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ABSTRACT: 
  

This paper describes DC motor speed control based on optimal Linear Quadratic Regulator 
(LQR) technique. Controller's objective is to maintain the speed of rotation of the motor shaft with a 
particular step response. 

The controller is modeled in MATLAB environment, the simulation results show that the 
proposed controller gives better performance and less settling time when compared with the traditional 
PID controller. 

 
  محرك التيار المستمر باستخدام مقوم خطي من الدرجة الثانيةسرعة على سيطرة المثالية ال

: الخلاصة  
 

 واستخدم هذا المسيطر للسيطرة على سرعة محرك التيار LQR لثانية المقوم الخطي ذو الدرجة ا مسيطر باستخدام تقنيةقديم لقد تم ت

  .ان الهدف المرجو من استخدام المسيطرات هو الحفاظ على سرع مستقرة وثابتة للمحركعلما  المستمر

الوقت فيه يكون اقل  حيث اثبتت النتائج ان هذا النوع من المسيطرات يعطي اداء احسن واستقرار MATLABلقد تم التحليل باستخدام برنامج 

  .  التقليدي PIDمقارنة مع المسيطر 
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INTRODUCTION: 
 

Due to the excellent speed control 
characteristics of a DC motor, it has been widely 
used in industry (such as cars, trucks and aircraft) 
even though its maintenance costs are higher than 
the induction motor. As a result, authors have paid 
attention to position control of DC motor and 
prepared several methods to control speed of such 
motors. Proportional–Integral-Derivative (PID) 
controllers have been widely used for speed and 
position control. [Neenu, 2009] 

They designed a position controller of a DC 
motor by selection of PID parameters using genetic 
algorithm (GA) once and secondly by using Ziegler 
and Nichols method of tuning the parameters of PID 
controller. They found that the first method gives 
better results than the second one. 
  [Delavari Hadi, 2006], presented and compared 
two types of controllers which are PID controller 
and optimal controller. The PID compensator is 
designed using (GA), while the other compensator 
is made optimal and integral state feedback 
controller with Kalman filter. Computer simulations 
have been carried out. Finally they found that the 
second controller gives less settling, less overshoot 
and better performance encountering with noise and 
disturbance parameters variations. 

Other authors like [Boumediene, 2009], used a 
particle swarm optimization (PSO) instead of (GA). 
They presented a PID controller based on (PSO) 
method of tuning controller parameters. They 
modeled their PID-PSO controller in MATLAB 
environment and compare the results with fuzzy 
logic controller (FLC) using PSO. They found that 
PID-PSO controller gives better performance and 
minimal rise time than FLC-PSO controller. 

[Sharaf, 2007], presented a novel PID dual 
loop controller for a solar photovoltaic (PV) 
powered industrial permanent magnet DC (PMDC) 
motor drive. MATLAB/SIMULINK was used in the 
analysis for the GUI environment. 

[Molavi and khaburi, 2008], introduced the 
optimal strategies for speed control of permanent 
magnet synchronous motor (PMSM) through the 
linear quadratic regulator (LQR) and linear 
quadratic Gaussian (LQG) methodologies. 
The simulation results showed that the proposed 
controllers have better performance for the sake of 

design criteria like overshoot and settling time of 
the step response. 

[Gwo, 2004], presented a novel optimal PID 
controller using (LQR) methodology in tuning the 
parameters of PID controller. The new PID 
controller is applied to control the speed of 
brushless DC motor (BLDC). Finally, the computer 
simulation and experimental results showed that the 
proposed controller gives better performance than 
the traditional controller. 
  This paper presents LQR controller which 
applied to control the speed of a DC motor. The rest 
of the paper is presented as follows: at first the plant 
model is described. The next section describes the 
PID technique and the design of LQR. Then 
simulation results are presented. Finally, the last 
section contains paper conclusion. 
 
