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Abstract

This paper presents the study and analysis, analytically and numerical of circular cylindrical shell pipe
model, under variable loads, transmit fluid at the high velocity state (fresh water). The analytical analysis
depended on the energy observation principle (Hamilton Principle), where divided all energy in the model to
three parts , strain energy, kinetic energy and transmitted energy between flow and solid (kinetic to potential
energy). Also derive all important equations for this state and approach to final equation of motion, free and
force vibration also derived. the relations between the displacement of model function of velocity of flow,
length of model, pipe thickness, density of flowed with location coordinate x-axis and angle are derived.

In numerical analysis the models are created by using ANSYS Workpench-12 program, where build two
models one for fluid, and another for pipe (solid). Depended on CFX-ANSYS package, can transfer all
parameters in the fluid (temp., presser, energy) to solid model. The result show a good agreement and low of
percentage error between the analytically and numerical result. Also shows the effects of length and flow
velocity on the behaviour of pipe.

KEYWORD: Flow Solid Interfaces; cfx-Ansys, Vibration, Turbulent flow, thin pipe

Jadl 9 sl Jae aladiody 38 ) qigadl o Saliall dobadl o 3 piall Jlaa¥) il
iad)- guS) ) (o JAla éé&i\
pald 2gd to o
Al uigh) and Aeuigh A0S Tl daals

-

Aadal)

sla) Adlida £y aile J&5 Al AdliAa Jlaa) Ll ciad (38 ) Gl gigall gade g IS Juladg Al 33 o) o) Gagdl 3 b &S
ESE ) gigalll B A dBUall Jad Al Cua ABUAL ¢ gilian T o dlaic¥) g ABUal) Bda fase o g RI Juladll saie) (quie
AN ) RAYL daldd) c¥aleal) GG a3 calall gl N adbal) (e Adiial) A8 | i) 5 A8 jad) ABUall g JladlY) A8 A gl
A8 pu fon g Al pall g A ghall ilBlaaY) (o ABMaS G ASjall Ailgdl) ddpall L) (gile Addlaa (e g ) 1RV
Ansys workpench-12g-tiy Jal Jalsia gigaisly i gamad) Judadll (& Jikad) Galsd g o) dlawy Adadl Jshy Gl
L Ja)a Baga sallANSySCFX gl clile e alaioWly, calal) JSgd) Jiay AN adlall Jiay Labaal (i Ja (4 (1350 g3 gl
Soal)gha Jgl) o W ity alall galsd o Jganlly calal) JSuedl g ailal) o dgaxe dBe Jue iy 2 workbench
Qe Jshy Ao pull gl il egdiy Agamdly 4ol milll) G Jalay da U @il @ gkl | (Aedliad) Akl g bl
s gla e i) Jala AL ghial) salallg

943



Ali Fahad Fahem

1- Introduction

The study of internal flow-induced vibration of
thin pipes are problems that treatment an interaction
between the solid vibration and fluid flow. Flow-
induced vibration can be divided into three
categories: turbulence-induced vibration — as seen in
fluttering pipes, vortices shedding -induced
vibration — the phenomena that destroyed the
Tacoma Narrows Bridge, and fluid elastic
instability — a unique form of flow-induced vibration
that is most commonly seem in nuclear heat
exchangers after the tube velocity reaches a critical
value(Matthem,2003). It is of great practical
importance to a number of fields, especially so

whenever this flow-induced vibration leads to
structural fatigue or excessive noise
(Birgersson,2004).The topic of  flow-induced

vibration has been studied widely and development
in recent researches for,

Stephani R. et al, [Stephani, 2009]. They presented
analytical and numerical analysis of microscale
resonators containing internal flow, modeled here as
microfabricated pipe conveying fluid, and
investigates the effect of flow velocity on damping,
stability, and frequency shift. The analysis was
performed within the context of classical continuum
mechanics and numerical results. The results show
that the slender elastomeric pipe can become
unstable by divergence and flutter at flow velocity
of 10 m/s.

Michael S., Hans Irschik. (Michael, 2005) Presented
the analytically and numerical study for nonlinear
dynamics of elastic pipe conveying fluid at arbitrary
flow rates. They derived the nonlinear equation of
motion by using a unified form of the Lagrange
equation for non-material volumes with different
boundary conditions and compared the existing
results obtained by using different formulations.
Show that good agreement of result obtained with
the numerical and different formulation.

M. Sekavcnik et al (Sekavenik, 2006). Presented a
study of unsteady flow of viscous-compressible
fluid through a pipe system induced by a transient
dynamic disturbance at the pipe intake. The flow
through the pipe is calculated using a system of
RANS equations combined with various turbulence
models. Time-domain results are transformed into
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the frequency-domain in order to determine the
frequency content of the dynamic response for each
simulation. They proposed a diagram of such
contain  different parameters, which allows
convenient evaluation of the performance of various
pipe systems.

