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Abstract

In this study, the dynamic modeling and step input tracking control of single flexible link is studied. The
Lagrange-assumed modes approach is applied to get the dynamic model of a planner single link manipulator. A
Step input tracking controller is suggested by utilizing the hybrid controller approach to overcome the problem
of vibration of tip position through motion which is a characteristic of the flexible link system. The first
controller is a modified version of the proportional-derivative (PD) rigid controller to track the hub position
while sliding mode (SM) control is used for vibration damping. Also, a second controller (a fuzzy logic based
proportional-integral plus derivative (PI+D) control scheme) is developed for both vibration damping and hub
position tracking. A comparison is made between the performances of these two controllers. The Hybrid
controller with PD and SM shows better tracking behavior than obtained from the suggested fuzzy (PI+D)>
controller for a single link flexible manipulator.
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1. Introduction

Many of today's robots are required to

perform tasks which demand a high level of
accuracy in end-effector positioning. Most robots
cannot directly sense this position and instead
calculate it using the joint angles and forward
kinematics equations. This technique assumes that
the links connecting the joints are rigid, and thus
many robots have large, heavy links which behave
like true rigid links. This prevents oscillations in the
links which cause errors in the calculated end-
effector position. Since the links are heavy, much of
the joint motor's power is expended moving the link
and holding them up against gravity. Also payloads
must be kept quite small compared to the mass of
the robot itself, since large payloads will cause
sagging and vibrations in the links which create
uncertainty in end-effector position. This results in a
situation where these rigid robots are very
inefficient and slow. In an attempt to solve these
problems, the field of flexible robots was created,
Natarajan et al (1998).
In order to fully exploit the potential offered by
flexible robot manipulator, it is desirable to have an
explicit, complete, and accurate dynamic model.
This model must consider the effects of structural
link flexibility and properly deal with vibrational
behavior. Different schemes for modeling of the
manipulators are studied by a number or researchers
as described below. The mathematical models of the
manipulators are generally derived from energy
principles and for a simple rigid manipulator, the
rigid arms store kinetic energy by virtue of their
moving inertia and store potential energy by virtue
of their position in the gravitational field, but the
flexible arms store potential energy by virtue of the
deflections of its links.

To include bending one may often use the
Euler-Bernoulli equation which ignores shearing
and rotary inertia effects. These two effects may be
incorporated using a Timoshenko beam element
which generally must be used if the beam is short
relative to its diameter, Book et al (1990). In most
models of flexible manipulators Euler-Bernoulli
beams are used.

The robotic systems with flexible links are
continuous dynamical systems characterized by an
infinite number of degrees of freedom and are
governed by nonlinear coupled, ordinary and partial
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differential equations. The exact solution of such
systems is not feasible practically and the infinite

Dimensional model imposes severe constraints on
the design of controllers as well. Hence, they are
truncated to some finite dimensional models using
assumed modes method (AMM), finite elements
method (FEM) or lumped parameters method.

In the literature a number of techniques for deriving
equations of motions were used to develop the
dynamic equations of motion of flexible link
systems. Three main techniques were used by
researchers, namely: Newton-Euler approach |,
Boyer et al (1996), Lagrangian approach , Geniele
et al (1997), and Hamiltonian approach ,Benati et al
(1991).

The control difficulty of flexible arm is due to the
non-collocated nature of the sensor and actuator
positions which results in unstable zero dynamics.
In other words, the nonlinear system is non-
minimum phase. Therefore, the system has an
unstable inverse dynamics. The non-minimum
phase property makes exact asymptotic tracking of a
desired tip trajectory impossible, if one employ
causal controllers. Furthermore, the robot should
handle a wide variety of payloads, the robustness of
the control system becomes very important , talebi
et al (1996).

