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ABSTRACT

Unconfined Compressive Strength is considered the most important parameter of rock

strength properties affecting the rock failure criteria. Various research have developed rock
strength for specific lithology to estimate high-accuracy value without a core. Previous
analyses did not account for the formation's numerous lithologies and interbedded layers.
The main aim of the present study is to select the suitable correlation to predict the UCS for
hole depth of formation without separating the lithology. Furthermore, the second aim is to
detect an adequate input parameter among set wireline to determine the UCS by using data
of three wells along ten formations (Tanuma, Khasib, Mishrif, Rumaila, Ahmady, Maudud,
Nahr Umr, Shuaiba and Zubair). After calibration with core test, the results revealed that
Young’'s Modulus correlations are the best to predict UCS with RMSE (53.23 psi).
Furthermore, the result showed that using the static Young Modulus as an input parameter
in predicting UCS gives a closer result to the laboratory test than using a sonic log. This study
found that many previous equations were developed for only one type of rock and tended to
generalize poorly to the broader database. This study also provided more accurate rock
strength estimation, leading to better prognosis in operational strategies and hydraulic
fracturing location planning in oil well development when geomechanical analysis needs to
be addressed where no core is available. Finally, the expected continuous rock mechanical
profile indicates the formation's strength and stability around the wellbore.

Keywords: Un-confined compressive strength, Lithology, Wireline, Core data.

*Corresponding author
Peer review under the responsibility of University of Baghdad.
https://doi.org/10.31026/j.eng.2023.11.07

This is an open access article under the CC BY 4 license (http://creativecommons.org/licenses/by/4.0/).
Article received: 09/03/2023

Article accepted: 13 /04/2023
Article published: 01/11/2023

109


http://www.joe.uobaghdad.edu.iq/
http://creativecommons.org/licenses/by/4.0/
mailto:engineerworood1989@gmail.com1
mailto:mjawad@coeng.uobaghdad.edu.iq2

Volume 29 Number 11 November 2023 Journal of Engineering

dogite cluna alaiialy giuall (e ddlida £ 1638 §) guanall 8 Jalial¥) §ody Sl
Abad) i B Jial Qlll) clagady

Zajgadl lba daaa F el ubaadl ae 399

éb,d\ calay calan daals cduaigl) A0S ¢ Jasil) At r‘u.ué

dadAl)
waell Gl gl el e e 55 il daglhe pallad bl (e Bigana il L) 88 e
Al laball L Aaal)l Glasmdl) e 8 ARy Cllua o Jpanlly dualall dlly gl skl cluball (e
e (e ity oSl Bakna (155 anslpaad) lingSal) o) Jlae¥) iy 3365 g jpiaall (e 23 i Jlin sl
Ayl o2 (e pasla) Chgl) L lglimd ey ngliia lishs (S Lgames o Alhiie L2 (0358 ) j5aall (gl
Gl ) ALYl Byaaall v Jlaals (pgSall JalS gaall 5jpumna uall Jalicail) 558 caluead Zuuslial) Alalaal) 33283 5
ED iy plasiuly Bysane il Lleai¥l 558 a5 a3 A0l Galsdll g Sleaall (0 g5 () a3
g il Cipgla) . (Ll Aundl) | see gi 29390, s2eaY) ALl Cipdall ,cuaadll A ) ligSs Bydaly L
I AL=YL ,(53.23 psi) s Uad laie cadacly duadly FSY) o clis dlalaa o duyidall iliagail) ae diadl)
dazid e el Lo dnaial sl e CEY) s Bjpeana ) Jalial¥) 58 lual dligy Jalae alaziad ol lld
Jas Bam o Calael ) Gigeall deju Dilins
B0 Cagu paanill Lgaladind ey Hsaall (e d0aa goil W ynshat 23 Al CiValaall (e daall () 2 dadal) 220
Al Gl gl i) b Qi) e U (535 e jgaaall 861l A0 AS) ks Lia duhall sda caesd L A5kIA il
g pae die aallas M (SiilKiagal) z3sail) zling Loxie Jaiall L1 gkt (& (Silg ulgll juusill aBge Jadadsy
D Jss 0sSill il 55l an sdge e Andall Galsall el dgel) slaal ol "hudly Lpiaal) cileagadll
i)
clll) by, LY el Cilune Bl £33 8ypmnal e Llicail) 558 :daalidal) cilalgl