Matthew T., Jonathan D. (Matthem, 2003). They
presented a focuses on the development of a
numerical, fluid-structure interaction (GSI) model
that will help define the relationship between pipe
wall vibration and the physical characteristics of
turbulent flow. Also analysis of large eddy
simulation (LES) flow models that compute the
instantaneous fluctuation in turbulent flow. Show
that a near quadratic relationship between the
standard deviation of pressure field on the pipe wall
and flow rate.

F. Birgersson et al, (Birgersson, 2004). They
studied a vibration of pipes by using the Arnold-
Warburton theory for thin shells and a simplified
theory valid in a lower frequency regime. Also the
vibrational response is described numerically with
the spectral finite element method (SFEM), and
compares results with wind tunnel measurements.
They comparison between a simplified cylinder
theory and the Arnold-Warburton theory proved the
usefulness of the simplified theory in lower
frequency regime. Also may be applied to all the
other thin circular cylindrical shell theories.

2- Theoretical Modeling Analyses

2.1 Pressure Turbulent Flow

The transport of a fluid (liquid or gas) in a
closed conduit (commonly called a pipe if it is of
round cross section or a duct if it is not round) is
extremely important in our daily operations. A brief
consideration of the world around us will indicate
that there is a wide variety of applications of pipe
flow. Such applications range from the large,
pipeline that carries crude oil, to the more complex
natural systems of “pipes” that carry blood
throughout our body and air into and out of our
lungs. Other examples include the water pipes in our
homes and the distribution system that delivers the
water from the city well to the house. Numerous
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hoses and pipes carry hydraulic fluid or other fluids
to various components of vehicles and machines
(Bruce, 2002).

The flow of a fluid in a pipe classified
depended on Reynolds number eq. (1), into three
types, laminar flow Re<2100, transitional flow
2100<Re<4000, and turbulent flow Re>4000[10]. In
this paper a treatment of pipe under fully developed
turbulent flow see Table 1. That is, the velocity
profile is the same at any cross section of the pipe.

Re = P2
(DRe =2

The properties of Fresh water is using in this
pipe at (20°C) are; dynamic viscosity=1.00E-3
(N.s/m?), velocity of sound in water =1481.328
(mfs),  density=  998.3298(kg/m®),  specific
weight=9.783(KN/m? (Eugene, 1996)

Depended on the result As shown by Sgard
and Atalla (Durant, 2000), show when the Mach
number (M) eg. (2), less than roughly 0.5, there is a
little influence of the mean flow velocity on the
natural vibration characteristics.

M=UJC (2)

Where U is a typical measure of flow speed
and c is the speed of sound in medium (Pijush,
2002), compared the result of Mach number in
Table 1, with results of reference (Durant, 2000).
the internal presser {p;) can be calculated without

the fluctuation waves of turbulent. Hint: The Mach
number range used in this study is M= (0.003-0.06)
<0.5.

2.2 Vibration Analysis Modeling

A vibration system is a dynamic system for
which the variables such as the excitations (inputs)
and responses (outputs) are time-dependent, the
analysis of a force vibration system Fig. 1 usually
involves derivation of the governing equations,
solution of the equations, and interpretation of the
results (Singiresu, 2005).

2.2.1 Governing Equations of Modeling

A derive the governing equation of motion for a
thin pipe, assume, isotropic, and homogeneous
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shells of constant thickness have neutral surfaces,
just as beams in transverse deflection have neutral
fibers (Werner, 2004), Fig.l, its content
uncompressible  fluid (fresh water) in fully
developed turbulent flow, to derive the equation of
motion can by using the energy method (Hamilton’s
principle) eq. (3), (Werner, 2004).
LT
aj(ff—UH-t—;n}dr:ﬂ

tp

(3)

Or in other simple form eq. (4):

L.

Cn Cn "
aj Hdt—é‘j Udt+é‘j W,dt=0 (4)
ty ty ty

Where K kinetic energy, U strain energy and
Wi, are all energy input to the system, & is variation,
operationally equivalent to a total differential.

For simplification analysis harmonic motion
of model can by assumed the Egs. (5, 6):

uy(x, 8, t) = U, (x, et

uy(x,8,t) = Uy(x,8) et (5)
uz(x,8,t) = Us(x,8) et
Where
NIy, g
Ux,8)=U CGS(T) sin (?)
U,(x,8) =V sin (n_?rx) £OS5 (:rl_ﬁf) (8)
R L 2
Us(x, 8) = Wsin (M—M) sin (n_&)
R L 2
And Boundary condition eq. (7):
u,(0,8,£) = U,(0,8) =0
u,(0,8,t) = U,(0,8) = 0
uafﬂ, g,t) = UE(G,B] =0
ui(LJ 3.1 t} = Uj_ (LJ 8} = ﬂ (7)

uy(L,6,t) = Uy(L,6) =0
u3(L,6,t) = Us(L,6) =0

Now eq. (4), content three parts represented all
energy components on any system, also the pipe
model content a three parts:
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Part one: The strain energy of general neutral
shell surface Fig.2, can by calculated from eq. (5)
(Werner, 2004), Fig.2 shows the Cartesian
coordinates system (x, vy, z), and curvilinear surface
coordinates system for small element (e, e, e5).