The control strategies considered in this field can be
divided into open-loop and closed-loop methods.
Open-loop control involves altering the shape of
actuator commands by considering the physical and
vibration properties of the system. The main source
of vibration in the flexible manipulator is the
motion itself. Thus, input torque profiles are
generated by minimizing input energy at system
natural frequencies, so that vibration in the flexible
manipulator system is reduced during and after the
move. Many types of shaped input strategies are
developed on the basis of extracting the energies
around the natural frequencies. These are, Gaussian
shaped input, low pass filtered torque input and
band-stop filtered torque input. While closed-loop
control uses measurements of the system states and
alters the actuator input in order to reduce the
system vibration, Azad et al (2003).

A number of feed-back control strategies have been
proposed in the literature for the end-point
trajectory tracking in flexible manipulators. Book et
al (1975) and Hasting et al (1987), employed linear
control theory, while Singh et al (1986), De Luca et
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al (1989), and De Luca et al (1991) made use of
nonlinear decoupling. They recognized that a multi-
link arm could not be controlled based on their
approach because of nonlinearities in the dynamics
of a multi-link arm.

Tang et al. (2006) focused on tracking
control problem of flexible link manipulators. In
order to alleviate the effects of nonlinearities and
uncertainties, a combined control strategy based on
neural network (NN) and the concept of sliding
mode control (SMC) was proposed systematically.
The chattering phenomenon in conventional SMC is
eliminated by incorporated a saturation function in
the proposed controller, and the computation burden
caused by model dynamics was reduced by applying
a two-layer NN with an analytical approximated
upper bound, which was used to implement a
certain functional estimate. In addition, the
Lyapunov analysis can guarantee the signals of
closed-loop system bounded and the online NN
adaptive laws made the system states converge to
the sliding surface.

Alwan et al (2008) suggested the
dynamic modele and control; of a robot with single
flexible-link with revolute joint, which rotates in the
horizontal plane. The dynamic equations are derived
using the (assumed mode)/Lagrangian formulation,
based on Euler-Bernoulli beam theory. Both the
rigid degrees of freedom and the elastic degrees of
freedom of the system are treated as generalized
coordinate. Although the equations of motion of the
system are highly nonlinear and coupled, due to the
dynamic model derived in this work takes into
account  the coupling effects between rigid
body motions and elastic deformation. The inverse
dynamic method is used to present the Trajectory
Control of Flexible Robot Arm; the desired position
of the end point of the manipulator is given versus
time, and the required joint torques are determined,
The main difficulty is that the numerical solution of
the inverse dynamic problem of flexible
manipulators normally diverges. The computed
joint torques can be used as feedforward controls
which minimize the work of the feedback controller
needed to compensate modeling errors.

In this work several control schemes have been
suggested and simulated for step input to possessing
interesting nonlinear and non-minimum phase
features for one flexible link manipulator.
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2-Dynamic Modeling Of A Single Flexible
Link

The schematic of a planar single-link flexible
manipulator is shown in Fig. 1. Where (X , Y) is an
inertial coordinate frame, and (x , y) is the
coordinate assigned for a flexible link moving with
instantaneous Center of Mass (CoM). 6 w(x,t), ¢,
and t represent the hub angular position, the
deflection along the arm, the length of the link, and
the torque applied to the hub, respectively.

Single link flexible arm modeled as an
Euler-Bernoulli beam in rotation. At one end, the
arm is clamped on a rigid hub mounted directly on
the vertical shaft of a DC motor, the other end is
free to flex in a horizontal plane, and has a mass mp
as a payload. It is assumed that the length of the
beam, € is much greater than its width, thus
restricting the beam to oscillate in the horizontal
direction. Neglecting the effects of shear
deformation and rotary inertia, the deflection of any
point on the beam is given by the Euler-Bernoulli
beam equation Thomson (1981).

