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ABSTRACT 

This paper presents a comparative study of two learning algorithms for the nonlinear PID 

neural trajectory tracking controller for mobile robot in order to follow a pre-defined path. As 

simple and fast tuning technique, genetic and particle swarm optimization algorithms are used to 

tune the nonlinear PID neural controller's parameters to find the best velocities control actions of 

the right wheel and left wheel for the real mobile robot. Polywog wavelet activation function is 

used in the structure of the nonlinear PID neural controller.  Simulation results (Matlab) and 

experimental work (LabVIEW) show that the proposed nonlinear PID controller with PSO 

learning algorithm is more effective and robust than genetic learning algorithm; this is 

demonstrated by the minimized tracking error and obtained smoothness of the velocity control 

signal, especially when external disturbances are applied. 

 

Key words: genetic algorithm, particle swarm optimization, nonlinear PID controller, NI mobile 

robots, trajectory tracking. 

 

 

مسيطر تتابع مسار عصبي لأخطي تناسبي تكاملي دراسة مقارنة لخوارزميات ركية متنوعة أساسه 

 تفاضلي لنمورج التحرك التفاضلي لإنسان آلي متنقل.

 
 أحمذ صباح عبذ الأمير الأعرجي

 أسخار ٍساعذ دمخىس

 اىجاٍعت اىخنْىىىجيت -قسٌ هْذست اىسيطشة واىْظٌ 

 

 الخلاصة

حخابعي ىَساس عجيت الإّساُ لاخطي حْاسبي حناٍيي حفاضيي عصبي ٍسيطش  ىخعييٌخىاسصٍيخيِ ت ٍقاسّت ىدساسيقذً هزا اىبذث, 

  يخبع ٍساس ٍسخَش ٍعشف ٍسبقا.ىني  ٍخذشك آىي

خْغيٌ عْاصش اىَسيطش خىاسصٍيت دشذ اىجسيَاث الاٍثييت ىاىىساثيت واىخىاسصٍيت مخقْياث سهيه وسشيعت اىخْغيٌ, ىقذ حٌ اسخخذاً 

ىقذ حٌ اسخخذاً اىذاىت  خطي اىخْاسبي اىخناٍيي اىخفاضيي لإيجاد أفضو أشاسة سشعت ىعجيت  ىلإّساُ الآىي اىَخذشك اىذقيقي.اىلا

 اىفعاىت ٍىجت اىبىىيىّل في هينييت اىَسيطش اىعصبي.  

اىَقخشح حْغيَه  اىلاخطي اىخْاسبي اىخناٍيي اىخفاضيي اىعصبي اىَسيطش أُ أثبخج اىعَو اىخجشيبي,ٍِ خلاه ّخائج اىَذاماة و 

ٍقاسّت باىَسيطشة اىزي حٌ حْغيَه بىاسطت اىخىاسصٍيت اىىساثيت,  ٍخاّتفعاىيت و  أمثشدشذ اىجسيَاث الاٍثييت  خىاسصٍيتبىاسطت 

 حقييو اىخطأ أىخخابعي ىَساس الإّساُ الآىي اىَخذشك ٍع حىىيذ أشاسة سشعت ّاعَت, بشغٌ ٍِ وجىد اىخأثيشوهزا واضخ ٍِ خلاه 

 الاضطشابي اىخاسجي. 
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1. INTRODUCTION 

In the last decade, there has been an increasing amount of research on the subject of wheel-based 

mobile robots which have attracted considerable attention in various industrial and service 

applications. For example, room cleaning, lawn mowers, factory automation, transportation, 

nuclear-waste cleaning, Wai, and Liu, 2009. 

These applications require mobile robots to have the ability to track specified path stably; 

therefore, several studies have been published for solving the mobile robot path tracking control 

problems which can be classified into three categories: The first category is the position 

estimation control approach for navigation problems of the mobile robot on interactive motion 

planning in dynamics environments and obstacle motion estimation, Chang, et al., 2009. The 

second category for navigation problems of the mobile robot is path planning and execution. The 

path planning is generated based on a prior map of the environment while the executed path is 

planned using certain optimization algorithms based on a minimal time, minimal distance or 

minimal energy performance index. Many methods have been developed for avoiding both static 

and moving obstacles as presented in, Sahin, and Zergeroglu, 2007. The third category for the 

navigation problems of mobile robot is the design and implementation of the driving control that 

the mobile robot must track to follow a desired path accurately and minimize the tracking error. 

