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ABSTRACT

This paper presents a comparative study of two learning algorithms for the nonlinear PID
neural trajectory tracking controller for mobile robot in order to follow a pre-defined path. As
simple and fast tuning technique, genetic and particle swarm optimization algorithms are used to
tune the nonlinear PID neural controller's parameters to find the best velocities control actions of
the right wheel and left wheel for the real mobile robot. Polywog wavelet activation function is
used in the structure of the nonlinear PID neural controller. Simulation results (Matlab) and
experimental work (LabVIEW) show that the proposed nonlinear PID controller with PSO
learning algorithm is more effective and robust than genetic learning algorithm; this is
demonstrated by the minimized tracking error and obtained smoothness of the velocity control
signal, especially when external disturbances are applied.

Key words: genetic algorithm, particle swarm optimization, nonlinear PID controller, NI mobile
robots, trajectory tracking.
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1. INTRODUCTION

In the last decade, there has been an increasing amount of research on the subject of wheel-based
mobile robots which have attracted considerable attention in various industrial and service
applications. For example, room cleaning, lawn mowers, factory automation, transportation,
nuclear-waste cleaning, Wai, and Liu, 20009.

These applications require mobile robots to have the ability to track specified path stably;
therefore, several studies have been published for solving the mobile robot path tracking control
problems which can be classified into three categories: The first category is the position
estimation control approach for navigation problems of the mobile robot on interactive motion
planning in dynamics environments and obstacle motion estimation, Chang, et al., 2009. The
second category for navigation problems of the mobile robot is path planning and execution. The
path planning is generated based on a prior map of the environment while the executed path is
planned using certain optimization algorithms based on a minimal time, minimal distance or
minimal energy performance index. Many methods have been developed for avoiding both static
and moving obstacles as presented in, Sahin, and Zergeroglu, 2007. The third category for the
navigation problems of mobile robot is the design and implementation of the driving control that
the mobile robot must track to follow a desired path accurately and minimize the tracking error.
Tracking errors of mobile robot causes collisions with obstacles due to deviations from the
planned path and also causes the robot to fail in accomplishing the mission successfully. It also
causes an increase of the traveling time, as well as the travel distance, due to the additional
adjustments needed to satisfy the driving sates. The major reasons for tracking error for mobile
robot are the small rotation radius or not constant on the path such as the complex curvature or
randomly curvature, Takanori, et al., 2000.

In, Mnif, and Touati, 2005. artificial intelligent controllers were carried out using neural
networks or fuzzy inference in order to control the trajectory tracking for the mobile robot while
the traditional control methods for path tracking have been used linear or non-linear feedback
controller. There are other techniques for trajectory tracking controllers such as predictive
control technique. Predictive approaches to path tracking seem to be very promising because the
reference trajectory is known beforehand. Model predictive trajectory tracking control was
applied to a mobile robot where linearized tracking error dynamics was used to predict future
system behaviour and a control law was derived from a quadratic cost function penalizing the
system tracking error and the control effort, Klancar, and Skrjanc, 2007.

In addition, an adaptive trajectory-tracking controller based on the robot dynamics was proposed
in, Park, et al. 2010. Intelligent control architecture for two autonomously driven wheeled robot
was developed in, Su, et al. 2010, that consists of the fuzzy inference as main controller and the
neural network is an auxiliary part.

The fundamental essence of the contribution of this work can be understood considering the
following points.

e The analytically derived control law which has significantly high computational accuracy
to obtain the best control action and lead to minimum tracking error of the mobile robot
based on genetic algorithm and particle swarm optimization.

¢ Investigation of the controller robustness and adaptation performance through adding
boundary unknown disturbances.

e Verification of the proposed controller capability of tracking continuous trajectory is
done by an experimental work using NI mobile robot model.

Simulation results and experimental work show that the proposed controller with PSO learning
algorithm is more robust and effective than controller with genetic learning algorithm in terms of
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minimum tracking error and in generating best velocity control action despite of the presence of
bounded external disturbances.