PLANT MODEL: 
 

The speed of a DC motor is proportional to 
the voltage applied to it. While, its torque is 
proportional to the motor current. Speed control can 
be achieved by variable battery tappings, variable 
supply voltage, resistors or electronic controls.  
A simple motor model is shown in Fig.1. The 
armature circuit consist of a resistance (Ra) 
connected in series with an inductance (La), and a 
voltage source (eb) representing the back emf (back 
electromotive force) induced in the armature when 
during rotation. [Ogata, 1998 and 2002]. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
The motor torque Tm is related to the armature 
current, ia , by a torque constant Ki; 
 

aim iKT =                                                   (1)                         
                                      
The back emf, eb, is relative to angular velocity by; 

Fig.1 DC-Motor Model 
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From Fig. 1 we can write the following 
equations based on the Newton’s law combined 
with the Kirchoff’s law: 

 

dt
dKeiR

dt
diL baaa

a
a

θ
−=+                        (3)                                                                                           

aimm iK
dt
dB

dt
dJ =+

θθ
2

2

                             (4)                  

                                                                         
There are several different ways to describe a 

system of linear differential equations. The plant 
model will be introduced in the form of state-space 
representation and given by the equations: 

 

DuCxy
BuAxx

+=
+=&

                                                 (5)                                                                                                            

 
According to eq.s from (2) to (4), the state space 
model will be: 
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 with the block diagram as shown in Fig. 2  
 
The DC motor data taken for this work are 
[Nguyen, 2006]: 

 

Symbol Value and unit 
E = 12volt 
Jm = 0.01kgm2 
Bm = 0.00003kgm2/s 
Ki = 0.023Nm/A 
Kb = 0.023V/rad/s 
Ra = 1Ω 
La = 0.5H 

 
DESIGN OF THE LQR CONTROLLER [Firas, 
2006] 
 

LQR control that designed is classified as 
optimal control systems. This is an important 
function of control engineering. Fig.3 shows the 
designed LQR state-feedback configuration.  

The purpose of the design is to realize a system 
with practical components that will provide the 
desired operating performance. The desired 
performance can be readily stated in terms of time 
domain performance indices. For example, the 
maximum overshoot and rise time for a step input 
are valuable time domain indices. In the case of 
steady state and transient performance, the 
performance indices are normally specified in the 
time domain. 

The performance of a control system can be 
represented by integral performance measures. 
Therefore, the design of the system must be based 
on minimizing a performance index, such as the 
integral of the squared error (ISE). 
 The specific form of the performance index can 
be given as in eq.(8), where xT indicates the 
transpose of the x matrix, then, in terms of the state 
vector, is 

   dtxxJ
ft

T )(
0
∫=                                             (8)                     

Where x equals the state vector, and t
f 
equals the 

final time. 
 
Then the design steps are as follows: 
 

1- Determine the matrix P that satisfies eq.(8-a), 
where H is known. 

 
 
 
 

2- Minimize J by determining the minimum of 
eq.(8-b) by adjusting one or more unspecified 
system parameters (Firas, 2006 ) 

 
 
 
 

 
 Upon examining the performance index (eq.8), 
recognizing that the reason the magnitude of the 

(8-a) 

(8-b) 
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control signal is not accounted for in the original 
calculation is that u (equals the control vector) is 
not included within the expression for the 
performance index. However, in many cases, the 
expenditure of the control signal energy are 
concerned. For example, in an electric vehicle 
control system, (u)2 represents the expenditure of 
battery energy and must be restricted to conserve 
the energy for long periods of travel. To account for 
the expenditure of the energy of the control signal, 
it will be utilize the performance index 

dtuuIxxJ TT∫
∞

λ+=
0

)(                                   (9)                                                                                                              

Where λ  is the scalar weighting factor and I = 
identity matrix. The weighting factor λ  will be 
chosen so that the relative importance of the state 
variable performance is contrasted with the 
importance of the expenditure of the system energy 
resource that is represented by uTu as in the 
previous paragraphs, the state variable feedback will 
be represented by the matrix equation 
 

Kxu −=                                                        (10)                                                                                                             
 
And the system with this state variable feedback as  
 

HxBuAxx =+=&                                         (11)                                                                                                            
 

Now, substituting eq.(10) into eq.(9), then 

dtKxKxIxxJ TT∫
∞

λ+=
0

)()((  

∫∫
∞∞

=λ+=
00

])([ QxdtxdtxKKIx TTT   (12)                                                                                                    