Tracking errors of mobile robot causes collisions with obstacles due to deviations from the 

planned path and also causes the robot to fail in accomplishing the mission successfully. It also 

causes an increase of the traveling time, as well as the travel distance, due to the additional 

adjustments needed to satisfy the driving sates. The major reasons for tracking error for mobile 

robot are the small rotation radius or not constant on the path such as the complex curvature or 

randomly curvature, Takanori, et al., 2000. 

In, Mnif, and Touati, 2005. artificial intelligent controllers were carried out using neural 

networks or fuzzy inference in order to control the trajectory tracking for the mobile robot while 

the traditional control methods for path tracking have been used linear or non-linear feedback 

controller. There are other techniques for trajectory tracking controllers such as predictive 

control technique. Predictive approaches to path tracking seem to be very promising because the 

reference trajectory is known beforehand. Model predictive trajectory tracking control was 

applied to a mobile robot where linearized tracking error dynamics was used to predict future 

system behaviour and a control law was derived from a quadratic cost function penalizing the 

system tracking error and the control effort, Klancar, and Skrjanc, 2007. 

In addition, an adaptive trajectory-tracking controller based on the robot dynamics was proposed 

in, Park, et al. 2010. Intelligent control architecture for two autonomously driven wheeled robot 

was developed in, Su, et al. 2010, that consists of the fuzzy inference as main controller and the 

neural network is an auxiliary part. 

The fundamental essence of the contribution of this work can be understood considering the 

following points. 

 The analytically derived control law which has significantly high computational accuracy 

to obtain the best control action and lead to minimum tracking error of the mobile robot 

based on genetic algorithm and particle swarm optimization. 

 Investigation of the controller robustness and adaptation performance through adding 

boundary unknown disturbances. 

 Verification of the proposed controller capability of tracking continuous trajectory is 

done by an experimental work using NI mobile robot model. 

Simulation results and experimental work show that the proposed controller with PSO learning 

algorithm is more robust and effective than controller with genetic learning algorithm in terms of 
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minimum tracking error and in generating best velocity control action despite of the presence of 

bounded external disturbances.  

The remainder of the paper is organized as follows: Section two is a description of the 

kinematics model of the differential wheeled mobile robot model and check controllability for 

the mobile robot. In section three, the proposed nonlinear PID neural controller is derived based 

on genetic algorithm and particle swarm optimization. The simulation results and experimental 

work of the proposed controller are presented in section four and the conclusions are drawn in 

section five. 
 

2. DIFFERENTIAL WHEELED MOBILE ROBOT PLATFORM 

The schematic of the differential drive mobile robot, shown in Fig. 1, consists of a cart with two 

driving wheels mounted on the same axis and one castor wheel as an omni-directional in the 

front of cart in order to carry the mechanical structure and keep the platform of the mobile robot 

more stable, Al-Araji, et al, 2013. Two independent analogous DC motors are the actuators of 

left and right wheels for motion and orientation. The two wheels have the same radius denoted 

by r , and L  is the distance between the two wheels. The center of mass of the mobile robot is 

located at point c , center of axis of wheels.  

The pose of mobile robot in the global coordinate frame  YXO ,,  and the pose vector in the surface 

is defined as:  

 
Tyxq ),,(                                                                                                                                         (1) 

 

where 13)( tq ,    

x and y are coordinates of point c and   is the robotic orientation angle measured with respect to 

the X-axis. These three generalized coordinates can describe the configuration of the mobile 

robot.  

It is assumed that the mobile robot wheels are ideally installed in such a way that they have ideal 

rolling without skidding, Yang, et al. 2004, as shown in Eq. (2): 

 

0)(cos)()(sin)( 


ttyttx                                                                                                                (2) 

 

Therefore, the kinematics equations in the world frame can be represented as follows Han, et al. 

2008: 

 

)(cos)()( ttVtx I                                                                                                                                 (3) 

 

)(sin)()( ttVty I                                                                                                                                 (4) 

 

)()( tVt w                                                                                                                                         (5) 

 

where Vl  and Vw, are the linear and angular velocities respectively. 