The remainder of the paper is organized as follows: Section two is a description of the
kinematics model of the differential wheeled mobile robot model and check controllability for
the mobile robot. In section three, the proposed nonlinear PID neural controller is derived based
on genetic algorithm and particle swarm optimization. The simulation results and experimental
work of the proposed controller are presented in section four and the conclusions are drawn in
section five.

2. DIFFERENTIAL WHEELED MOBILE ROBOT PLATFORM

The schematic of the differential drive mobile robot, shown in Fig. 1, consists of a cart with two
driving wheels mounted on the same axis and one castor wheel as an omni-directional in the
front of cart in order to carry the mechanical structure and keep the platform of the mobile robot
more stable, Al-Araji, et al, 2013. Two independent analogous DC motors are the actuators of
left and right wheels for motion and orientation. The two wheels have the same radius denoted
byr, and L is the distance between the two wheels. The center of mass of the mobile robot is
located at pointc, center of axis of wheels.

The pose of mobile robot in the global coordinate frame [o,x,v] and the pose vector in the surface

is defined as:
q=(xy,0) (1)

where g(t) e %%,

x and y are coordinates of point cand @ is the robotic orientation angle measured with respect to
the X-axis. These three generalized coordinates can describe the configuration of the mobile
robot.

It is assumed that the mobile robot wheels are ideally installed in such a way that they have ideal
rolling without skidding, Yang, et al. 2004, as shown in Eqg. (2):

—x(t)sinO(t) + y(t)cos A(t) = 0 (2)

Therefore, the kinematics equations in the world frame can be represented as follows Han, et al.
2008:

%(t) =V, (t) cos A(t) 3)
y(t) =V, ©)sin O(t) 4)
) =V,,(®) )

where V), and V,,, are the linear and angular velocities respectively.
In the computer simulation, the currently form of the pose equations are as follows:

x(k) = 0.5V, (k) +V, (k)]cos (K)At + x(k —1) (6)

y(k) = 0.5[V, (k) +V, (K)]sin O(K)AL + y(k ~1) (7)
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000 =TV, () -V, (KIAL+ 0k -1 (8)

where ),y o) are the components of the pose at the k step of the movement and Atis the
sampling period between two sampling times.

Using Jacobi-Lie-Bracket to check controllability of the nonlinear MIMO kinematic mobile
robot system in Egs. (3, 4, 5), the accessibility rank condition is globally satisfied controllability.
The mobile robot kinematics can be described by the left and right velocities as follows:

. . ot [ ©)
y(t) |=| 0.5sin8(t) 0.5sino(t)

X(t)| [o0.5cosO(t) 0.5cosa(t)
6(t) { /L -1/L ]{VLG)

[a] = [f Ve (0 + [0V, () (10)

and f and g can be defined as two vectors with components:

0.5c0s6(t) | and {0.50059(0] (11)
f =] 0.5sin6(t) g =| 0.5sin A(t)
{ 1L ~1/L
-1.
{[f,gll L (12)
[f.gl=|[f.0]" |= ECOS9('[)
[f.9]° 0

0.5cosA(t) 0.5cos O(t) _Tlsine(t) (13)

rank{f,g,[f,g]}=rank| 0.5sin&(t) 0.5sinH(t) %cos o(t)
1/L -1/L 0

The determent of the matrix in Eq. (13) is equal to(1/L?) =0, then the full rank of matrix is equal
to 3, therefore, the system in Egs. (3, 4 and 5) is controllable.

3. CONTROL METHODOLOGY

The proposed structure of the nonlinear PID neural controller can be given in the form of block
diagram, as shown in Fig. 2. The approach to control the wheeled mobile robot depends on the
available information of the unknown nonlinear system and can be known by the input-output
data and the control objectives. The genetic algorithm and particle swarm optimization will
generate the optimal parameters for the nonlinear PID neural controller in order to obtain best
velocity control signal that will minimize the tracking error of the mobile robot in the presence
of external disturbance.

