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ABSTRACT 

Based on a finite element analysis using Matlab coding, eigenvalue problem has been 

formulated and solved for the buckling analysis of non-prismatic columns. Different numbers of 

elements per column length have been used to assess the rate of convergence for the model. Then 

the proposed model has been used to determine the critical buckling load factor (   ) for the 

idealized supported columns based on the comparison of their buckling loads with the 

corresponding hinge supported columns . Finally in this study the critical buckling factor (   ) 
under end force (P) increases by about 3.71% with the tapered ratio increment of 10% for 

different end supported columns and the relationship between normalized critical load and 

slenderness ratio was generalized. 
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نلأعمدة غير انمنشوريتالانبعاج ومعامم انطول انفعال  أحمال  

 
 تغريد حسن إبراهيم

 يذسط يساعذ

 قسى انهنذسح انًذنٍح

خايعح تغذاد –كهٍح انهنذسح   

 

 انخلاصت

وحهها وفقا نرحهٍم انقًٍح انزاذٍح  يشكهح ذاو تشنايح انًاذلاب ذًد صٍاغح تالاعرًاد عهى نظشٌح ذحهٍم انعناصش انًحذدج وتاسرخ

طىل انعًىد نرقٍٍى يعذل انرقاسب  عهى ايرذادأعذاد يخرهفح ين انعناصش  ذى اسرخذاوالانثعاج نلأعًذج غٍش انًنشىسٌح. 

ورنك نهًقاسنح لأعًذج يثانٍح الإسناد (   ) الانثعاج انحشجنًىرج الأيثم. نقذ ذى اسرخذاو اننًىرج انًقرشح نرحذٌذ يعايم ــــــــنه

  (   ) انضٌادج نًعايم الانثعاج انحشجوأخٍشا كاند  .يع حانح الإسناد انثسٍط تٍن أحًال الانثعاج نحالاخ إسناد يخرهفح نلأعًذج

ونسثح % صٌادج فً نسثح انرذتة  نًخرهف حالاخ الإسناد وكزنك ذى ذعًٍى انعلاقح تٍن انحًم انحشج 41%  نكم 37,4تحذود 

  عًذج.اننحافه نلا

 انقًٍح انزاذٍح.الانثعاج, غٍش ينشىسي, انعناصش غٍش انًحذدج,  حًم انكهماث انرئيسيت:

 

1. INTRODUCTION 

Determination of critical buckling load for elastic column is a key problem in engineering 

design. Non-prismatic or tapered compression members are often used to achieve economy in 

many practical applications, Shengmin, 1996. The first study on elastic stability is attributed to 

Euler, 1744, who used the theory of calculus of variations to obtain the equilibrium equation and 

buckling load of a compressed elastic column. Since many studies in this field have been made 

such as Gere, et al., 1962, derived exact buckling solutions for many types of tapered columns 

with simple boundary conditions. Ermopoulos, 1986 studied the buckling of the tapered 

columns under axially concentrated loads at any position along the length direction for the 

parabolically varying bending stiffness, Gere, et al., 1962. Groper, et al., 1987, developed a 

method for predicting the critical buckling load for the particular case of concentrically loaded 
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columns with variations in cross-sectional area. Rzaiee, et al., 1995, used a geometrical 

nonlinear analysis to solve non-prismatic or nonsymmetrical thin walled I-beam or columns, and 

by using a computer program they generalized the results in form of design tables. Shengmin, 

1996, used a modified matrix technique to study the elastic and inelastic buckling capacity of 

non-prismatic members with a linear tapered I-shaped with a constant flange and a variable web. 

Yossif, 2008, derived the elastic critical load of a non-prismatic member using the equations of 

the modified stability functions for a wide range of taper ratio for rectangular or square cross 

sectional shapes. Wei, et al., 2010, analyzed the buckling of prismatic and non-prismatic 

rectangular columns under its weight and external axial force and discussed the influence of the 

taper ratio on the critical buckling load. Al-Sadder, et al., 2004, determined an exact secant 

stiffness matrix for a fixed-end forces vector for non-prismatic beam-column members under 

tension and compression axial force. 

2. THEORY 

In the displacement field approach, a structure is usually dividing into a number of finite 

elements and these elements are interconnecting at joints termed nodes as shown in Fig. 1. The 

displacements within each element are represented by simple functions. The displacement 

function is generally expressed in terms of a polynomial to be as or trigonometric function.  For 

a one dimensional idealization structure, the displacement field can be assumed in Eq. (1)[4]:  

 ( )            
     

                                                                                            ( ) 

where: 

 ( )  Is the displacement function at any x along the element. 

a1, a2, a3 and a4 :Is the coefficients of the generalized coordinates.   

