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ABSTRACT

In this paper, integrated quantum neural network (QNN), which is a class of feedforward
neural networks (FFNN’s), is performed through emerging quantum computing (QC) with artificial
neural network(ANN) classifier. It is used in data classification technigue, and here iris flower data
is used as a classification signals. For this purpose independent component analysis (ICA) is used as
a feature extraction technique after normalization of these signals, the architecture of (QNN’s) has
inherently built in fuzzy, hidden units of these networks (QNN’s) to develop quantized
representations of sample information provided by the training data set in various graded levels of
certainty. Experimental results presented here show that (QNN’s) are capable of recognizing
structures in data, a property that conventional (FFNN’s) with sigmoidal hidden units lack. In
addition, (QNN) gave a kind of fast and realistic results compared with the (FFNN). Simulation
results indicate that QNN is superior (with total accuracy of 97.778%) than ANN (with total
accuracy of 93.334%).

Keywords: signal classification, artificial neural network, quantum computing, data analysis and
fuzziness.
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1. INTRODUCTION

Quantum neural network (QNN's) is a promising area in quantum computation and quantum
information field. In 1997, Lov K. Grover proposed a method that can speed up a range of search
applications over unsorted data using Quantum mechanics, Lov K. Grover, 1997.

Several models have been proposed in the literature but most of them need clear hardware
requirements to implement such models, one of the most exciting emerging technologies is quantum
computation, which attempts to overcome limitations of classical computers by employing
phenomena unique to quantum-level events, such as nonlocal entanglement and superposition. It is
therefore not surprising that many researchers have conjectured that quantum effects in the brain are
crucial for explaining psychological phenomena, including consciousness, Abninder, 2006.
Jarernsri. L. Mitrpanont, and Ananta Srisuphab, presented the approach of the quantum complex-
valued backpropagation neural network or QCBPN, the challenge of their research is the expected
results from the development of the quantum neural network using complex-valued
backpropagation learning algorithm to solve classification problems, Jarernsri, 2003.

Independent component analysis (ICA) is essentially a method for extracting useful information
from data. It separates a set of signal mixtures into a corresponding set of statistically independent
component signals or source signals. ICA belongs to a class of blind source separation (BSS)
methods for separating data into underlying informational components, Isabelle, 2006.

The mixtures can be sounds, electrical signals, e.g., electroencephalographic (EEG) signals or
images (e.g., faces, and Functional Magnetic Resonance Imaging (FMRI) data). The defining
feature of the extracted signals is that each extracted signal is statistically independent of all the
other extracted signals, James, 2004.

2. METHODLOGY FOR INTEGRATED QNN SIGNAL CLASSIFIER SYSTEM

The overall block diagram that shows the structure of integrated QNN as signal classifier
system is shown in Fig.1. Every single recorded input signal Iris signals database is depicted or
formed by [1X50] discrete data matrix, and represents a vector pattern. Two different Iris data sets
are formed for training and testing purposes. The discrete dataset has three different classes
species, the structure of integrated QNN signal classifier system can be shown by the following
principal steps:

2.1 Normalization

Normalization is a process to simplify data as feature extraction. It is usually affected by
peak-to-peak magnitudes and offset of input data because of physiology conditions surrounding,
psychological state, artifacts; therefore, normalization mainly required to decrease the effects of
undesirable parameters and offset.
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2.2 Feature Extraction

Feature extraction or dimensionality reduction is the process of extracting useful
information from the signal, features are characteristics of a signal that are able to distinguish
between different classes species. Feature extraction requires reducing the size of the data by
selecting appropriate features, selected features should be minimally redundant and the expected
results should maximally depend on these features, and preserve all information from the signal that
is needed for classification.

In ICA, each signal is described as a scalar variable, and a set of signals as a vector of
variables, and the process of obtaining signal mixtures from signal sources using a set of mixing
coefficients, Isabelle, 2006.

X1 = a11S1 + A12S2 (1)
Xp = a21S51 1t 22252 (2

Above equations can be rewritten using matrix —by-vector form as:

<=L ©
=[] y
A= 0

Then Eq. (1) can be written in matrix by vector form as follow:
X=AS (6)

Where, (a11, a12, a1, az), a set of mixing coefficients, (s;,s;) are original signals(source
signals), and( x,,x,) set of “mixture” points which can be transformed back to the source signals
(sq,s1) using a set of unmixing coefficients, which reverse the effects of the original geometric
transformation from source signals to signal mixtures, Joshua, 2000.

S1 = UXp +0X; ()
S, = VX4 + SXZ (8)

Above equations can be rewritten using matrix —by-vector form as:

=15 8l ©)
N

Then Eq. (9) can be rewritten using matrix —by-vector form as:
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S=WX (11)

Where (u, g, v, 8), a set of unmixing coefficients.