The feedback PID neural controller is very important because it is necessary to stabilize the
tracking error of the system when the output of the mobile robot is drifted from the desired point.
The nonlinear PID neural controller for MIMO mobile robot system is shown in Fig. 3. The
proposed nonlinear PID neural controller has the characteristics of control agility, strong
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adaptability, good dynamic characteristic and robustness because it is based on a conventional
PID controller that consists of three terms: proportional, integral and derivative where the
standard form of a PID controller is given in the s-domain as Eq. (14), Zhong, 2006 and Omatu,
1995.

Gc(s):P+I+D:Kp+%+de (14)

where K,, Ki and Kq are called proportional gain, integral gain and derivative gain, respectively.
The proposed nonlinear PID neural controller scheme is based on the discrete-time PID as Eq.
(15).

U, (K) =y, (k—1)+Kp, [e, (k) —e, (k—]+Ki e (k) + Kd e, (k) - 2e,(k =1) +e, (k - 2)] (15)

Wherey:x, y, 6.
Therefore, the tuning PID input vector consists of e (k), e (k-1),e (k-2) and y,(k-1), where

e, (k) and u,,(k) denote the input error signals and the PID output signal respectively.

The proposed control law of the feedback right and left velocity (U, and U, ) respectively can be
proposed as follows:

u, (k) = u,(k =) +0, +0, (16)

U, (K) =U, (k—1) +0, +0, (17)

0,,0,and O,are the outputs of the neural networks that can be obtained from non-linear

Polywog wavelet activation functions, Righeto, 2004, as shown in Fig. 4 and has nonlinear
relationship as presented in the following function:

0, = (3(net,)? — (net,)*)e **"’ (18)
net, is calculated from this equation:

net, (k) = Kp, e, (k) —e, (k-D]+Ki e (k) + Kd [e (k)—2e (k-1)+e,(k—2)] (19)

The control parameters Kp ,Ki and Kd, of the nonlinear PID neural controller are adjusted using
genetic algorithm and particle swarm optimization.

3.1 Learning Genetic Algorithm (GA)

Genetic algorithm is an intelligent optimization technique that relies on the parallelism found in
nature; in particular its searching procedures are based on the mechanics of natural selection and
genetics, Ali, et al, 2011.

GAs includes three major operators: selection, crossover, and mutation, in addition to four
control parameters: population size, selection pressure, mutation rate and crossover. Genetic
algorithms start parallel searching from independent points of searching space in which the
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solution knowledge is poor or not available. The solution depends on interaction of the
surroundings and genetic operators. For that reason, obtaining the suboptimal solutions of
genetic algorithm is a small probability, Muhammet, 2010.
In this paper, the first learning algorithm for determining the nonlinear PID neural controller
parameters is genetic algorithm and the steps of the tuning these parameters can be described as
follows:
e Stepl GA makes the problem parameters into chromosomes then simulates evolutionary
operation.
e Step2 To determine the size of the population and to initialize. Set the population size
30, the evolution generation 100.
e Step3 Decode the individual of the population into optimal parameters for calculating the
value of fitness function.
e Step4 Do population selection, crossover and mutation operations to produce the next
generation population. The crossover probability is 0.75, mutation probability is 0.01.
e Step5 Repeat steps 3 and 4 until the fitness function condition is achieved or the
maximum number of generations is reached.
Mean square error (MSE) function for multi-input multi-output (MIMO) mobile robot system is
chosen as a criterion for estimating the model performance and an objective function to be
minimized with the GA as Eq. (20):

MSE :ﬁf((&(kﬂ)i —x(k+ D)2+ (y, (k+1) - y(k+1)))2 + (6, (k +1) -0k +1)1)?) (20)

Since the GA maximizes its fitness function, it is necessary therefore to map the objective
function (MSE) to a fitness function. It is used objective —to- fitness transformation is of the
form, Al-Araji, 2005.

fitness = ——— ! - (21)
objectivefunction + u

where w4 is a constant chosen to avoid division by zero.