The Euler-Bernoulli beam theory and the
assumed modes method can be used to express the
deflection w(x,t) of a point located at a distance x
along the link as:

wx, 1) = D" 4(x)8(1)
(1)
where ¢,(x) is the mode shape function and HOEN
the time varying modal function and n is the number
of finite modes.
The absolute vector of a point along the link

is described by:
P Px| cosd —sinf || x
__py " |sin@ cosf ||w
B [ xcosO - wsin@}
| xsin® + wcosé )

In order to derive the equations of motion
for this system which is a combination of a lumped
parameter part (the hub rotation and the payload
mass) and distributed parameter part (the link
deformation); an energy-based method is the most
convenient, i.e. Lagrange formulation. The
Lagrangian, L, of the system can be determined by
substituting equation for the total kinetic energy and
the total potential energy (L =T — V).
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Therefore, the kinetic energy 7' and the potential
energy V of the system have to be computed.
I=T,+1,+7T, 3)

where T), is the kinetic energy contributions from
the hub:
1

. | !
Th =th9(t)2 + 7th0
2 2 (4)
Where "o is the deflection at the hub.From the
geometric boundary condition this is equal to zero.

T, from the link: is:
= [pha

0

T (%)

T2
Where
PP =wifr+x267 + 2w + Wl

Similarly, the kinetic energy associated with the
payload can be written as:
1 I S
T,=—m,w, +—J 6(t
P op 4 2P () 6)
Where "/ is the deflection at the end of the link
The potential energy of the link is
composed of two parts: the gravitational energy V5,
and the strain potential energy V, owing to the

flexure of the link Chapnik et al (1991),

V=V, +V, ™

Since the movement of the link is assumed
in the horizontal plane only, the gravitational energy
can be neglected. The potential energy resulting
from the elastic deformation of the link is given by:

¢

v, :%J-Elw"zdx

0 ®)

The potential energy V., of the system is

stored in the flexible modes and can be attributed to

"modal stiffnesses" K which are evaluated by
integrals over the length of the link.

Then the dynamic equations of the system

can be derived using the Euler-Lagrange. A system

with n+1 generalized coordinates ¢ must satisfy n+1

differential equations of the form:

dm_aL_
dt|og | 0Oq 9)
The computational details on various

differentials and integrals can be found in Manaty
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2008, results are a coupled set of second order
dynamic equations:

M(q;)g; +C(q;,9;) + Dq; + Kq; + g(q;)=U

(10)
M, (q) My(9) {9}{@,(%4) C,.,~(q,4)}+
M_/;(Q) M_[f'(q) 6‘, Cfi*(q7q.) C/]’(‘]aq)
e A HEEH
.|t + = T
0 fo 5[ 0 Kff (3‘[ g;(fl) 0 (11)

where r and f denote rigid and flexible part,
respectively. M(g;) and Ky are the positive definite
symmetric inertia matrix and positive definite
diagonal stiffness matrix respectively .

The elements (i=n+1, j=n+1) of the inertia matrix
and stiffness matrices for a single link robot with

one vibration mode take on the expression below.
3

Y4
m, (q)=J, +Jp +p?

my,(q) = ,Oj.x¢1 dx
my(q) =mi5(q)

4
My (@) =m, 87 + mydi + p[xy dx
0

/
ey = EI [ ¢ dx
0

3. Hybrid Controller

Similarly to most of the contributions in the
field, the proposed control method is developed for
the one-link flexible arm as a first step towards
general multi-link arms. The suggested control
approach consists of two sub-controllers; one is
slow sub-controller to tracking the desired input,
and the other is fast sub-controller to damp out
vibration. Using the dynamic model eq. (11) and
eq. (12), a hybrid controller is designed. The rigid
sub-controller will be built using the inverse control
approach (Augmented PD controller), while the
flexible sub-controller is sliding mode control
(SMC).
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3.1 Augmented PD Controller

The purposes of slow sub-controller are
tracking input without steady state error and
reducing coupling effect from flexibility. To design
the control u; for the n joint coordinates ¢,, infinitely
stiff links are assumed. The rigid body model for
the manipulator can be recovered from the n upper
rows of eq. (12), by setting ¢; = 0 for all (n, )flexible
0

links. This yields 9e =9e=9¢ =0 and the
equations of motion are then
M, (q,)§,()+C,(q,4,)+g,(q,)=u, (12)