For model of circular cylindrical shell shown in
Fig.1, the curvilinear coordinates
arey = x,and a; =8, the lines of principal
curvature are in this model parallel to the axis of
revaluation, then B, (R;) = co,and Rg{R;) = a,
also 4 =1landB =a . For another detail see

reference (Werner, 2004). The strain energy stored
in one infinitesimal element that is acted on by
stresses and strains is eq. (8), (Eduard, 2001).

Lin
= j
72

0o

Also

[Nty + Moty + Spig + Mo, + Mo, + 208,14 B df
ty Lln

L
JUdt 0= J” Mg, + Moty Spyg + T, + o0+ 2HEp A B dB dxdt ()
f 0o

by

Where:
18ul w284 w3 18uz , uldE _u3
1= 1%z "asee ' 2T Fae ' asox Ry’
_B# (u2)+.»1 a (ui)
2= 05:\8) "Bas\ a
18 /ul 18u3y 1 dA/u2 18u3
4= a5 (350 ) * 2500 (5, H 5 30 )
Adx\Ry Adx/ AB@G\R, B a8
B [16(u2+1ﬂu3) 165‘(u1+1ﬂu3)]
2~ |Bag\R, B as.) ABax\R, A ax
oo [ e ms 1aBau3+afu3+1Aa(u1)+1ﬁa(u2)
BT laB\ 408 ax Boarag a8 R BAB\A) B Adx\B

Eh Eh
N = 1-2 (81 +ve) Ny = 1-2 (s2+va),
Mj_ = D(Xl + T-"XQ} ! Mg = D(Xg + 'E."’Xl} )
5= En H=D(1 X5, D = ER?
T2+ 2R T Ve Y= pa—vd)
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The solution of strain energy (part one) eq. (9), is:
Us dr‘

] d6 dxde

Let

Tz 5

Uddt + J Usdr+f
t A

r¢
U3ds + J (10)
2

: h f

Where

o[ ems L

aEh E'ul,l
1— vt

v aEh (ﬁ fuly

v aEh (Bulduly NE .
—— ()@ m;-oL L L (= i drie (1)

Rl—L

=

EJ: U2 dt= —_rchr f f
10
=

u2y*
J(.:.radr—?{lﬂl f J‘J‘ ]dﬂdxcir

uEJ‘

Lo i ﬁddlﬂu'.l ko 1ul
+2[1+1':|D.L .L .L ﬁI ﬁ g B dedt + (1+LIDL _L L ( ] df drdt

LT

(>4 ) do dxde

10023 I T Eh Ty
o - Lo”{ 3-idem;+“_.o[ H W g drt
ndf o 1-v ] y &

1duidul akh uldul

—_— j—— 1)
- _LDLLL =i 1)

(13)

L4

5!“.:;4 dr—l?{l_“ f ff (“3 | dodxa

17'?1pi1, j J JrJr (r:: a;ﬂ? aﬂ_:ajdﬂdxdr
4
12?51 “;“L f,, f,, (El' ai-}:i) 49 du dt
2 ty L pIT P
12|‘LE1Ef r*]'}L J(,, J(,_, (1"%’%%’%)“ dxdt
2 ty L pIT 3,
+12r?1£: “u‘;frl f,, f,_, ("%‘ agﬁgi*)dﬂ dxdt
3 t; L pIm T,,q% &
—-—Esff ‘*"T'GL L L L(%*E) dg dx dt
E ty L oI 2,44,
12;151 ‘nﬁfrl j,, j,, %’aaf%df’d’“”
3 t; L pIT .
12?151 *.5L L L %(EL;E] d6 dxdt
2 t; fL I 2.2 A,
et |, [, e g 0o axee
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17?15hgl Iﬁ[ {L :ZﬁdEZé?Jﬂmd 1?;1:*!“ [1{ Jn Lé%ﬁﬂf;}dﬂhd
o] | e m:: e
] 2] g [ [ e
A
o [
T phplplt g A
g || e w
= =
5! us dt_lf)gj_ui-L i f f fl u_.] df dxdt
1??1pi-L ) _J( f f : E;: aa‘;adﬁ'nﬁxdt
s [ [T 2% R v
12r;El—pi-‘“"jﬁjrl L fn ul %Eg’%dﬁ“dt
st [, [, I v () ao e
2 t; pL pIm 7
12?155 =) ] J(rl L L ! E;: ﬂaf dé dxdt
- 12?15_#:_"_1‘:' 6 J(: f;f:u% aa*;a a;? dé dx dt
E t: pL pIm 2 o &
*qu*ﬁf [, [ & (57) doaree
2 t; oL pIW 52,
+%qﬁfr fn fn %ﬁfdeﬁdr
E t; L pIm 32,
+%zﬁfh L L r%"'ﬁde dxdt
2 t; pL pIm .
E t; pL pIw z,
2 ts I 7,
- 13?15il—"—L..:, 6 _J(r1 L L E Z;ﬁ ?: df dxdt
E t; I 2, z,
2 t; pL pIW IR
3 t; pL pIn 2 o &
2 t, pL pIx I,
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of L)%