Where Q= )( KKI Tλ+ is an nn× matrix.  
postulating the existence of an exact differential so 
that  
   

QxxPxx
dt
d TT −=)(                                    (13)                                                                                                              

 
Then, in this case, it is required that 
 

QPHPH T −=+                                        (14)                                                                                                              
 
As before in eq.(8-a) 
 

)0()0( PxxJ T=                                           (15)                         
 
Now, the design steps are exactly as for eq.(8-a) and 
eq.(8-b) with exception that the left side of eq.(14) 
equals –Q instead of –I. Of course, if 0=λ , 
eq.(14) reduces to eq.(8-b).  
Consider the single-input, single-output (SISO) 
system with 
 

BuAxx +=&      (11)                                                                 
 
and feedback 
 
 xkkkKxu n ][ 21 K−=−=  
 
The performance index is 

dtRuQxxJ T∫
∞

+=
0

2 )(  

or the performance index is 
 

dtinputsweightederrorstrackingJ ])()[(
0

22∫
∞

+=  

 
where R is the scalar weighting factor. This index is 
minimized when 
 

PBRK T1−=  
 
The nn× matrix p is determined from the solution 
of equation  
 

01 =+−+ − QPBPBRPAPA TT                  (16)                    

The two matrices Q and R are selected by 
design engineer by tray and error. Generally 
speaking, selecting Q large means that, to keep J 
small. On the other hand selecting R large means 
that the control input u must be smaller to keep J 
small. One should select Q to be positive semi-
definite and R to be positive definite. This means 
that the scalar quantity QxxT  is always positive or 

zero at each time t. And the scalar quantity 2Ru  is 
always positive at each time t . 
eq.(16) can be easily programmed for a computer, 
or solved using MATLAB. eq.(16) is often called 
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the Riccati Equation. This optimal control called 
the Linear Quadratic Regulator (LQR) which is 
shown in state-space configuration in Fig. 3. 
Combine Fig.2 with Fig.3 yields Fig.4, which 
shows the use of LQR controller with the DC 
motor.  
 
SIMULATION MATLAB SCRIPT FILE AND 
RESULTS: 
 
The simulation procedure may be summarized as 
follows: 
• First input the DC motor data, 
• Write the differential equations for the model 

then get the state space representation as in eq. 
(6)  

• Get the open loop transfer function and the 
closed loop step response  

• Finally performing the performance of PID 
controller and LQR controller and compare the 
results.  

• The output will be taken as ωm(s) from Fig.4. 
 

MATLAB script file is: 
 
% file name: DCM2.m  
clear 
clc 
t = 0:0.001:10; 
% DATA1============= 
J = 0.01; 
b = 0.00003; 
K = 0.023; 
R = 1; 
L = 0.5; 
A = [-b/J   K/J 
     -K/L   -R/L]; 
 
B = [0 
     1/L]; 
C = [1   0]; 
D = 0; 
% sys = ss(A,B,C,D); 
num=K; 
den=[(J*L) ((J*R)+(L*b)) ((b*R)+K^2)]; 
open=tf(num,den); 
closed= feedback(open,1) 
%============PID=============== 
Kp = 150;  % 
Ki = 150;  % took by try  
Kd = 0.4;  % 
PID = tf([Kd Kp Ki],[1 0]); 
PIDsys = feedback(PID*open,1); 
% ++++++++++++++++++++++++++++++++++% 

% Linear Quadratic Regulator design   
LQR 

% %+++++++++++++++++++++++++++++++++% 
Q=[.2 0;0 0.028]; 
R=[.2]; 
[KK,S,e] =lqr(A,B,Q,R) 
ZZ=(A-B*KK); 
LQR=ss(ZZ,B,C,D); 
damp(LQR) 
[num1,den1]=ss2tf(ZZ,B,C,D,1); 
G=tf(num1,den1)    %ALWAYS den=1 
BECAUSE ONLY u 
%++++++++++++++++++++++++++++++++++% 
% Linear Quadratic Regulator design 

