0.99828 0.99926 0.99162 0.99586 0.99937 0.99956
0.30 0.99922 0.99926 0.99586 0.99587 0.99959 0.99956
0.40 0.99923 0.99929 0.99588 0.99589 0.99959 0.99957
0.50 0.99923 0.99929 0.99588 0.99589 0.99959 0.99957

Table 4. Normalized equivocation rate for BKLC code family-Part 2

Normalized equivocation results of the:
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= s < = in s - =l =)
S T O o 1) S & o B BRI
BSC gt 'Sfléo‘ Bl '8&’323‘;- gl '8@%6
£9Q EQ T S £9 EQ T o £9 EQ ™ S
8 M B B M B X - B M T
— m N m — m N m — m N M
0.01 | 0.27444 0.73195 0.25866 0.67829 0.15210 0.56454
0.02 | 0.45227 0.92970 0.44306 0.90283 0.26501 0.81691
0.03 | 0.58193 0.98275 0.58731 0.97048 0.36138 0.92055
0.04 | 0.67764 0.99554 0.69950 0.98790 0.44649 0.95733
0.05 | 0.74856 0.99816 0.78487 0.99167 0.52275 0.96863
0.06 | 0.80073 0.99859 0.84858 0.99236 0.59120 0.97162
0.07 | 0.83914 0.99868 0.89489 0.99246 0.65238 0.97233
0.08 | 0.86721 0.99869 0.92782 0.99249 0.70662 0.97245
0.09 | 0.88787 0.99870 0.95068 0.99249 0.75418 0.97245
0.10 | 0.90333 0.99871 0.96620 0.99249 0.79538 0.97246
0.20 | 0.95891 0.99871 0.99244 0.99249 0.96283 0.97248
0.30 | 0.98174 0.99871 0.99247 0.99249 0.97243 0.97248
0.40 | 0.99453 0.99871 0.99248 0.99249 0.97248 0.97248
0.50 | 0.99871 0.99873 0.99248 0.99249 0.97248 0.97248
Table 5. Normalized equivocation rate for Hamming code family
Normalized equivocation results of the:
= = e = — | S = —
E¥_|E¥_ 4 E¥R | E¥a o E¥q | 2¥e ]
pof | 35T |3E93d 385 | zEcSg% | TEn | 3Engs
BSC | EEC |BEcdg BEu | BEgEZ | EEg | ESgEs
= s = S JES | g ES | JE= | g ES D
A N Al N Al N
0.01 0.17959 0.78746 0.28072 0.89543 0.63262 0.85579
0.02 0.30865 0.95049 0.45989 0.98938 0.85732 0.98009
0.03 0.41165 0.98934 0.59089 0.99897 0.94668 0.99726
0.04 0.49884 0.99784 0.69162 0.99971 0.98112 0.99907
0.05 0.57473 0.99953 0.76877 0.99973 0.99352 0.99924
0.06 0.63855 0.99977 0.82764 0.99973 0.99763 0.99926
0.07 0.69353 0.99983 0.87222 0.99973 0.99885 0.99926
0.08 0.74109 0.99983 0.90661 0.99973 0.99917 0.99926
0.09 0.78169 0.99989 0.93238 0.99973 0.99922 0.99926
0.10 0.81660 0.99989 0.95151 0.99973 0.99925 0.99926
0.20 0.97734 0.99989 0.99901 0.99973 0.99926 0.99926
0.30 0.99888 0.99989 0.99972 0.99979 0.99926 0.99926
0.40 0.99981 0.99989 0.99972 0.99979 0.99926 0.99926
0.50 0.99981 0.99989 0.99972 0.99979 0.99926 0.99926

Table 6. Normalized equivocation rate for Golay code family

Normalized equivocation results of the:
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—_— — — >y — ~— —_— >N — — >N - )

ot | SE8 | EE598 | 2EE 2E5.¢8

Bsc | ESa | FsRES Eg3 ESSES

£ o SE- - TS SE- O
0.01 0.16600 0.60235 0.15855 0.56297
0.02 0.28920 0.84965 0.27604 0.81552
0.03 0.39421 0.94324 0.37606 0.91980
0.04 0.48657 0.97422 0.46410 0.95701
0.05 0.56849 0.98315 0.54259 0.96853
0.06 0.64090 0.98535 0.61258 0.97162
0.07 0.70417 0.98583 0.67459 0.97229
0.08 0.75867 0.98590 0.72895 0.97243
0.09 0.80498 0.98593 0.77597 0.97246
0.10 0.84381 0.98593 0.81605 0.97246
0.20 0.98079 0.98593 0.96606 0.97248
0.30 0.98589 0.98594 0.97246 0.97248
0.40 0.98593 0.98595 0.97246 0.97248
0.50 0.98594 0.98595 0.97246 0.97249

Table 7. Normalized equivocation rates for transmission over an unsecured system

Pe of BSC Normalized Equivocation
0.01 0.08017
0.02 0.14063
0.03 0.19325
0.04 0.24089
0.05 0.28503
0.06 0.32587
0.07 0.36402
0.09 0.40017
0.10 0.43433
0.20 0.46669
0.30 0.71768
0.40 0.87583
0.50 0.94499

To visualize the obtained results, as an example, Fig. 10, 11, 12, and 13 are drawn to show
the normalized equivocation, information leakage, equivocation differences, and
equivocation gain respectively for the insecure system, the first model for the Hamming code
(15, 11, 3) and the second model for the Hamming code (15, 11, 3) with BKLC (130, 115, 5).
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Figure 10. Normalized equivocation of unsecured system, the 1st model and the 27d model
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Figure 11. Information leakage to Eve through the insecure system, the 1st and the 2nd
model
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4. CONCLUSIONS

The security constraints were investigated for different binary linear codes, such as BCH,
BKLC, Golay, and Hamming, having different code parameters in a single-staged syndrome
coding scheme over the wiretap channel for a special case of the error-free main channel and
binary symmetric eavesdropper channel. The security of these codes is measured in terms
of equivocation rates at the eavesdropper. The equivocation rate results of the utilized codes
in the investigation stage showed that the security of error-correcting codes used in the
syndrome coding scheme was inappropriate for secure information transmission.

To improve the security of the codes used in the single-staged syndrome coding system, a
system of two stages of the syndrome coding scheme was proposed such that the output
from the first encoding stage was used as the input to the second encoding stage using BKLC
codes. The information leakage of the proposed system is reduced such that the
eavesdropper obtains a vanishing bit of the original message at Pe = 0.1 as the equivocation
for all the simulated codes over the proposed model reaches at least %97. The proposed
system's obtained results showed a significant security gain in terms of equivocation rate for
all simulated codes due to the use of long codes and additional complications in the second
stage of the encoder.

In the future, further studies can be made by implementing different wiretap channel types
such as Gaussian channel, Binary Erasure Channel, and Arbitrary Varying Channel. Finally, it
is important to study different capabilities for the wiretapper in the systems that consider
information transmission security as a real problem that faces wireless communication
systems.
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