In a matrix form,   ( )  can be represented as; 

  ⌊        ⌋ [

  
  
  
  

]                                                                                                          ( ) 

The relation between the nodal degrees of freedom and the generalized coordinates can be 

expressed in Eq.(3): 

  ⌊ ⌋{a}                                                                                                                                    ( ) 

and 

     ⌊            ⌋ [

  
  
  
  

]                                                                                                 ( ) 

Hence ; nodal displacements of an individual element will be expressed as: 
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[d]= [

  
  
  
  

]  [

                
                
                

              

] [

  
  
  
  

] 

or 

[d]=[A]{a}                                                                                                                                 ( ) 

then 

{a}=, -  * +                                                                                                                            ( ) 

Substitute Eq.(6) into Eq.(3) to get: 

  ⌊ ⌋[A]
-1

{d}                                                                                                                      ( ) 

Where: 

    

[
 
 
 
 
 
                      
                      

  

  
    
  

 
    
 

  
   
  

 
 

  
     
 

  
    
  

  
    
 

  ]
 
 
 
 
 

                                                                                                        ( ) 

The total potential energy (∏p) for a member that subjected to an axial force (P) is expressed  in 

Eq. (9): 

  = strain energy + potential energy of applied force [2] 

   ∫
  

 

 

 

(
   

   
)

 

   ∫
 

 

 

 

(
  

  
)
 

                                                                        ( ) 

This equivalent assumed that the potential of the loads is considered to be due to the forces 

normal to the column length only. The summation of the two integrals of Eq. (9) is considered as 

∏p=0.[4] 

The term (.
  

  
/
 

  ) in the second integral expresses the strain due to rotation of the beam 

element a length of (  (
     

  
)). 

     

  
 
(       )      

  
 ,  (  ) -      

(  )
 

 
   

Based on the above statements: 

   ∫
  

 

 

 

    
    ∫

 

 

 

 

   
                                                                                          (  ) 
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Where:        
   

   
           

  

  
 

From Eq.(7) it will be get: 

     ⌊ 
  ⌋, -  * +                                                                                                            (  ) 

And noting that ,     
  ,    -

 ,    - 

     ⌊ ⌋ * +                                                                                                                     (  ) 

Where:   

⌊ ⌋  ⌊   ⌋ , -   

   
  

 
∫ * +   

   ⌊ ⌋   
   ⌊ ⌋   * +   

 

 

    

 
 

 
∫ * + 
 

 

 , -   ⌊  ⌋
  
 ⌊  ⌋ , -   * +                                    (  ) 

 

For a compressive force (P), we have     
 

 
* + , -* +  

 

 
* +  [  ]* + 

Let ,  -  , -  [  ]=Equivalent stiffness matrix for a beam element of combined axial and a 

bending force actions. 

Where: 

, -  ∫ ⌊ ⌋     ⌊ ⌋
 

 
                                                                                                              (  )  

[Kg]=Geometric stiffness matrix 

[  ]   [ ̅] 

[  ]   ∫ , -   ⌊  ⌋
  
 ⌊  ⌋ , -   * +   

 

 

                                                                     (  ) 

[  ]  
 

   
[

         
           

           
           

]                                                                             (  ) 

 

The geometric stiffness matrix [  ] can be obtained by the consistent geometric stiffness 

technique and the main advantage of this method that the eigenvalues were more accurate and 

were proven upper bounds to the exact solution. 

 For the non-prismatic or tapered member we derived equation for the moment of inertia (Ix) of 

the section at any distance (x) from the smallest end can be expressed in Eq. (17): 
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      (   )  
 

 
                                                                                                              (  ) 

 

Where: 

Io : Is the moment of inertia for the smallest section at x=0. 

λ: Is the tapered ratio that represents the increasing in the moment of inertia so it’s defied as the 

ratio of the moment of inertia at the bottom of the column I-section ( IL) to the moment of inertia 

at the top of the column I-section (Io) as shown in Fig. 2. 

Substitutes Eq. (17) into Eq. (14) and analytical integrated by Matlab software, an implicit form 

has been derived for stiffness matrix [K].   

Finally: 

 

0, -  [  ]1  * +  * +                                                                                                       (  ) 

 

For buckling problems: {F}= {0}   ,   {D} ≠ {0}   then 

 

   |    |    

 

Eigenvalue problems were solved by using the finite element method written in Matlb program. 