In the computer simulation, the currently form of the pose equations are as follows:    

 

)1()(cos)]()([5.0)(  kxtkkVkVkx LR                                                                                                      (6) 

 

)1()(sin)]()([5.0)(  kytkkVkVky LR                                                                                                      (7) 
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1
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L

k RL                                                                                                               (8) 

 

where )(),(),( kkykx   are the components of the pose at the k  step of the movement and t is the 

sampling period between two sampling times. 

Using Jacobi-Lie-Bracket to check controllability of the nonlinear MIMO kinematic mobile 

robot system in Eqs. (3, 4, 5), the accessibility rank condition is globally satisfied controllability. 

The mobile robot kinematics can be described by the left and right velocities as follows: 
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and  f  and g can be defined as two vectors with components: 
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The determent of the matrix in Eq. (13) is equal to 0)/1( 2 L , then the full rank of matrix is equal 

to 3, therefore, the system in Eqs. (3, 4 and 5) is controllable. 

 

3. CONTROL METHODOLOGY 

The proposed structure of the nonlinear PID neural controller can be given in the form of block 

diagram, as shown in Fig. 2. The approach to control the wheeled mobile robot depends on the 

available information of the unknown nonlinear system and can be known by the input-output 

data and the control objectives. The genetic algorithm and particle swarm optimization will 

generate the optimal parameters for the nonlinear PID neural controller in order to obtain best 

velocity control signal that will minimize the tracking error of the mobile robot in the presence 

of external disturbance.  

The feedback PID neural controller is very important because it is necessary to stabilize the 

tracking error of the system when the output of the mobile robot is drifted from the desired point. 

The nonlinear PID neural controller for MIMO mobile robot system is shown in Fig. 3. The 

proposed nonlinear PID neural controller has the characteristics of control agility, strong 
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adaptability, good dynamic characteristic and robustness because it is based on a conventional 

PID controller that consists of three terms: proportional, integral and derivative where the 

standard form of a PID controller is given in the s-domain as Eq. (14), Zhong, 2006 and Omatu, 

1995. 

  

sK
s

K
KDIPsGc d

i
p )(                                                                                                    (14)                                                                  

 

where Kp, Ki and Kd are called proportional gain, integral gain and derivative gain, respectively. 

The proposed nonlinear PID neural controller scheme is based on the discrete-time PID as Eq. 

(15). 

 

)()]1()([)1()( 2,12,1 keKikekeKpkuku   )]2()1(2)([  kekekeKd 
                                 (15) 

 

where .,,  yx  

Therefore, the tuning PID input vector consists of )(ke , )1( ke , )2( ke  and )1(2,1 ku , where 

)(ke  and )(2,1 ku  denote the input error signals and the PID output signal respectively.   

The proposed control law of the feedback right and left velocity ( 1u  and 2u ) respectively can be 

proposed as follows:  

 

yx ookuku  )1()( 11
                                                                                                                 (16) 

 

yookuku  )1()( 22
                                                                                            (17) 

 

yx oo , and o are the outputs of the neural networks that can be obtained from non-linear 

Polywog wavelet activation functions, Righeto, 2004, as shown in Fig. 4 and has nonlinear 

relationship as presented in the following function: 

 
2)(5.042 ))()(3( 



net
enetneto


                                                                                           (18) 

 

net is calculated from this equation: 

 

 )()]1()([)( keKikekeKpknet  )]2()1(2)([  kekekeKd 
                                               (19) 

 

The control parameters 
 KiKp , and 

Kd of the nonlinear PID neural controller are adjusted using 

genetic algorithm and particle swarm optimization. 

 

3.1 Learning Genetic Algorithm (GA)  
Genetic algorithm is an intelligent optimization technique that relies on the parallelism found in 

nature; in particular its searching procedures are based on the mechanics of natural selection and 

genetics, Ali, et al, 2011.  

GAs includes three major operators: selection, crossover, and mutation, in addition to four 

control parameters: population size, selection pressure, mutation rate and crossover. Genetic 

algorithms start parallel searching from independent points of searching space in which the 
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solution knowledge is poor or not available. The solution depends on interaction of the 

surroundings and genetic operators. For that reason, obtaining the suboptimal solutions of 

genetic algorithm is a small probability, Muhammet, 2010.  

In this paper, the first learning algorithm for determining the nonlinear PID neural controller 

parameters is genetic algorithm and the steps of the tuning these parameters can be described as 

follows: 

 Step1 GA makes the problem parameters into chromosomes then simulates evolutionary 

operation. 