3-2 Learning Particle Swarm Optimization Algorithm

Particle Swarm optimization (PSO) is a kind of algorithm to search for the best solution by
simulating the movement and flocking of birds. PSO algorithms use a population of individual
(called particles) “flies” over the solution space in search for the optimal solution.

Each particle has its own position and velocity to move around the search space. The particles
are evaluated using a fitness function to see how close they are to the optimal solution, Derrac,
et al, 2005. The previous best value is called as pbest. Thus, pbest is related only to a particular
particle. It also has another value called gbest, which is the best value of all the particles pbest in
the swarm.

The nonlinear PID neural controller with nine weights parameters and the matrix is rewritten as
an array to form a particle. Particles are then initialized randomly and updated afterwards
according to Egs. (22, 23, 24, 25, 26 and 27) in order to tune the PID parameters:

AKpE™ = Q(AKp* ) +C,1; (pbest’ , —Kp* ) +C,r, (gbest* —Kp* ) (22)
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Kp)m = K, + AKpy (23)
AKi*E = Q(AKI¥ )+ .1y (pbest! , —Ki* ) +¢,r, (gbest* —Ki¥ ,) (24)
Kik = Ki¥ , +AKi 2 (25)
AKd! = Q(AKd! ) +c.r, (pbest! | —Kd¥ ) +c,r, (gbest* —Kd ) (26)
Kd* = Kd¥,, +AKd " (27)
m=123,.....pop

where

pop is number of particles,
KX ,is the weight of particle m at k iteration,

¢y and c; are the acceleration constants with positive values equal to 1.47,
r, and r, are random numbers between 0 and 1,
pbest, IS best previous weight of m™ particle.

gbest IS best particle among all the particle in the population.
o is the inertia weight factor and it is equal to 0.75,

The number of dimension in particle swarm optimization is equal to nine because the proposed
nonlinear PID controller has nine parameters. The mean square error function is chosen as a
criterion for estimating the model performance as given in Eq. (20).

In this paper, the second learning algorithm for determining the nonlinear PID neural controller
parameters is PSO algorithm and the steps of the tuning these parameters can be described as
follows:

e Stepl Initial searching points Kp’, Ki’,Kd’, AKp), AKi’and AKd of each particle are

usually generated randomly within the allowable range. Note that the dimension of search
space consists of all the parameters used in the nonlinear PID neural controller as shown
in Fig. 2. The current searching point is set to pbest for each particle. The best-evaluated
value of pbest is set to gbest and the particle number with the best value is stored.

e Step2 The objective function value is calculated for each particle by using Eq. (20). If the
value is better than the current pbest of the particle, the pbest value is replaced by the
current value. If the best value of pbest is better than the current gbest, gbest is replaced
by the best value and the particle number with the best value is stored.

e Step3 The current searching point of each particle is update by using Egs. (22, 23, 24, 25,
26 and 27).

e Step4 If the current iteration number reaches the predetermined maximum iteration
number, then exit. Otherwise, return to step 2.

The fundamental essences for applying the proposed control algorithms are minimizing tracking
error and obtaining smoothness of the velocity control signal through speed up the process of
getting the optimal parameters of the nonlinear PID controller.
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4. SIMULATION RESULTS

The kinematic model of the differential wheeled mobile robot described in section 2 is used and
the proposed controller is verified by means of computer simulation using MATLAB package.
The simulation is carried out by tracking a desired position (X, y) and orientation angle (¢) with
continuous trajectory in the tracking control of the NI mobile robot. The parameter values of the
NI robot model are taken from, Al-Shibaany, 2012: L=0.36 m, r=0.05 m and sampling time is
equal to 0.5 second.

The proposed nonlinear PID neural controller scheme as in Fig. 2 is applied to the mobile robot
model and it uses the proposed learning algorithms steps of genetic algorithm and particle swarm
optimization for tuning the nonlinear PID controller's parameters. The fist stage of operation is to
set the following parameters of the GA and PSO:

Population size is equal to 30 and number of iteration is equal to 100 for GA.