2.3 QNN and its Learning Algorithm

FFNNs must use the sample information as a mere reference for creating the internal
representations, thus, it should not encode the sample information accurately into the internal
representations. Such an exact or faithful encoding of the sample information results in the FFNN
memorizing the “crispness” in the training data set. But an inherently fuzzy architecture should be
capable of generalizing the sample information into various graded levels of certainty over the
entire feature space. This may be possible if the architecture is capable of creating graded internal
representations from the sample information. The QNN is as architecture capable of allowing the
sample information to be encoded into certain levels grades of certainty/uncertainty only,
Jarernsri, 2003.

One simple way of incorporating the ability to form consistent multilevel partitions in the
hidden layer is to create hidden unit partitions with the property of “spreading-out” over regions of
uncertainty in the feature space and collapsing-in over regions of certainty. If all the hidden unit
transfer functions have the ability to form “graded” partitions instead of the crisp linear partitions,
then these partitions can be “collapsed-in” or “spread-out” as required, using a suitable algorithm.
Such an algorithm will not require that the fuzzy measures on the feature space be known, but will
be a general procedure for learning the imprecision and uncertainty in the data set. This motivates
the study of hidden units with multilevel transfer functions, Jarernsri, 2003 and Gopathy, 1996.

Suppose the multilevel hidden unit has ns discrete states or levels. Then its transfer function
can be written as a superposition of ns sigmoidal functions, each shifted by #". The output of this

n

S
multilevel unit can be written as (1/ns) Z sgm(v'x - ") where v is the connected weight matrix
r=1
between input and the hidden units in hidden layers, and x is the input feature vector . The step
widths of the multilevel transfer function, which may be called the quantum intervals, will be
representative of discrete localized cells in the feature space consisting of feature vectors with
approximately the same level of uncertainty as to their membership to the classes in the data set.
These quantum intervals “jump-positions” @' unlike the step widths, step heights need not be
learned by independent parameters because several sigmoid can be shifted to the same location and
added together to give steps of desired heights, to an approximation which reduces total number of
parameters to be learned by almost one-third, Gopathy, 1996.

QNN consists of n; inputs, one hidden layer of n, nodes, each one represents a multilevel
units and n, outputs. Output units can be linear or sigmoid. Let X,k=[X1x Xok »..., Xnkl'» k=1,...m,
be the k" feature vector of the data set X. Then the input to the j™* hidden unit from the k™ feature
vector is:

hjk = o vii Xik (12)

~ 1 s 1 s -
b= -Biti b = - sgm(By (b — 6)) (13)

ng
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Where hjy : the response of the i multilevel hidden unit from k™ is feature , sgm(t) =
el is a sigmoid function (unipolar), B, a slope factor for all multilevel hidden units in hidden

layer,6;" define the jump positions in transfer function, and ns is the number of levels or sigmoids in
the multilevel hidden unit, Fig. 2 (a) plots the response hy of jt four level quantum neuron as a

function of its input hj_k with equal step heights and Fig. 2 (b) demonstrates multilevel transfer
function with unequal step heights through simple shifting ,Jarernsri, 2003.

Vik = Z?:ho wij hyjy (14)

With hj, =1, vk therefore, the response of the i output unit for the k™ input feature
vector can be written as:

Vik = sgm(B, (Vi) (15)
The major steps of QNN learning algorithm are summarized and presented as follows:

A) Update the synaptic weights:

Step 1: Selecta, ag, B, , B, (by trail and error) and randomly initialize the weights (W & V) and values
of jump positionse;.

Step 2: Present k" input pattern and specify the desired output.

Step 3: Calculate actual output y;, , using the present values of v;; and W;.

Step 4: Find the error terms eiok ) and ( e?k).
Calculate the output error.

e:k = (Yix = ¥ix) Vi = yix) (16)
Calculate the hidden layer error term.

1 n

h s No
e\ = (n_ ;ﬂhgvk(l_hgvk))glegvkij (17)
S

p is over all nodes in the layer above node j.

Step 5: Adjust the synaptic weights:

Wijk = Wijk-1 T (leicfknlsZ?L sgm (B, (h;k - 6) (18)
Vilk = Vjlk-1 T @By (I%SZ?L hiy (1- hjr,k) X1k (19)

Where, k + 1, k, and, k - | index next, present, and previous respectively, and is a learning rate.
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Step 6: Present another input pattern and go back to step 2
All of the training samples are presented cyclically.

B) Update the quantum intervals:

Step 1: In each training cycle, calculate the outputs y;y, and vg, for each hidden node.