 Step2  To determine the size of the population and to initialize. Set the population size 

30, the evolution generation 100. 

 Step3 Decode the individual of the population into optimal parameters for calculating the 

value of fitness function. 

 Step4 Do population selection, crossover and mutation operations to produce the next 

generation population. The crossover probability is 0.75, mutation probability is 0.01. 

 Step5 Repeat steps 3 and 4 until the fitness function condition is achieved or the 

maximum number of generations is reached. 

Mean square error (MSE) function for multi-input multi-output (MIMO) mobile robot system is 

chosen as a criterion for estimating the model performance and an objective function to be 

minimized with the GA as Eq. (20): 
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Since the GA maximizes its fitness function, it is necessary therefore to map the objective 

function (MSE) to a fitness function.  It is used objective –to- fitness transformation is of the 

form, Al-Araji, 2005. 

 




unctionobjectivef
fitness

1                                                                                                            (21) 

 

where  is a constant chosen to avoid division by zero. 

 

3-2 Learning Particle Swarm Optimization Algorithm 

Particle Swarm optimization (PSO) is a kind of algorithm to search for the best solution by 

simulating the movement and flocking of birds. PSO algorithms use a population of individual 

(called particles) “flies” over the solution space in search for the optimal solution. 

Each particle has its own position and velocity to move around the search space. The particles 

are evaluated using a fitness function to see how close they are to the optimal solution, Derrac, 

et al, 2005. The previous best value is called as pbest. Thus, pbest is related only to a particular 

particle. It also has another value called gbest, which is the best value of all the particles pbest in 

the swarm. 

The nonlinear PID neural controller with nine weights parameters and the matrix is rewritten as 

an array to form a particle. Particles are then initialized randomly and updated afterwards 

according to Eqs. (22, 23, 24, 25, 26 and 27) in order to tune the PID parameters: 
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popm ,.....3,2,1  

where  

pop is number of particles, 
k

mK , is the weight of particle m at k iteration, 

c1 and c2 are the acceleration constants with positive values equal to 1.47, 

r1 and r2 are random numbers between 0 and 1, 

mpbest ,
is best previous weight of m

th
 particle.   

gbest is best particle among all the particle in the population. 

  is the inertia weight factor and it is equal to 0.75, 

 

The number of dimension in particle swarm optimization is equal to nine because the proposed 

nonlinear PID controller has nine parameters. The mean square error function is chosen as a 

criterion for estimating the model performance as given in Eq. (20). 

In this paper, the second learning algorithm for determining the nonlinear PID neural controller 

parameters is PSO algorithm and the steps of the tuning these parameters can be described as 

follows: 

 Step1 Initial searching points 0

Kp , 0

Ki , 0

Kd , 0

Kp , 0

Ki and 0

Kd of each particle are 

usually generated randomly within the allowable range. Note that the dimension of search 

space consists of all the parameters used in the nonlinear PID neural controller as shown 

in Fig. 2. The current searching point is set to pbest for each particle. The best-evaluated 

value of pbest is set to gbest and the particle number with the best value is stored.  

 Step2 The objective function value is calculated for each particle by using Eq. (20). If the 

value is better than the current pbest of the particle, the pbest value is replaced by the 

current value. If the best value of pbest is better than the current gbest, gbest is replaced 

by the best value and the particle number with the best value is stored. 

 Step3 The current searching point of each particle is update by using Eqs. (22, 23, 24, 25, 

26 and 27).   

 Step4 If the current iteration number reaches the predetermined maximum iteration 

number, then exit. Otherwise, return to step 2. 

The fundamental essences for applying the proposed control algorithms are minimizing tracking 

error and obtaining smoothness of the velocity control signal through speed up the process of 

getting the optimal parameters of the nonlinear PID controller.  
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4. SIMULATION RESULTS 

The kinematic model of the differential wheeled mobile robot described in section 2 is used and 

the proposed controller is verified by means of computer simulation using MATLAB package. 

The simulation is carried out by tracking a desired position (x, y) and orientation angle ( ) with 

continuous trajectory in the tracking control of the NI mobile robot. The parameter values of the 

NI robot model are taken from, Al-Shibaany, 2012: L=0.36 m, r=0.05 m and sampling time is 

equal to 0.5 second. 