aEh? 82u3 E“uE

A pTre —dé dedt  (15)

Iz

" RER? ﬂ‘uS
JUE dt_(ﬁ{l {1 ) —-rof f f (aea df dxdt
CarE R h i)
”(_"5(1-1-‘1 [l—I,JIF]DL L L (E’ = M’)dem

aff?

§1-1) ()

’ MW
+( [l—LJJ]EDLLL(EJdMIdE

Part two: Return to eq. (4) , The Kinetic energy of
one infinitesimal element is eq. (17):

Ll

1 fuly”
Eth ]dﬂda
R

L2 LI

DH ]dm Ua]dm

With Applying Hamilton’s principle again gives eq.
(18):

1

1
2

k= S i)

h Lil Linm Lin

0ot U] U] ] \
o(xdr:ipmm (EJ dﬁdzdﬁéphﬁ{ H (EJ demﬁipm[ ” (EJ dird (1)
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4 B0 Loo L
We examine the double integral of eq. (18) by parts
with boundary condition eq. (7), therefore becomes

eq. (19):

i

i it

Lin

1
(Gu) do drde + - i H[
L0

Rl — (oul
pe P (fu2) df dudr
h Vooh in 1
1 i3
m ?:r i) b )
A1)

Part three is divided to two components: firstly the
variation of energy introduced into the shell by
distributed load components in the @y, a;,and ag

directions, namely are gy, go,and q (%} , €g. (20),

see Fig. 3.
Wing = er (gyty + Qalia + Qo) A, Aod6 dx (20)
DD
For a cylindrical model with internal load,
g1 = q; = 0,and g3 = P, eq. (20) become, eq. (21)
Wiy = fj (gatiz) A, A4.d8 dx (21)
Do



Ali Fahad Fahem

If the pressure is variable along the cylindrical
coordinate, depended on the a;-axis eq. (22),

Gy =Fyy =FPyy_p—AF (22)
And
AP = f EEVERCIT  geo Table 1. (23)

Secondly the potential energy is added to the
wall elements are from fluid flow. The water
molecules adjacent to the pipe wall do no move; in
other wards they have no velocity, and consequently
no Kkinetic energy. However, as the molecules
approach the wall, they do have kinetic energy
(Matthem, 2003). When the particle of water draws
near the wall, converted all kinetic energy to another
form of energy, which converted to heat and
potential energy add to the pipe wall (Pijush, 2002).
For simple solutions assume the heat energy equals
to zero. Then all energy from the flow through
passing in pipe is converted to potential energy
(potential energy of flow W;,,-).eq. (24),

velocity

& dx
2Dpfiyie

Sub. eg. (22) into eq. (21), and sum with eq.
(24) (over all internal energy transfer from flowed to
solid) eq. (25):

(velocity) !

1Adﬂda+J rfo—— i
0

(15)

ol

Dpsmg

With Applying Hamilton’s principle gives eq. (26):

-

I Lim 111
Mdr PMD[Haaadﬁdxdm H[ J,adﬂdxdr
Lol [N

l 1

==

1

1

(velcty)
?D/ijd

+

i (%)

[L(G

TTir)
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e = 0.002 mm(stainless — new)(jamal, 2002)
velocity : averag velocity of flow
Priuig: density of fluid flow
d:  flowratiof fluid flow

The equation of motion must be solved to find
the response of systeml, U5, U5 : Sub. egs. (11, 12,

13, 14, 15, 16) into eq. (10). And by Solving eq. (19
and 26) and substitute all into eq. (4), gives:

J)-(remz) o or i

5 (5%

Ful
ae?

a ot

an

(velocity)?

Y
*)
Eh

[; L
1—w) 1% Bx

5+

Jdx . Bx

}]]] §u3 df dx dr = 0

(3G
)

d
ag

(1

|[_

dx

RS
238

Eh
(1—2%)

(

g
dx

- o

(5)) +

'M}H

¥

b a@
12adfd

& ul
ax?

vh?