LQR Step              
%++++++++++++++++++++++++++++++++++% 
figure(1) 
step(closed,t),title('Closed Loop step 
response') 
xlabel('Time','FontSize',11); 
ylabel('P.U. speed','FontSize',11); 
figure(2) 
step(PIDsys,t),title('PID step 
response') 
xlabel('Time','FontSize',11); 
ylabel('P.U. speed','FontSize',11); 
figure(3) 
step(LQR,t),title('LQR step response') 
xlabel('Time','FontSize',11); 
ylabel('P.U. speed','FontSize',11); 
figure(4) 
step(PIDsys,LQR,closed,t),title('step 
all') 
xlabel('Time','FontSize',11); 
ylabel('P.U. speed','FontSize',11); 
 
Finding the poles and zeros for a transfer 
function in MATLAB : 
 
To find the zeros use the command:  z=zero(g) 
To find the poles use the command:  p=pole(g)    
where g: is the transfer function. 
 
After executing the previous script file the open 
loop transfer function of the DC motor according to 
the selected data is: 
ωm(s)                0.023 
------- = -------------------------- 
ea(s)    0.005s^2+0.01002s+0.000559 

 
The two poles for the open loop transfer function 
are: (-0.0575+j0) and (-1.95+j0). 
 
The closed loop for speed of the DC motor with 
unity feedback transfer function is: 
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ωm(s)              0.023 
------ = -------------------------- 
ea(s)    0.005s^2+0.01002s+0.02356 

 
 with two poles:   (-1+j1.92) and (-1-j1.92). 

 
 The closed loop step response for speed is 

shown in Fig.5, with settling time of 3.83sec. and 
peak amplitude of 1.17.  

 
Now by using PID controller for a DC motor 

we get better settling time  (2.76 sec)  and the peak 
amplitude  (1.84)  than closed loop response as 
shown in Fig.6  

 
Using LQR controller for a DC motor gives 

better settling time (1.99 sec) and peak amplitude 
(1) than PID controller response as shown in Fig.7  
The LQR transfer function is: 
 

 ωm(s)            4.6 
-------- = ------------------------ 
 ea(s)      s^2 + 3.681s + 4.601 

 
The closed loop, PID and LQR step responses are 
plotted on the same figure as shown in Fig.8. 
 
CONCLUSION 
 

Speed control of a DC motor is an 
important issue, so this paper presents a design 
method to determine the optimal speed control 
using LQR method. The obtained results showed 
that the presented controller has shorter settling time 
and smaller overshoot than that of the traditional 
PID controller as shown in Table 1. 

 
Table (1) Simulation Results 

 
 Settling 

Time 
Peak 

Amplitude 
Over 
shoot 

Closed Loop 
With Unity 
Feedback  

3.83 
sec 1.17 19.5% 

PID 
Controller 

2.76 
sec 1.84 84.8% 

LQR 
Controller 

1.99 
sec 1 0.525%
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LIST OF SYMBOLS: 
 
=A  n×n constant matrix 
=B  n×1 constant matrix 

Bm = viscous friction coefficient (kgm2/s) 
=C 1×n constant matrix 
=D  constant  

ea(t)  = applied voltage (V)  
eb(t) = back emf (V)  
ia(t) = armature current (A)  
Jm  = moment of inertia of rotor (kg.m2) 
Kb  = back emf constant (V/rad/s) (Kb =Ki ) 
Ki   = torque constant (Nm/A)  
La   = armature inductance (H)  
Ra   = armature resistance (Ω)  
tf = final time(sec) 
TL(t)  = load torque (Nm)   
Tm(t) = motor torque (Nm)  
=u control signal 
=x state vector 
=y output signal 

θm (t) = rotor displacement (rad)  
ω m (t)= rotor angular velocity (rad/s) 
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Fig. 3 Linear Quadratic Regulator Structure 
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Fig. 4- DC-Motor System with LQR 
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Fig. 2- DC-Motor System Block Diagram for speed (Plant System) 
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Closed Loop step response
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PID step response
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Fig.6  PID Step Response 

Fig. 5 Closed Loop Step Response
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LQR step response
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Fig.7  LQR Step Response 
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Fig.8 Closed loop, PID and LQR Step response 
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