Population of particle is equal to 30 and number of iteration is equal to 100 for PSO.

Number of weight in each chromosome and particle is 9 because there are nine parameters of the
nonlinear PID controller.

The desired path which has explicitly continuous gradient with rotation radius changes can be
described by the following equations:

X, (t) = ~0.5x sin(%) (28)

Y, () =05 xsin(20) (29)

0,.(t) = 2tan"( Ay () (30)

)
V(A (0)° = (Ay, (1) +Ax, (1)

For simulation purposes, the desired path is chosen as described in Eq. (28) and Eqg. (29) while
the desired orientation angle is taken as expressed in Eq. (30).
The mobile robot model starts from the initial posture q(0)=[-0.1,0,0] as its initial conditions. A

disturbance term zd =[0.01sin(2t) 0.01sin(2t)] Al-Araji, et al, 2013, is added to the mobile robot

system as unmodelled kinematics disturbances in order to prove the adaptation and robustness
ability of the proposed controller. The mobile robot trajectory tracking obtained by the proposed
nonlinear PID neural controller is shown in Fig. 5.

The adaptive learning and robustness of nonlinear PID neural controller based on PSO show
excellent position and orientation tracking performance and small effect of the disturbances than
learning GA because the PSO algorithm has capability to obtain smooth values of the nonlinear
PID controller’s parameters with smoothness convergence behaviour in the parameters values
that depend on previous values without using mutation and crossover processes for GA
technique.

Table 1. shows the tuning values of the nonlinear PID neural controller parameters (k,,k,,k,)

which are based on genetic and particle swarm optimization learning algorithms.

The effectiveness and robustness of the proposed nonlinear PID neural control algorithm based
on PSO is clear by showing the convergence of the pose trajectory and orientation errors for the
robot model motion, as shown in Fig. 6.

MSE of the pose trajectory and orientation errors for the robot model motion at 100 iterations is
shown in Fig. 7.
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The simulation results demonstrated the effectiveness of the proposed controller based on PSO
technique by showing its ability to generate small smooth values of the control input velocities
for right and left wheels without sharp spikes.

The actions described in Fig. 8 show that smaller power is required to drive the DC motors of the
mobile robot model.

The mean linear velocity of the NI mobile robot is equal to 0.0897 m/sec, and the maximum
peak of the angular velocity is equal to + 0.42 rad/sec. Both are shown in Fig. 9.

In order to validate the applicability of the proposed nonlinear neural PID control methodology,
experiments have executed by using mobile robot from National Instrument Company type
differential wheeled mobile robot shown in Fig. 10. The wheeled mobile robot is equipped with
Lab VIEW package guided.

In the experiments, PSO technique control methodology of the simulation has been applied on
real NI mobile robot because the controller was robust and effective in terms of minimum
tracking error and in generating best velocity control action despite of the presence of bounded
external disturbances in comparison with the GA simulation results. Therefore, these control data
has transmitted to the NI mobile robot model, which admits right wheel velocity and left wheel
velocity as input reference signals by using wireless communication after has been converted the
data format from MATLAB file of simulations to LabVIEW package version 2010 format as a
lookup table in the NI mobile robot.

Velocities commands sent by the computer are coded messages which are recognized by
microcontroller. Based on received characters, the microcontroller creates control actions for
servo motors. The output voltages of the two encoder sensors are converted to coded messages
by microcontroller and sent to the personal computer in order to calculate the tracking error of
the mobile robot during motion. Wireless communication technique has been used for
transmitting the data between the NI mobile robot and main computer.

The velocities of the simulation results for right and left wheels have been downloaded to the
memory of the NI mobile robot as commands which have smooth values without sharp spikes, as
shown in Fig. 8.

The initial pose for the NI mobile robot starts at position (-0.1 and 0) meter and orientation 0
radian and should follow desired continuous trajectory, as show in Fig. 11. The desired trajectory
starts at position (0, 0, 0).