The program used the element stiffness, mass matrix and modified the eigenvalue matrix 

equation with given constraints. The modified eigenvalue matrix equation contained fictitious 

zero eigenvalues in the same number of constraints. Finally solved this eigenvalue problem and 

determine the critical buckling load factor (   ) for the lowest eignvalue. The critical buckling 

load is expressed as shown in Eq. (19): 

 

       
    

  
                                                                                                                         (  ) 

3. CASE STUDIES: 

A tapered I-section column of a constant flange width and linear increasing in the web depth was 

adopted. It has a total length of (L) and under the effect of a concentrated axial load (P) on its top 

as shown in Fig. 3. 

For the columns shown in Fig. 3 there were different taper ratios (λ) of  (1,1.1, 1.2, 1.3, 1.4, 1.5, 

1.6, 1.7, 1.8, 1.9 and 2) with different boundary conditions of the hinged-hinged, clamped-free, 

clamped-hinged and clamped-clamped end supported columns have been considered. Critical 

buckling load factor (   ) for the case studies has been summarized in Table 1.  

The following notations were used to describe column boundary conditions for different end 

supports are summarized in Table 2.  

4. VERIFICATION: 

In order to investigate the validity of the results of the program we had to compare the buckling 

load factor for linear tapered I-sections column for the tapered ratio of one only because of the 

difference in the calculation of the studies for the tapered ratio where, Wei,2010, and Yossif, 

2008, considered the tapered ratio as the ratio of width to length of a rectangular column section, 
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while in this study the tapered ratio is considered as the  ratio of the moment of inertia at the 

bottom to the top of the I-section, since the verification is used tapered ratio of one only and the 

result was almost identical as shown in Table 3. 

 

5. RESULTS AND DISCUSSIONS: 

By using the finite element method in Matlab program to solve the eigenvlue problem in order to 

compute the critical buckling load factor for the non-prismatic or tapered I-shape steel column 

member, with linearly varied web height and with constant flange dimension. 

Table 1 gave the critical buckling load factor ( cr) of the web tapered column under axial force 

(P) acting at the top of the column for different boundary conditions. Different number of 

elements (from 4 to 11) along column length gave results that are quite close with a relative error 

not greater than (3%). 

The results obtained from Table 1 showed that average increasing in tapered ratio leads to 

increasing the buckling load factor about 4.17% for the hinged-hinged end supported column and 

about 3.6% for the clamped-free, clamped-hinged and clamped-clamped end supported columns, 

that mean for each 10% increase in the moment of inertia for the column section leads to average 

increasing of 3.71% for the hinged-hinged, clamped-free, clamped-hinged and clamped-clamped 

end supported columns. 

To present the relationship between the normalized critical load defined by (Pcr/fy.A) and the 

slenderness ratio (KL/r) as shown in Table 4 and Fig. 4, the hinged-hinged column end supports 

was implemented  with different tapered ratios of (1, 1.2, 1.4, 1.6, 1.8 and 2 ) and used the wide-

flange section of (W30x211) as shown in Table 5 to represents the section properties of the 

radius of gyration (r), moment of inertia (I), and area of the section (A). The modulus of 

elasticity (E) and the yield strength of steel (fy) were considered as (200 GPa) and (250 MPa) 

respectively. The slenderness ratio was limited by the maximum short and intermediate column 

limit (Cc) factor which calculate from the Eq.(20) and the maximum long column limit 

(KL/r=200)[6]. 

   √
    

  
                                                                                                                               (  ) 

Convergence for the critical buckling factor for the case of hinged-hinged column end supports 

could be obtained with three or more elements mesh as shown in Fig. 5. 

6. CONCLUSIONS: 

 The buckling of non-prismatic columns or tapered I-shaped steel column under tip force 

was analyzed by finite element method using  Matlab coding. 

 The boundary condition at both ends of column were processed in the program for the 

hinged-hinged, clamped-free, clamped-hinged and clamped-clamped end supported 

columns. 
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 The lowest eigenvlue gave the desired buckling load factor for different tapered ratios (λ) 

of  (1,1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9 and 2) . 

 The critical buckling factor (   ) under end force (P) increases by about 3.71% with the 

tapered ratio increment of 10% for different end supported columns.. 

 Relationship between normalized critical load and limited slenderness ratio was 

generalized. 

 For the hinged-hinged supports, from (3-7) elements along the column length obtained a 

fair convergence for the model for this study.  
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NOMENCLATURE: 

L    =    is the column length. 

P    =   is the axial load. 

Pcr   =    is the critical buckling load. 

     =    is the critical buckling factor. 

λ     =   is the taper ratio. 

r     =    is the radius of gyration. 

A    =   is the area of column section. 

I      =   is the moment of inertia. 