~)+ (
+( 12 aﬁ'(
) (%)

(_
()-
)

XEE

12|:|J ax

e
120736

vh?
12a

dul
(5

8% ud’

=

8% u3’
Eﬁ‘ﬁx

2Eh
(1+%)

‘Bul
ax

&)

(28)

4E‘x

du2 dff dx dt =0

Where
¥:  spisifecwight of fluid
f:  factor from moduy chart (stephani, 2009)
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[ ol - e ) el
+12n1 ae(a:uai ) (1;1h &(63:3J)+(1za1h }ai(aiuaae”
120 :! ):ﬁ (Eagaj)+(1za T )aaﬁ (&&;awiz:ih! )ai(afﬁﬁaﬁ”

E
( I f g 3
+(12n w:. ):; (aai;awuf : )(33:3\”+(1zn11)(%)+(12E:=)(%D
(

+

+

2 E’uﬂ\) ( G F a=ua‘)+(' Wl (F3) H I F ama“)
12(1- 1) 367 ax= 12(1-1%) ﬁx‘J 12(1-r) byt &x‘J 11-w) 3 aﬂiJf
1 G ﬁ"ui"

1-1) a = aea QB8 dxdr =0 (29)

+

Since Jui is arbitrary, egs. (27, 28, and 29), can be satisfied only if the coefficient of dui is zero and
Therefore and rearrangements its Equations give:

P 2Eh i Full (1—w) (5l vl ul | v ao,p vt (welocigy) * -
'~-""“1}‘m{ﬁ[“ (FJJ’ ; (ﬁJ‘*E}*{aeax(?—ﬁ}}J—(f > J‘(?’f P F) (0

(ohiiz) - 25 +(ii =ua“)+(ii a=ua‘~‘)+(ii a=ua‘~‘)+( W8 a=ua‘~‘)+(vh=i a=ua‘~‘)+(i3 ama‘“)
IR TSR] |7 12086 | B ,I 12236 | 8x7 ,I 12236 | 8% ,I 1207861\ 85% )| T\ 120788 a-ﬂ=,|, 12a38 ﬁx‘;lf
: u3 )

! (::h’ § [&° usx‘)
+ —— —_—
; 12a86 4, dx7 J

( :
(wh® A (5Fud) Reog (ua\y (R 8 [5Fud\\ vkt e [ Fus\\ 2(1-v) /RN 8 [rus’)
+ 358 (5 ) | * | e (ﬁJ)*(ﬁﬁ (=) Eﬁ(?J, S (‘(EJE':%J)

Coa w8 Auzy) ud "R oF A\ [ wht @ gouny)  RT A seumy ) [ ekt @ fBuly
_(\"’ E(.E}J _(\ﬁ{ﬁ}) B (_ li 38 }) +( 1207 86 [ﬁ}) +(\12n’ﬁ[ﬁ_}f} +(\12a’ﬁ(ﬁ})+ (\12513 ﬁ[ﬁ})
wh® (Buzy  2(1—+") {a & (fuz 21— W 8 sBuzy )
i) T TiE e (%E(ax}) 1+ ((EJE(_::}) =0 (31)

3
+(i #*u3 “)+('i a-*ua“)Jr fud) a=u3‘+('i a=ua“)+(’1 u3 ‘“)+' a-*uaf)
a7 |3 aﬁ“}l, A J .3-:=,| ! ﬁx‘J a7\ B J a2 E‘E‘Ex‘,l, . ﬁx‘;lf

R AR N U L AT - Vet VY| wBuly Buzy )
+(va(52) )+ (2 (5m) )+ (o) (5w )|+ 555) -G "‘“3}] = 2P e
~ These are the general equations of motion of Ky U — ({1— ::?'Ph LU:JFH::‘) v — KW = 0 (34)
thin pipes in three dimensions. To obtain the ZEh

frequency and mode of the model, use egs. (5 and .
6), to solve equations (30, 31, and 32) and Ky U—EypV + ((pho®) — Eg)W =F2 (35)
simplification form gives egs. (33, 34, and 35):

Where

([1 +v)ph

SEp @ty )U+K1 V+EKaW=F1 (33
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(1+v) aap {velority) *
B="2m [(f D ) B (Tf Dp e

or

FI1=F3F4—F3F5+(w=a)’

F3=0 g (F 820 pg o (}rf

Do
& 1 an®r® N nt
U="n-y If )
X nim (1 v ]
7L 1 -
K 1 vam
BT L

5 . 4Br;:+4r:,' 'LE)
17 4yt YT RTRE nxl’

n*rth*
Kog :TTI:3[1+'LI+R+ 4(1 —v) + B;)
Assume

';'T4
Cy= = (1+a)