1. INTRODUCTION

The Uniaxial Compressive Strength (UCS) and elastic characteristics of rocks, such as
Young's modulus and Poisson's ratio, are extensively used to estimate in situ stresses,
wellbore stability study, reservoir compaction survey, and prediction of optimal drilling mud
pressure (Chang et al., 2006; Abdulraheem et al., 2009). Rocks' Elastic characteristics are
assessed using dynamic and static techniques, while UCS is exclusively determined using the
static technique (Al-Shayea, 2004) and core test. In the dynamic technique, compressional
and shear wave velocities may be recorded in the lab or the field, and elastic characteristics
can be computed appropriately. Empirical correlations have been presented to solve the
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problem of inferring mechanical parameters from wireline data (Edimann et al., 1998;
Ameen et al, 2009; Ranjbar-Karami and Shiri, 2014). These correlations estimate
porosities or acoustic velocities by empirically correlating laboratory-derived rock
mechanical characteristics with geophysical well logs (Hassan and Hussien, 2019). Many
elements that impact rock mechanical characteristics also affect porosity, velocity, and
elastic moduli underlies these correlations (Chang et al., 2006). To predict the UCS value
when no core is available for laboratory testing, several notable previous publications
studied the relationship between the UCS with the well log properties for specific formations
and geological settings, creating different UCS equations at specific settings (Abed and
Hamd-Allah, 2019; Aziz and Hussein, 2021a; Aziz and Hussein, 2021b). Many empirical
correlations estimate rock mechanical characteristics using geophysical logging data
(Ryshkewitch, 1953). Case studies of geological features globally yielded these
connections. Rock mechanical profiles may be accurately and efficiently obtained by
correlating porosity with several rock mechanical characteristics. According to (Hoshino,
1974) rock strength and elasticity depend on porosity. (Kowalski, 1975; Sethi, 1981)
proposed porosity wireline logs for rock strength parameters. (Vernik et al.,, 1993)
calculated unconfined compressive strength from porosity for sedimentary basins globally,
especially for highly clean, well-consolidated sandstones with porosity < 0.3. (Sarda et al.,
1993) identified a straightforward empirical relationship between rock porosity and
unconfined compressive strength. The relationship was discovered using laboratory
research on sandstone core samples from the Germigny-sous-Coulombs structure in France.
(Edimann et al., 1998) employed core-measured porosity and rock mechanical parameters
for North Sea sandstone samples to determine direct linear correlations between them and
estimate the continuous rock mechanical profile. (Horsrud, 2001) used the power law
function to suggest North Sea Tertiary shale transit time and UCS connection. (Chang et al.,
2006) synthesized UCS and acoustic transit time data for worldwide, Gulf of Mexico, and
Pliocene and younger shale. (Onyia, 1988) estimated the UCS from well logs for shale,
sandstone, limestone, dolomite, granite, and mixed lithologies. (Horsrud, 2001) developed
the UCS estimation from compressional wave velocity for the North Sea area. Hareland and
Nygaard (2007) developed the equation for calculating the UCS from sonic transit time for
sandstone, shale, and mixed lithologies for onshore United Kingdom, offshore North Sea, and
Norwegian Sea. The studied interval passes through complex formations (these formation
contain limestone, dolomite, sandstone interbedded with beds of shale. The main advantage
of the present study is to find suitable correlation to predict the UCS for longer well section,
then, the operational cost can be decreased by minimizing the need to conduct core
operations and laboratory measurements.

In this study, many previous correlations are applied to the data of the three wells. Then, the
results are calibrated with the core data. Finally, statistical analysis is done to detect the
suitable correlation to get a good match with laboratory tests and can be used to estimate
the UCS for the total depth of complex formations regardless of the lithology.
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2. AVAILABLE DATA