Accurate measurements of joint variables, either
angles or displacements and joint velocities are
assumed to be available. If the tip location r, of the
manipulator is of interest, then

n=53,) (13)

d
the vector of desired joint coordinates - must be
computed using the inverse kinematic equation

-1
g = (14)
The well-known inverse dynamics control

method is chosen here, where the control Ur is
taken to be a function of the manipulator state in the
form;

u, =M, (q,)u +CIq,,9.)+g.(q,)
(15)
Because the mass matrix M, is invertible,
the combined system reduces to

g, =u, (16)
where “r represents a new input vector, which is
still to be chosen, for the system.

The approach

u, :_qur _KDC]r +r (17)
with constant control matrices Kp and Kp leads to a
simple linear second-order system,
qr+Kqu+KpQr=r (18)
where r is the reference input. Under the assumption
of positive definite matrices Kp and Kp, this system
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is asymptotically stable. Given a desired
d
trajectory 7- , one may choose
.d -d d
r=dq, +Kqu +qur (19)

_ 4 )
The tracking error ¢ = 9r ~ 9 then satisfies the
homogeneous second-order differential equation

é+K,e+K,e=0 (20)

Choosing Kp and K as diagonal gain matrices of
the type

K p=
K =diag{26,0,........ 26,0, 1)

results in a closed-loop system that is globally
decoupled. Each joint response is equal to the
response of a second-order system characterized by
a natural frequency w; and a damping ratio J;.

The method of inverse dynamics is
attractive because the nonlinear coupled dynamics
of the manipulator is canceled and replaced by n
linear decoupled second-order systems. However,
such exact cancellation schemes leave open many
issues of sensitivity and robustness due to
unavoidably imperfect compensation. These issues
are addressed in several books dealing in details
with modeling and control of robot manipulators,
e.g. Spong et al 1989. However the final control law
used in this paper is given by

u, =M, (q)u, +K,(q,.4,)+£,(q,) (22)
— .2 .d . d
u, =g, +KD(qr _qr)+Kp(QV _QV) (23)
3.2 PI - Sliding Mode Controller (SMC)

The flexible sub-controller should be

designed to damp out vibration. Sliding Mode
Control (SMC) is often favored as a basic control
approach, especially because of its insensitivity
property toward the parametric uncertainties and the
external disturbances. SMC are characterized by
control laws that are discontinuous on a certain
manifold in the state space, the so-called sliding
surface. The control law is designed such that the
representative point’s trajectories of the closed-loop
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system are attracted to the sliding surface and once
on the sliding surface they slide towards the origin .
However the major drawback in the SMC approach
is the undesired phenomenon of chattering because
of the discontinuous change of control laws across
the sliding surface. In practical engineering systems,
chattering may cause damage to system
components, as well as excite unmodeled and high
frequency plant dynamics , Kwatny et al (1987).

There exist several techniques to eliminate
chattering. PI-SMC approach provides an effective
way to resolve the chattering problem. In general,
the first step to illustrate the standard SMC is to
define a time-varying sliding surface, S(t), that is
linear and stable. The S(t) acting on the tracking-
error expression selected in this work, is:

S(t) = Aelt) + (1) 24

where 4 is a strictly positive constant, and e(t)is

the tracking error, while e(t) is the time derivative
of the tracking error e(t). Since the aim of this
controller is to damp out the vibration to zero,

Q/ (t) and q.f(t)

therefore are used instead of e(t)

and e(?) respectively, then eq. 24) becomes

St)=Aq () +q (1) (25)

Sliding mode means that once the state
trajectory has reached the sliding surface

S(e,e)=0 the system trajectory remains on it
while sliding into the origin (0,0), independently of
model uncertainties, unmodeled frequencies, and
disturbances, Quang (2000).