C 1T (Z+a)+ ?[1_]'.:'\
T —— & ] & -
< 4g- “ [1+1',|f

c LY (2+1) =¢ vl?
T 16 (1+v) n: a'n’4

- L1 — 1)
4T % 2ER(1+ V)

= 2vn nER
qT Ll — v

°)

2)
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2Eh  ah? n*
K!!:U_—'L'T 1z |::1+'I-|—r|il:‘1+ CH+C-;|_|::4

(36):
:;:,_1 w® + Ky Kz Hy u Fi
Koy L Eo, {P]= o (36)
Tk W E2
K., K. (phe® ) — K,

To obtain the natural frequency and modes, we
set F1 = F2 = 0gives eq. (37):

Kz 4
[z(edl=0= Ly Ko (37)
iEk
Kz ':.'5'}' w:}_H”

And determine eq. (37), gives:

SR (1 7)Y |
(i),

4et
grhlv+1) 11— ) fhl1—w") )
+( 2z Ko — 40t ot 2 "-'::J[‘;"
s plv+1) gli—) pl1—v)
+lehknky _THHH!! _T":n"f:: _TH::H::
plv+1) |
- e Kyl —phka k::)lf'ﬁ'!

—Kyokyikay — Koo Kyg oy — Ky Koo Koo
+Epo Ky Ky + Kyplop Ky + Ky Ky =0 (38)
Or

B+ Ad+c=0

To calculate the frequencies use the mathematic
method in reference (Murray, 1968):

Where:
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A1)
3

l-' R L 1T

el &

|$ Ty,

N =—

(39)

r I 8
ey, MK {17 B}
33 = 1133 |I

re . -
[ﬂﬂ'l':|.1R1: -
PP |
— Ky aHzy = Byl — P Ry Rz

(40)

l..c :"._1.‘_1:-_‘1_[.‘_,-,'
o

(= Rahy g Koy = By K =y o Hp g By
+.r-?.k‘-.r# +.r#.r<‘.r#+.r#.r<‘.r#

(41)

i

T
Al = i(zﬁ'—;———‘-J |:-|:|:-'.-|,( cos"1( —n::':'+

(42)

e

(2€,% — 80,0, +27C;)

[ (1 "‘-. 2
s4| (—|z(3€,—cH) j27
(:Hl ’ : f]l )

The natural mode component amplitudes are
obtained by Solving (U ) and (V)in terms of (W),
gives:

[{% W’-ﬁ!_} + iy

H!J

H:IE

=] @9

rd g

fab }+H“

Where i=1, 2, 3. Thus:

R T \

o (pugileied

-413[ i +-'¢::I.'—-"?1:-"f:3
., = W, 3 —
In plestiwp? e f-wdeal o

| e +.r'511‘.||_. 2¢ +.r¢::}|—.r-f1:.r{:1
(44)
:I.)n.l:

Hz | +-'¢11.—-'¢13-'¢ 1
F = -
Vi = W, ] (45)

L l-'.;! [l
g

+.r<‘ || +R::J|—R1:R:i
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Win: can by assume unity.
Substituting eq. (44) and (45) into mode eq. (5)

gives the natural modes eqs.(46, 47, 48), (response
of free vibration)

o

-:"”::] —E Mg

e = (o), ()
| (46)
¥ 'ux AE
U, lx. 6) = W — *‘r.-l:l -::m..r..";'. - 2 '.'_ sin lr?} sin {%}
(47)
U, lx ) = 1 sm{ A } cos f—} (48)

To obtain the total response of the system under
variable turbulent velocity can be the particularly
solutions are:

Uf = Ulsinwe

Vf = Visinwe
(49)

W1 sinwt

Wf =

Now Sub eq. (49), into egs. (33, 34, 35), and
using the adjoin method (William, 2000), to obtain
the response under variable velocity gives:

[ZL

I
1 ﬂ adj[Z(wy i—::
vip=[2(@)]™ 0 =—r (50)
w1 F2 o
Where
Z11 Z12 Z13
adj[Z(w)] =221 222 Z23 (51)
31 Z32 Z33

Where

puwi(—r+1)

Z1l=(p h w'-Kg) ( o +x::)—xnxu
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21 =-KEulp h wi-Kg) + KKy

pm:[—r:+1]

Z3l = —Kﬂ( e +Eay ) + gy Ko

]
-
(%]
1

—Kpa(p b w'-Ky) + Kk

By |F-’nln_

+R;1\|_Rn'1"1:|
4

(B5) U, (x.8) = Foey [Hr;!

i ':I. 4-1 .n.l|-||

o e e

':|.:|.||.

ac )

fp s i *

tys |- Koaksn
F

+-"5:|.:|.| Hyghzy
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3= (F{Hl:'w:.