All data in this work are collected from the Southern Iraqi oilfield. The data includes
geophysical logging and mechanical properties and focuses on formations consisting of
complex lithology (ex, shale interbedded with sandstone or limestone)(Neeamy and
Selman, 2020). The lithology description for studied wells is illustrated in Fig. 1, while Fig.
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2 to 4 describes the available logs for each well.
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Age Avarage
B Group | Formation | Lithology Dascription thickness
Epoch
(m)
L. Miocene-
Recent Dibdibba P s Sand & pebble 200
1 L 1
Kuwait |Lowerfars [T 1 1 Clay 5t, Lstarg 170
Ew‘" T I.T ~ s ’
Miccene N
= Ghar # *+3° 0. .| Sand & subround pebble occ Clay 110
g FUPUNN SUSIIN e
b= M-L Eocene Dammam Dolomite, porous vuggy 210
A A AN Anhydrite, white, massive
Paleccene Hasa Rus A A AA Interbedded w\ Dolomite 185
=Early Eocene Umm-Er- Dolomite grey saccharoidol, inpart 450
Radhuma | — anhydritic
Bituminous Shale at top, Dolomite
Tayarat it o 1 220
grey
Shiranish |1 11 Limestone marly 120
1
Hartha Il 1 J1 T Lst,gloc, Dol, porous, locally 180
P Aruma —— vuggy.Lstgray ,arg.
Cretaceous Sadi 1| Limestone white, chalcky, fine, 260
D — compact
E— Shale: black-brown fissile 50
Khasib == Limestone: gray shaly 45
il el
Mishrif Limestone: white detrital, porous, 150
rudist
Limestone:, grey, marly 100
Wasia Shale: Dark gray, fissile w/ 140
Limestone: grey
Mauddud Limestone grey 110
MNahr Umr Shale black inter. w/ Sst 270
Shuaiba Lst, Dolmaite fracture 85
Zubair e Shale,fissile, w! sandstone fine-m. 400
=t grained, Silt st, Clay st.
Ratawi % Limestone with streaks of Shale 200
Thamama
Yamama % Limestone, light gray 120
Sulaiy % Limestone, argillaceous and marly 300

Figure 1. Lithology description for Southern Iraqi Fields (INOC, 1979)
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In this study, three wells are used for UCS prediction analysis, these are X1, X2, and X3. There
are core tests available in Tanumma, Mishrif, Nahr Umr, and Zubair formations. Table 1.
Summarizes the well data used in this study.

Table 1. Well data summary.

Data
Well Well Logs
Name Density Sonic Effective | Static Rock Properties | Core Data
Log Log Porosity
X1 Available | Available | Available Not Available Available
X2 Available | Available | Available Not Available Available
X3 Available | Available | Available Not Available Available
Bulk Density, g/cc
195 205 215 225 235 245 255 265 275 285 295
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Figure 2. Bulk density graph for studied wells.
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Figure 3. Compressional Wave Velocity for studied wells.
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Figure 4. Neutron Porosity graph for studied wells.
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3. METHODOLOGY

¢ Following the identification of all essential and usable data files, non-ASCII files were
changed to ASCII files utilizing free software.

¢ The next step was to create a plot of the data to assess its accuracy.
¢ Once the log data has been loaded, rock may start doing property calculations.
e Estimate Dynamic and Static Young’s Modulus.

e Several models have been investigated to predict UCS by using Excel program (Coates
Denoo, 1963; McNally, 1987; Vernik et al., 1993; Plumb, 1994; Bradford et al., 1998;
Moos et al.,, 2003; static Young's, 2002; Savitri etal., 2021).

e (alibration has been performed between the results and lab test data.

e Statistical analysis was used to detect which correlation gives a good match with core test.

Flowchart for building the model using Excel illustrated in Fig. 5.

Go through all Convert non Import to Excel,
files and search ——> ASCII log files ~———> SOI and merge
for usable data to ASCII files data of sections

!

Sequemially apply rquired QC of data
|_ equations and correlations

\’

Generate plots

Figure 5. Flowchart for building the model using Excel.
4. RESULT AND DISCUSSION

4.1 Determination of Dynamic and Static Young’s Modulus

Young’s modulus is the stiffness degree of the rock (Fjeer et al., 2021; Ahmed and Al-Jawad,
2020). Hooke's law defines the rules for the linear relationship that exists between stress
(o) and strain (€)(Allawi and Al-Jawad, 2021a). Some correlations to predict UCS depend
on Young’s Modulus, so the equations below are applied to predict the Young Modulus value.
Figs. 6 to 8 illustrate the results of Static Young’s Modulus, which was calculated by Eq. 2
and appears to match laboratory tests.

_ 9Gdyanyn
P Gayn + 3Kayn

(1)
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Figure 6. Static Young Modulus for well X1.
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where:
Gayn = 13474.45 22 3)
" (Aty)?
K, =1347445-P0_ _%¢ 4
dyn — . (Atc)z 3 dyn ( )
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Figure 7. Static Young Modulus for well X2.
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Figure 8. Static Young Modulus for well X3.
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The un-confined compressive strength significantly affects wellbore stability because it is a
vigorous player determining the failure criterion (Allawi and Al-Jawad, 2021b). Therefore,
compressive strength estimation should be accurate because it is the final word on the
eventual calculations (Xu et al., 2016). To get better results and avoid obstacles, several
models have been investigated. Table 2 shows these correlations with the results of
statistical analysis (RMSE), where the results showed a significant difference between the
Young Modulus correlation and other correlations, the reason is due to the dependence of
the Young Modulus correlation on Es and it is non- limitation by shally formations . After
that the laboratory test data is compared with the results, as presented in Figs. 9 to 12.