Ix    =     is the moment of inertia for the section of  the tapered member at any distance (x) 

Io   =    is the moment of inertia for the smallest section of the tapered member at x=0. 

IL     =      is the moment of inertia at the top of the column I-section.  

E   =     is the steel modulus of elasticity  

fy    =    is the yield strength of steel. 

Cc   =  is represents the theoretical demarcation line between inelastic and elastic behavior. 

 

 

 

 

 

 

 

 

 

Figure 1. Beam Element. 

 

 

 

 

 

 

 

 

 

 

Figure 2. Tapered ratio of non-prismatic column member. 
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Figure 3. Schematic of tapered I-sections columns under tip force with different boundary 

conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The normalized critical load verses the slenderness ratio. 
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Figure 5. Relationship between the number of   elements and the critical buckling factor for the 

hinged-hinged column end supports. 

Table 1. The Critical Buckling Factor with Variable Tapered Ratio. 

λ 
( cr) for 

 H-H 

No. of 

Element 

( cr) for  

C-F 

No. of 

Element 

( cr) for 

 C-H 

No. of 

Element 

( cr) for  

C-C 

No. of 

Element 

1 1.000056 7 0.249999 7 2.046172 7 4.001155 9 

1.1 1.049277 7 0.261711 8 2.140907 4 4.19873 8 

1.2 1.097101 6 0.272958 7 2.237161 10 4.39124 7 

1.3 1.143516 7 0.284103 7 2.324297 7 4.575643 9 

1.4 1.188897 7 0.294864 7 2.416499 9 4.758021 7 

1.5 1.233377 7 0.306293 10 2.501608 8 4.936345 7 

1.6 1.276945 7 0.315715 7 2.582665 7 5.110617 7 

1.7 1.361852 7 0.325847 7 2.669801 8 5.281849 7 

1.8 1.403363 7 0.337499 10 2.755923 9 5.450041 7 

1.9 1.403393 7 0.34753 11 2.841033 10 5.615194 7 

2 1.444327 7 0.357459 11 2.925129 11 5.779029 7 

λ 
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Table 2. The Column Boundary Conditions of The Different End Supports. 

Type of The Column End Supports Boundary Conditions 

(Hinged-Hinged) columns (H-H) @x=0, v=0 

@x=L, v=0 

(Clamped-Free) columns   (C-F) 
@x=0, v=0 

@x=0,  =0 

(Clamped-Hinged) columns  (C-H) 

@x=0, v=0 

@x=0,  =0 

@x=L, v=0 

(Clamped-Clamped) columns (C-C) 

 

@x=0, v=0, 

@x=0,  =0 

@x=L, v=0, 

@x=L,  =0 

 

 

 

Table 3. Verification of the Critical Buckling Factor with Tapered Ratio(λ )=1. 

Type of the Column 

End Supports 
( cr)present study ( cr)Wie. 2010[8] ( cr) Yossif.2008[9] 

(Hinged-Hinged) 

columns (H-H) 
1.000056 1.0000401 1.000000 

(Clamped-Free) 

columns   (C-F) 
0.249999 0.2499594 0.250000 

(Clamped-Hinged) 

columns  (C-H) 
2.046172 2.045776 2.045752 

(Clamped-Clamped) 

columns (C-C) 

 

4.001155 3.999957 - 
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Table 4. The Non-dimensional Critical Load with Slenderness Ratio for the wide-flange section 

of (W30x211). 

KL/r 
Pcr/fy.A 

λ=1 

Pcr/fy.A 

λ=1.2 

Pcr/fy.A 

λ=1.4 

Pcr/fy.A 

λ=1.6 

Pcr/fy.A 

λ=1.8 

Pcr/fy.A 

λ=2 

125.66 0.4973 0.5456 0.5912 0.6349 0.6771 0.7181 

130 0.4646 0.5007 0.5523 0.5932 0.6326 0.6709 

140 0.4006 0.4395 0.4762 0.5115 0.5455 0.5785 

150 0.3489 0.3827 0.4148 0.4455 0.4751 0.5039 

160 0.3067 0.3365 0.3646 0.3916 0.4176 0.4429 

170 0.2717 0.2981 0.323 0.3469 0.3699 0.3923 

180 0.2423 0.2658 0.288 0.3093 0.3299 0.3499 

190 0.2175 0.2386 0.2585 0.2776 0.296 0.314 

200 0.196 0.215 0.233 0.2502 0.2668 0.283 

 

 

Table 5. The Properties of  Wide-Flange Section (W30x211). 

Designation Area (mm
2
) 

Web 

thickness(mm) 
I x10

6 
(mm

4
) r(mm) 

W30x211 40100 19.7 4290 328 

 