Ze

A pm:[—r:+1:| A
< .Kn)( yz) - Kok

Substituting eq. (37, 38, and 51) into mode eq. (50)
and (49) gives the force modes egs. (52, 53, 54)
(Response of force vibration):

1 o - ;

Uf = (z11= F1+Z13 = F2)sinwt (52)
. 1 - - 3

V=G (z21 = F1+ 223 = F2)sinwt (53)
| - - ;

W = (Z11 = F1+ Z13 = F2)sin wt (54)

The final equations of the response of thin pipe are:

cos (?j cos (FE‘] + Iz_w‘ll

(56)Uy(x.8) = ¥ l[ﬂi"ls‘ludnl FE, ||ﬁ--'n| i)

(z11= F1 + 713+ F?]smmr]

in (2) +=— T (221 FL+223 = F2) Slnr.ut]

(E7)3(x.8) = ey [Wy sin("2) cos (2)+ = Zi (711 = F1+ 213« F2)sin wt]

3- Numerical Analysis

ANSYS Workbench-12

the interaction between the fluid and the structure.
In this research, the numerical

variable velocity of turbulent. The model

analyses are:

o Generate shell model, see Fig. 5
e Generate fluid model, see Fig. 6
e CFX mesh fluid model, see Fig. 7

(CFX-ANSYS),
commercial code have been developed that model

solution
packages, ANSYS Workbench-12 has been used to
simulate the behaviors of thin cylinder model under
of
structure and fluid simulation can be built by Multi
step, see Fig. 4, the procedures of numerical
analysis are passing through number of phase

952

Construction CFX-ANSY'S model, see Fig. 8
Solution a fluid model under CFX package, Fig.
9, and show the simple result. i.e. velocity result,
Fig. 10

Mesh of pipe structure ,see Fig. 11

Construction boundary condition in quarter model
(symmetry), simply supported see Fig.12
Imported the important parameters from CFX
solution of fluid modal, see Fig. 13

Construction static model, see Fig. 4
Construction modal analysis(free response), see
Fig.4

Construction Response Spectrum (force response)
, see Fig. 4

Construction Interface through all above models,
see Fig. 4
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4- Result s and Discussions

In this paper, an investigation has been made
into the effect of variable loads represented by fluid
flow on the vibration characteristics of thin cylinder
edges elastically restrained simple support using
FEM and Hamilton method (energy principle).
General new frequency equation with and without
including the effect of variable loads has been
obtained. This equation is used to investigate the
effect of variable loads on natural frequency for
different classical parameter of flow. The approach
is simple and allows the solution of a rather difficult
elastodynamics problem. An advantage of using
FEM simulation for complete picture of the
deflection fields is obtained. The verification of
variable loads and natural frequency are obtained by
using Eq. (33) and Egs. (42, 43, and 44), with FEM,
see Figs. 16 and 17. Figs. (18-27) shows the results
obtained analytically for thin cylinder in different
states (that has been calculated).

Figs. 18, 19, and 20, Show the displacement in
longitudinal, tangential, and normal to surface (i.e.
x,8, and U3) respectively. at the selected line Fig.
21. For the first three mode shape study at Free State
(without flow), we notice the displacement at U3
direction is clearly, but contrarily at x, and &
direction. Also we notice the failure state firstly can
be start under longitudinal direction.

Figs. 22, 23, and 24, Show the displacement in
longitudinal, tangential, and normal to surface
(i.e. x,8, and U3) respectively. At the same

selected line Fig. 21. For the first three mode
shape study at force state (with flow), we notice
the displacement at tangential direction & is

clearly, but contrarily at x, and normal
direction. Also we notice the failure state firstly
can be start under torsional load.

Figs. 25, 26, and 27, Show the
displacement in direction of normal to surface
(U3), for mode 1, 2, and 3 under different
velocity of flow at the selected line fig. (21). we
notice the displacement at U3 direction is
clearly and increase when the velocity
increasing. Also we notice the failure state
firstly can be start under mode three when the
velocity is over 10 m/s.

Figs. 29, 30, and 31, views the relation
between transmissibility factors with frequency
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ratio, at the same selected line fig (21), which
shows three phases appears respectively. The
transmissibility factor which calculated for
modes 1, 2, and 3, and
w,, where i =n = 1,2,3. we notice at same

selected line a three phases and motion are
appears oscillatory motion, non-oscillatory
motion, and oscillatory motion , which on the
longitudinal, rotational, and transverse
directions.