Table 2. Various published correlations to calculate the UCS.

Root Mean
Equation for UCS Reference Square Error | Remarks
(RMSE, psi)
_ , Eayn
UCS = 0.0866 o [0.008V, (Coates Denoo, 1767545201
+0.0045(1 — V)] 1963)
UCS = 1200e(0:036Atc) (McNally, 1987) 6021.376747 | Australia
UCS = 1.4138 * 1O7Atc_3 (McNally, 1987) 765.875069 | Gulf Coast
UCS = 254(1 — 2.80)2 (Vernik et al., 1993) | 5847.594145
UCS = (2.28 + 4.1089E,) « 145,037 | (Bradfordetal, | ,,q 3000959
1998)
UCS = (4.242 + E;) * 145.037 (Yme, 2002) 53.23181247
UCS = (46.2¢%0247E5) % 145.037 (Moos etal.,, 2003) | 4757.76922
_ 2 Shale Gas,
UCS = 0.9616At." — 136.5Atc (Novel etal,, 2021) | 164965.9605 | Lithology
+ 5002 .
neglecting
Shale Gas,
UCS = 0.2686At.> — 50At, + 2339 | (Novel etal., 2021) | 14967.9491 | Lithology
considering

Where:
1

Cdyn = K,
yn

UCS = psi ;E; = GPa ; At = us/ft,; Eqyn = pSi,; Kqyn = pSi
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Figure 9. Unconfined compressive strength zmeasured by several methods for well X1.
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Figure 10. UCS for well X1.
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Figure 11. UCS for well X2.
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Figure 12. UCS for well X3.
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5. STATISTICAL ANALYSIS

Statistical analysis was used to assess the correctness of the projected rock mechanical
characteristics based on the empirical correlations described above (Table 3). Fig. 13

depicts the estimated values' root mean square error (RMSE) versus laboratory data.
The RMSE was calculated using Eq. 5.

2(x—y)?

n

RMSE = (5)

where:

Xi is the core-measured value, yi is estimated value, and n is the number of core-measured
values.

6000 —

5600

5200

4800

4400
8 4000
= 3600
e
i 3200
L 2800
(4]
3 2400
(9p]
= 2000
@
5§ 1600
s 1200
(@]
X 800

0 e ﬁ ,
YME, 24 Bradfo, D_Rp CNaL Moos, , Verniy,
02 d 1 C 1994 Ly, U/fco €00, 106, 003 1993
2 ,
Correlations Names

Figure 13. Comparison between results of unconfined compressive strength by different
correlations.
Fig. 13 explains that (YME, 2002) gives the least error percentage, and then (Bradford, 1998,
SND_RPC) comes, and then (McNally, 1987, Coates Denoo, 1963). While the error percentage
increases when the (Moos, 2003, Vernik, 1993) correlations are used.
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5. CONCLUSIONS

This work investigates the application of correlations between petrophysical and
mechanical properties using wireline log data. The empirical relationships between UCS
and Es with Eq and Vp that previous authors reported were compared with the obtained
data. Below are the main conclusions extracted from the discussed results.

e The John Fuller equation (Eq. 2) used to estimate Young’s Modulus showed a good
match with core tests, so it is recommended to use it in the fields of southern Iraq.

e Estimate the UCS depends on the Es gives a closer prediction from the actual,
contrary to the use of Eq,At.,@, which gives incorrect results.

e The Novel 2021 correlation must be excluded from estimating the UCS because of
the large difference between the predicted UCS and core data because this
correlation was formulated for shale gas.

e C(Calculating the UCS based on Young Modulus 2002 correlation in Southern Iraqi
fields is recommended. The reason is that this correlation gives a close value to
laboratory data (RMSE=53.23psi) regardless of the diversity of the lithology of the
section studied from Sadi to Zubair.
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NOMENCLATURE
Symbol | Description Symbol | Description
Ed = dynamic Young Modulus, psi.| UCS = Unconfined compressive strength, psi.
Es = static Young Modulus, psi. 0} = Porosity, fraction.
Gdyn = Shear modulus, psi. At = Shear slowness, us/ft.
INOC = Iraqi national oil company. | At, = Compressional slowness, us/ft.
Kdyn = Bulk modulus, psi. p = Bulk density, gm/cc
RMSE = Root mean square error
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