Then, take the average values for each class, (hj ), (vi. ), for m™ class during the training of
QNN is as:

(Bem) = 7o Znenecen Nk (20)
( er,cm) = %mlz:xk:xk(zcm er,k (21)

lc,| = The cardinality of m®™ class

Step 2: Calculate the quantum interval adjustment A6g for each level:

Aelr =0 Bizgrf:l DXy XkECm ((h]:TCm) - hiN.k) (( V]'S:Cm> B Vjsrk) (22)

ng
Where o4 is the learning rate.
Step 3: Update jump-positions by:
of = of + A6l (23)
Step 4: Continue next cycle and go back to step 2.

Nomenclature:

n,= number of output nodes.

n;= number of input nodes.

ng= number of quantum interval.

6] = value of r® jump-position of hidden node j.

w;; = the strength of connection between j*™ hidden node and i™" output node.
v;= the strength of connection between 1™ input node and j™ hidden node.
yix = actual output at output node i for k' input pattern.

yi = desired output at output node i.

e ;k & e?k = error terms of output node i and hidden node j for k™ input pattern.
e = sgm (b — 6))

hjy = Y2, vii xix , the internal state of hidden node j for k™ input pattern.

h= niszi‘;l I\, the output of j* hidden node.
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3. RESULTS AND DISCUSSION
3.1 Results of using ANN Classifier

Three layer ANN was employed as classifier, for Iris data set signal, network structure is 4-
16-3 namely input vector (n;) is equal to (4) representing number of input variables. The 4 rows
(sepal length, sepal width, petal length, and petal width) contained a single hidden layer, number of
hidden units was chosen by trial and error; which revealed that number of neurons at hidden layer
(ny,) is at least greater than twice of input nodes (n;) correspond to features of each species, as an
assumption (n,, = 4*n;) for good performance (n, = 16) traditional neuron with sigmoid activation
function (unipolar), and output layer contains number of neuron equivalent to classes (species),
(n,= 3), structure of the ANN classifier is shown in Fig.3 with number of nodes at each layer.

Three layers ANN was employed as classifier of Iris data signal, randomly select input
feature vectors to achieve the uncertainty principle. Randomly selected 70% samples as training
samples and 30% for testing samples. Learning rate (n) is chosen by trial and error for weigh
adjusting(W;;, V) is set to (0.01) MATLAB programming test, the number of iteration (epochs) is
set to 1500.

The performance of ANN classifier (for both training and testing phases) is shown in Fig.4
and for training data set; ANN gave a Mean Square Error (MSE) of (0.0054) and accuracy of
(100.00%).

For testing phase, ANN classifier showed a mean square error MSE of (0.1174) with
accuracy of (93.334%). Fig.4 shows the relationship between MSE and number of iteration for
ANN classifier. As can be seen that MSE is decreasing with increasing number of iterations, which
revealed that the network is converged with iteration number of (1500) and MSE of (0.0054).

3.2 Results of using QNN Classifier

Three layers QNN was employed as classifier of Iris data signal, the performance of the
QNN was tested to perform classification on Iris data signal. Randomly selected 70% of the
samples are used for training (training input feature vectors) and 30% for testing (testing input
feature vectors), the structure is 4-8-3 for the neural network, input vector(n;) is equal to (4).

The number of multi-level hidden units (which are used in the hidden layer of QNN rather
than traditional neurons as in ANN) with the number of multi-level neurons (ny) is no more than
twice of the input nodes (n;), in such structure of (2*n;), i.e. (n,=8) multi-level hidden units with
sigmoidal activation function (unipolar), and the output layer contains neurons equivalent to
number of species (n,= 3). The major difference between QNN and ANN is that the QNN uses
quantum neuron (multi-level neuron (graded) with sigmoid activation function), structure of QNN
classifier is shown in Fig.5). It contains a single hidden layer with (n;, = 8) units, three output units
(no. of species) and 4 input nodes, also identifies by existence of jump-positions (thetas' values) of
multi-level hidden units of the QNN hidden units were chosen by trial and error.

The QNN is composed of multi-level hidden units with (ng = 3) (chosen by trial and error)
levels for each hidden unit, the learning rate (learning ratio) (n) for weigh adjusting(Wj;, V;) is set to
(0.07) training by MATLAB test, and the learning rate for quantum interval adjusting (eta_theta n)
is set to (0.001), and slop factor for unit at hidden layer B, = 2 , but for output layer slop factor
B, = 1.5, the number of iteration (epochs) is set to (300). Synaptic weights(Wj;, V;) are adjusted by
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minimizing quadratic error function with respect to particular weights, in training itself; jump-
positions of multi-level hidden units adjusted also.