5- Conclusions

The general energy method (Hamilton
principle) was employed for analyzing the
vibration characteristics of thin circular pipe
with and without including the effect of variable
loading because high  velocity flows.
Comparisons were made with finite element
results. The following words tried to explore the
general conclusions extended from the entire
present work

1. The new equations (egs. 42, 46-48, 55-57)
of natural frequency, displacement with and
without loading are obtain, and can be
applied on any thin circular pipe under
turbulent flow for any liquid, which gives
good agreement result.
. The vibration in perpendicular direction U3
of the pipe shell gives clear and regular
shape of mode shape put other longitudinal
and circulation direction are reverse.
According to the result showing in the
previous section. Detected the maximum
displacement appears in  longitudinal
vibration state, and because the model have
limited movement in longitudinal direction, a
maximum residual stress in solid structure are
generate.
The failure criterion in rotational vibration is
increase when the velocity of flow is
increasing.
When the velocity of fluid is increased the
displacement of all mode shape are increasing,
also the failure criterion is increasing and
appear in third mode shape when the velocity is
over 10 m/s.
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6. The effect of frequency ratio appears on
longitudinal and transverse vibrations and the

critical value at (mi = 2) , put at rotation
TLL

vibration the critical value is (— = 2.5) it

G
follows the failures may occurred in
longitudinal or transvers displacement large
than in rotational displacement.
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Table (1): Re. and Mach number

Vyater | diameter Re. Mach number Friction
(m/s) | of pipem | number M (e/D) | factor f
5 0.3 1497494.7 | 0.003401361 | 0.00015 | 0.014
3 04 1996659.6 | 0.003401361 | 0.0001125 | 0.0135
3 0.5 24958245 | 0.003401361 | 0.00009 | 0.0133
10 0.3 2994989.4 | 0.006802721 | 0.00015 | 0.0136
10 0.4 3993319.2 | 0.006802721 | 0.0001125 | 0.0134
10 0.5 4991649 0.006802721 | 0.00009 | 0.0122
20 0.3 5989978.8 | 0.013605442 | 0.00015 | 0.013
20 0.4 79866384 | 0.013605442 | 0.0001125 | 0.0121
20 0.5 9953298 0.013605442 | 0.00009 | 0.0119
100 0.3 29949894 0.068027211 | 0.00015 | 0.0128
100 04 39933192 0.068027211 | 0.0001125 | 0.0121
100 0.5 49916490 0.068027211 0.00009 | 0.0118
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Fig. 1: Thin Pipe Model (U8=U2; UX=U1; U3=U3)

Table 2: Properties of Pipe Model

Journal of Engineering
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Length Diameter Thickness roughmness
mrmn mm e € mn
10000 400*+133 10 0.045
Weight Poisson’s Modulus Modulus

density ti of elasticity of rigidity
(g /i) ratio E Pa G Pa
7750.372 0.28 189.6 741

Fig. 2: General neutral shell surface

(Reference surface)
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Fig. 4: Flow Chart of Numerical Solutions

Fig. 5: Shell Model
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Fig. 7: Construction of Fluid Model Fig. 10: CFX Result-Velocity Profiles
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Fig. 8: B.C of CFX Solution Fig. 11: Mesh of Pipe
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y-axis

Translations: x=0; y=free; z=free /

Rotations: Ry=0; Rz=0; Rx:V

[Translations:

fixed line

[
w
Translations: y=0; x=free; z=free Il. v
- Rotation: Rx=0; Rz=0; Ry=free :
m—m:..s‘u_;;w
Fig. 12: B.C. Numerical Model Fig. 15: Response

inernal pressure KPa.

X-Axis of pipe m

=i=Diam-03m; vel -10mfs Fq.22)  =OmDiam.~0.4m; vel -10m/s Fq.22)
=mDiam=0.5m; vel=10m/s Eq.22)  ==Diam.=0.5m; vel.=10 m/s [Ansys)

. . Fig. 16: Verification of Distributed the Internal
Fig. 13: Importing Presser Load Pressure

Frequency (Rad./Sec.)
- 88 88§88

=
~—
.

f ) 10 12 14
Mode No.

== i5ys-Frequency(Rad/Sec.) == Solidwork-Frequency(Rad,Sec.|

=O=thearytical Fey.{42)-Frequency{Rad/Sec.)

Fig. 14: Response Fig. 17: Verification of Natural Frequency
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Displacement {mm)

05

X-Axis of pipe at 45deg.

=(m=E0.(48);U1- Displacement at mode 1 =fk=Eq.(48);U1- Displacement at mode2

== E0,(48);U1- Displacement at mode3

selected line at 45 deg.

Fig. 18: Longitudinal Displacements (free)

Fig. 21: Selected Line for Study

=(=Fq.{50);U3-Displacement at mode 1=fli=Eq.{50);U3-Displacement at mode 2
== Eq3.(50);U3-Displacement at mode 3

Fig. 20: Transversal Displacements (free)
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Fig. 19: Angular Displacements (free) Fig. 22: Longitudinal Displacements (force)
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Fig. 28: Velocity Profile in Internal Pipe-CFX

Fig. 25: Transversal Displacements of Variable
Ansys
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