After 61 seconds, the real mobile robot has followed and finished the tracking of the desired
path, as shown in Fig. 12a with small drifted from the desired trajectory and the distance of the
trajectory did not exceed 5.47m. Fig. 12b shows the actual orientation of the mobile robot with
small error. As shown in Fig. 12c the tracking error in x-coordinate and y-coordinate were
reasonably accurate because the mobile robot was trying to correct the pose and orientation
errors.

The mean-square error for each component of the state error vector [ex,ey,egjfor simulation

results and experimental work for two control algorithms are calculated, as shown in Table 2.
Table 2. shows the effectiveness and robustness of proposed controller based on PSO in terms of
minimum tracking error and excellent position and orientation tracking performance than genetic
learning algorithm because the PSO learning algorithm has capability to obtain best values of the
parameters of the proposed controller with smoothness convergence behaviour in these
parameters that depend on previous values without using mutation and crossover processes for
GA technique.

The percentage of the mean square error between simulation results and experimental work can
be shown in Table 3.
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Table 3. shows the difference between simulation results and experimental work which caused
by the residual errors in the experimental results due to the inherent friction present in the real
system, especially during tracking the continuous gradient path and modelling errors, due to the
difficulty of estimating or measuring the geometric, kinematics or inertial parameters, or from
incomplete knowledge of the system components.

5. CONCLUSIONS

The nonlinear PID neural trajectory tracking control methodology with two learning algorithms
for the differential drive mobile robot model have been presented in this paper. It has been
designed and tested using Matlab package and carried out on real NI mobile robot using
LabVIEW package.

The simulation results and experimental work show evidently the capability of adaptation and
robustness of the proposed nonlinear PID neural controller that based on PSO learning algorithm
which has excellent position tracking performance and it has the capability of generating smooth
and suitable velocity commands than the controller based on genetic learning algorithm because
the PSO algorithm has capability to obtain best values of the nonlinear PID controller’s
parameters as well as smooth parameters convergences behaviour which depends on previous
values and this with few parameters adjustment unlike GA which depends on more evolutionary
operators such as mutation and crossover.
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Figure 5. Simulation results (a) desired trajectory and actual mobile robot
trajectory; (b) desired orientation and actual mobile robot orientation.
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Figure 6. Position tracking error (a) in X- coordinate; (b) in Y-
coordinate; (c) Orientation tracking error.
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Figure 7. The right and left wheel action velocity.
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Figure 8. The linear and angular velocity.
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Figure 9. The performance index (MSE).

Figure 11. Real set-up experiment of NI mobile
robot for continuous
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Figure 12. Practical results (a) desired trajectory and actual mobile
robot trajectory; (b) desired orientation and actual mobile robot
orientation; (c) X-coordinate and Y-coordinate errors.
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Table 1. The nonlinear PID neural controller parameters.

Tec

h kpx ki, kdx kpy kly de kp, k|9 kd,

PS 0.75 0.7 | 0.13 1.03

O 2 1 0'30 036 9 |0.08 218

GA 0.00 | 0.4 |0.46 | 0.31 | 0.40 | 0.55| 0.24 | 0.45 | 0.52
7 2 0 6 Il 4 2 4 61

0.01

Table 2. The MSE for simulation results and experimental work.

PID Control

Algorithm GA PSO
MSE (ex) | (ey) | (€6)| (ex) | (ey) | (ed)
Simulation

0.0021 | 0.0059 | 1.46 | 0.0013 | 0.0038 | 1.18
Results

Exp\e/vr(')r:‘lf”ta' 0.0032 | 0.0074 | 1.77 | 0.0019 | 0.0047 | 1.23

Table 3. The percentage of MSE between simulation results and
experimental work.

PID
Control
Methodolog GA PSO

y
(MSE of X-
coordinate) 34.3% 31.5%

100%
(MSE of Y-
coordinate) 20.3% 19.1%

100%

(MSE of

Orientation) 17.5% 4%
100%
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