The proposed nonlinear PID neural controller scheme as in Fig. 2 is applied to the mobile robot 

model and it uses the proposed learning algorithms steps of genetic algorithm and particle swarm 

optimization for tuning the nonlinear PID controller's parameters. The fist stage of operation is to 

set the following parameters of the GA and PSO: 

Population size is equal to 30 and number of iteration is equal to 100 for GA. 

Population of particle is equal to 30 and number of iteration is equal to 100 for PSO. 

Number of weight in each chromosome and particle is 9 because there are nine parameters of the 

nonlinear PID controller. 

The desired path which has explicitly continuous gradient with rotation radius changes can be 

described by the following equations: 
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For simulation purposes, the desired path is chosen as described in Eq. (28) and Eq. (29) while 

the desired orientation angle is taken as expressed in Eq. (30).  

The mobile robot model starts from the initial posture ]0,0,1.0[)0( q  as its initial conditions. A 

disturbance term  Tttd )2sin(01.0)2sin(01.0 Al-Araji, et al, 2013, is added to the mobile robot 

system as unmodelled kinematics disturbances in order to prove the adaptation and robustness 

ability of the proposed controller. The mobile robot trajectory tracking obtained by the proposed 

nonlinear PID neural controller is shown in Fig. 5.   

The adaptive learning and robustness of nonlinear PID neural controller based on PSO show 

excellent position and orientation tracking performance and small effect of the disturbances than 

learning GA because the PSO algorithm has capability to obtain smooth values of the nonlinear 

PID controller’s parameters with smoothness convergence behaviour in the parameters values 

that depend on previous values without using mutation and crossover processes for GA 

technique.  

Table 1. shows the tuning values of the nonlinear PID neural controller parameters ),,( kkk yx
 

which are based on genetic and particle swarm optimization learning algorithms. 

The effectiveness and robustness of the proposed nonlinear PID neural control algorithm based 

on PSO is clear by showing the convergence of the pose trajectory and orientation errors for the 

robot model motion, as shown in Fig. 6. 

MSE of the pose trajectory and orientation errors for the robot model motion at 100 iterations is 

shown in Fig. 7. 
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The simulation results demonstrated the effectiveness of the proposed controller based on PSO 

technique by showing its ability to generate small smooth values of the control input velocities 

for right and left wheels without sharp spikes.  

The actions described in Fig. 8 show that smaller power is required to drive the DC motors of the 

mobile robot model. 

The mean linear velocity of the NI mobile robot is equal to 0.0897 m/sec, and the maximum 

peak of the angular velocity is equal to  0.42 rad/sec. Both are shown in Fig. 9. 

In order to validate the applicability of the proposed nonlinear neural PID control methodology, 

experiments have executed by using mobile robot from National Instrument Company type 

differential wheeled mobile robot shown in Fig. 10. The wheeled mobile robot is equipped with 

Lab VIEW package guided. 

In the experiments, PSO technique control methodology of the simulation has been applied on 

real NI mobile robot because the controller was robust and effective in terms of minimum 

tracking error and in generating best velocity control action despite of the presence of bounded 

external disturbances in comparison with the GA simulation results. Therefore, these control data 

has transmitted to the NI mobile robot model, which admits right wheel velocity and left wheel 

velocity as input reference signals by using wireless communication after has been converted the 

data format from MATLAB file of simulations to LabVIEW package version 2010 format as a 

lookup table in the NI mobile robot. 

Velocities commands sent by the computer are coded messages which are recognized by 

microcontroller. Based on received characters, the microcontroller creates control actions for 

servo motors. The output voltages of the two encoder sensors are converted to coded messages 

by microcontroller and sent to the personal computer in order to calculate the tracking error of 

the mobile robot during motion. Wireless communication technique has been used for 

transmitting the data between the NI mobile robot and main computer. 

The velocities of the simulation results for right and left wheels have been downloaded to the 

memory of the NI mobile robot as commands which have smooth values without sharp spikes, as 

shown in Fig. 8. 

The initial pose for the NI mobile robot starts at position (-0.1 and 0) meter and orientation 0 

radian and should follow desired continuous trajectory, as show in Fig. 11. The desired trajectory 

starts at position (0, 0, 0).  