Results are done with (70%) of input feature vectors for training phase and (30%) of input
feature for testing phase, performance of QNN classifier shown in Fig.6 and summarized with
(1)MSE of (0.1258) and accuracy of (97.143%) for training phase (2) MSE (0.3780) with accuracy
of (97.778%) for testing phase. Fig.6 displayed the relationship between MSE and number of
iteration for QNN classifier, in which reveals that MSE is decreasing with increasing number of
iterations, but when the iteration number exceeded 150 the MSE decreases very slightly which
means the network is converged with iteration number of (150) and MSE of (0.1258). As in Fig.4,
Fig.6 shows an inverse relationship between MSE and number of iterations.

Main difference between two figures is that QNN converges with less iteration, Fig.6 shows
convergence occurs at (150) in QNN classifier compared with (1500) for ANN.

3.3 QNN vs. ANN Classifiers

To discuss the results of ANN and QNN classification for Iris data signals (QNN vs. ANN
classifiers), table 1 shows a comparison between them. Two issues can be concluded from tablel,
first one is that QNN classifier gave better accuracy for testing phase compared with ANN classifier
(97.778% compared with 93.334%) and second issue is that QNN converged with less number of
iterations (150 epochs for QNN compared with 1500 epochs for ANN), and this indicates that the
time required for QNN convergence is about (90%) less than that of ANN.

The reason is that ANN is unable to correctly assign class membership to data samples
belonging to regions of the feature space where there is overlapping among the classes. The reason
for this is that FFNNs use sharp decision boundaries (due to crisp membership function) to partition
the feature space. As a result, the outputs of trained ANNs cannot generally be interpreted as
membership values. Also it can be found that QNN is more reliable than the ANN because QNN
generates a more structured representation of the input data at the hidden layer than that of the ANN
as QNN use multilevel hidden units, this is not surprising, given the fact that the jump-positions of
the multi-level hidden units of the QNN are updated by minimizing some measure based on the
class-conditional variances at the outputs of the hidden units.

Another advantage is that QNN systems are using quantum neuron instead of traditional
neuron which is often able to learn faster and require less number of neurons in the hidden layer
which could lead to a smaller number of weights and reduction of the number of neurons in the
hidden layer which could lead to smaller number of weights, or it can be said generally that this
means reducing the total number of parameters (input weights, output weights, jump position) to be
learned by almost half, as an assumption to the total number for hidden units in hidden layer is
with(4*n;) empirically for best accuracy in ANN classifier, while assumption to the total number
for multilevel hidden units in hidden layer is with(2*n;) empirically for best accuracy in QNN
classifier. This means that the total number of parameters (input weights, output weights, jump
position) to be learned is reduced by almost half which represents another advantage for QNN.

Here the number of multilevel hidden units in the hidden layer was set to (8) by QNN but
(16) by ANN, the input weights is (V(8x4)) and output weight (W(3x8)) and jump position with
(8x3)matrix by QNN while the input weight is (V(16x4)) and output weight is (W(3x16)) for ANN.
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4. CONCLUSSIONS

In this paper, a data classification system based on multi-level transfer function integrated
Quantum Neural Networks (QNN) is proposed. The classification system methodology consists of
ion signals which here iris data. First, the classification signals should be normalized then feature
extraction is applied using independent component analysis technique then classification task is to
be achieved firstly using artificial neural network classifier and secondly using integrated Quantum
Neural Networks (QNN).

The architecture of (QNN’s) has inherently built in fuzzy, hidden units of these networks
(QNN’s) to develop quantized representations of sample information provided by the training data
set in various graded levels of certainty. Experimental results presented here show that (QNN’s) are
capable of recognizing structures in data, a property that conventional (FFNN’s) with sigmoidal
hidden units lack. In addition, (QNN) gave a kind of fast and realistic results compared with the
(FFNN). Simulation results indicate that QNN is superior (with total accuracy of 97.778%) than
ANN (with total accuracy of 93.334%).
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Figure 1. Block diagram of the methodlogy for signal classification system.
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Figure 2. Multilevel transfers function with (a): equal step heights (b): unequal step heights.
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Input layer Hidden layer Output layer

Figure 3. Structure of the Artificial Neural Network (ANN) classifier.
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Figure 4. Classification of signals by ANN classifier.
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H; =s—‘290 Bn (B = 67)

Figure 5. Structure of Quantum Neural Network (QNN) classifier.
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Figure 6. classification of signals by QNN classifier.
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Table 1. Classification and performance using ANN and QNN classifiers.

Network MSE for training | Accuracy No. of epochs MSE for Accuracy for testing
classifier set for training for testing set set (%)

type set (%) convergence

ANN 0.0054 100.00 1500 0.1174 93.334
classifier

QNN 0.1258 97.143 150 0.3780 97.778
classifier
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