After 61 seconds, the real mobile robot has followed and finished the tracking of the desired 

path, as shown in Fig. 12a with small drifted from the desired trajectory and the distance of the 

trajectory did not exceed 4.47m. Fig. 12b shows the actual orientation of the mobile robot with 

small error. As shown in Fig. 12c the tracking error in x-coordinate and y-coordinate were 

reasonably accurate because the mobile robot was trying to correct the pose and orientation 

errors. 

The mean-square error for each component of the state error vector ],,[ eeyex for simulation 

results and experimental work for two control algorithms are calculated, as shown in Table 2. 

Table 2. shows the effectiveness and robustness of proposed controller based on PSO in terms of 

minimum tracking error and excellent position and orientation tracking performance than genetic 

learning algorithm because the PSO learning algorithm has capability to obtain best values of the 

parameters of the proposed controller with smoothness convergence behaviour in these 

parameters that depend on previous values without using mutation and crossover processes for 

GA technique. 

The percentage of the mean square error between simulation results and experimental work can 

be shown in Table 3. 
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Table 3. shows the difference between simulation results and experimental work which caused 

by the residual errors in the experimental results due to the inherent friction present in the real 

system, especially during tracking the continuous gradient path and modelling errors, due to the 

difficulty of estimating or measuring the geometric, kinematics or inertial parameters, or from 

incomplete knowledge of the system components. 

 

5. CONCLUSIONS 

The nonlinear PID neural trajectory tracking control methodology with two learning algorithms 

for the differential drive mobile robot model have been presented in this paper. It has been 

designed and tested using Matlab package and carried out on real NI mobile robot using 

LabVIEW package.  

The simulation results and experimental work show evidently the capability of adaptation and 

robustness of the proposed nonlinear PID neural controller that based on PSO learning algorithm 

which has excellent position tracking performance and it has the capability of generating smooth 

and suitable velocity commands than the controller based on genetic learning algorithm because 

the PSO algorithm has capability to obtain best values of the nonlinear PID controller’s 

parameters as well as smooth parameters convergences behaviour which depends on previous 

values and this with few parameters adjustment unlike GA which depends on more evolutionary 

operators such as mutation and crossover. 
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Figure 1. Mobile robot platform. 
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Figure 2. Nonlinear PID Neural trajectory tracking controller structure for mobile robot. 
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Figure 3. The nonlinear PID neural feedback controller structure. 
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Figure 4. Polywog wavelet function. 
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Figure 5. Simulation results (a) desired trajectory and actual mobile robot 

trajectory; (b) desired orientation and actual mobile robot orientation. 
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Figure 6. Position tracking error (a) in X- coordinate; (b) in Y-

coordinate; (c) Orientation tracking error. 
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Figure 7. The right and left wheel action velocity. 
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Figure 9. The performance index (MSE). 
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Figure 8. The linear and angular velocity. 

Figure10. NI mobile robot for the experiments. 

 

Figure 11. Real set-up experiment of  NI mobile 

robot for continuous 

trajectory tracking. 
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Figure 12. Practical results (a) desired trajectory and actual mobile 

robot trajectory; (b) desired orientation and actual mobile robot 

orientation; (c) X-coordinate and Y-coordinate errors. 
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Table 2. The MSE for simulation results and experimental work. 

PID Control 

Algorithm 
GA PSO 

MSE (ex) (ey) (e ) (ex) (ey) (e ) 

Simulation 

Results 
0.0021 0.0059 1.46 0.0013 0.0038 1.18 

Experimental 

work 
0.0032 0.0074 1.77 0.0019 0.0047 1.23 

 

Table 3. The percentage of MSE between simulation results and 

experimental work. 

PID 

Control 

Methodolog

y 

GA PSO 

(MSE of X-

coordinate) 

100% 

34.3% 31.5% 

(MSE of Y-

coordinate) 

100% 

20.3% 19.1% 

(MSE of 

Orientation) 

100% 

17.5% 4% 

 

Table 1. The nonlinear PID neural controller parameters. 

Tec

h 
xkp  

xki  
xkd  

ykp  
yki  

ykd  
kp
 

ki  
kd
 

PS

O 
0.75 

0.7

2 

0.13

1 

-

0.30

7 

-

0.36 

1.03

9 

-

0.08 
2.78 

0.01

4 

GA 
0.00

7 

0.4

2 

0.46

0 

0.31

6 

0.40

7 

0.55

4 

0.24
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0.45
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0.52
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