To keep the S(e,€) at zero, the control law
is designed to satisfy the following sliding condition
(Lyapunov function):

V:%SQYMOZO (26)

Its time derivative becomes ¥ =SS and the control
uy is chosen such that

S(t)S(t)S_U‘S(I)‘ (27)

where 7 is a positive constant that guarantees the
system trajectories hits the sliding surface in a finite
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time. Essentially, eq. (26) states that the squared
“distance” to the surface, as measured byS 'S s
decreases along all system trajectories. Thus, eq.
(27) provides a sufficient reaching condition such

that the tracking error e, will asymptotically
converge to zero, Quang (2000). In order to meet
that condition, the control law is chosen as follows

u, =-Ksgn(S) 28)
where the sliding gain K; > 0 and sgn(S) is a sign
(or signum) function, which is defined as

-1 if§<0
sgn(S)=4 0 if S=0
1 if §>0

(29)
As explained before, using a sign function
often causes a chattering problem. A proportional-
integral combination of the sliding function is
proposed in a boundary layer in place of the signum
function by Quang (2000). This continuous
controller can force the system states to reach the
sliding surface and attain high tracking
performance. The equation for this saturated
proportional-integral functions is given by

1 if opy >1
t

i
pPpi(op)=yop +K; |op if -1<0p <1,

1i0
-1 if op; <-1
(30)
where
oS,
PI @ H
where X/ >0 s an integral gain, and fo is the

initial time when the system states enter the

boundary layer & (*) which is defined as ,Nguyen et
al (2003),

B(1) ={e,

S(e,t) <@}, >0 31

where [S(0 e

sliding surface S, P s the boundary layer thickness.

is the distance between state and

If [on|21 the integration term in eq. (30)
will be reset to zero to prepare for the system state
entering boundary layer. It is assumed that the
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chosen integration gains K are sufficiently large
such that

6p +K;0p; >0  forallop, >0

Gpy+K;op <0 ﬁwaﬂqm<0(n)

Inequalities (33) imply that P7 increases

for all~ > 9 and Pr decreases for all @71 < 0
Nguyen et al (2003).

The overall Fuzzy PI +D control system is
shown in Fig. 2.

Similar to the classical (PI+D) controller
which uses two integrators, the fuzzy (PI + D)
control approach uses two fuzzy (PI + D)
controllers. The first controller is used for set-point
tracking control, while the second one is used for
vibration damping. The block diagram of this
approach is shown in Fig. 3.

Eight rules, “ D output” had been used for fuzzy
control output. The formulation for these rules is
given by Tang et al (2001).

5. Simulation Results And Discussion

The simulation results for a robotic system
that has single link with one mode are discussed.
The numerical model used in the simulations is
illustrated below. It is derived by using the assumed
modes method with clamped-free shape functions
presented in section 2. The link parameters are
given in Table 1, these parameters are taken from
Azad et al (2003). One mode shape approximation
is used for this example. The inertia M, stiffness K,
and damping D matrices, are obtained by using the
Matlab program given in Manaty (2008).

0.1837 0.3910

0 0 0 0
D= K:
{0 OJ 0 31.6931

The simulation results of a single link with one
mode approximation using controllers (the hybrid
and the fuzzy (PI+D)?) designed in section 3 and 4

_[1.5623 0.1837}
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4. The Fuzzy (Pi+D)’ Controller

This approach was proposed by Soorasksa
et al 1998, to control the flexible link manipulator.
The overall fuzzy PI+D control law can be obtained
by algebraically summing the fuzzy PI control law
and the fuzzy D law together. The result is

Upp(nT) =y (nT =T) + K, py Aty (nT) +
uD(nT_T)_KuDAuD(nT)

(33)

to track a step reference input are shown in Fig.s 4
and 5.

In this simulation, gains for the hybrid controller are
chosen as (Kp=5 and Kp = 5) for augmented
controller. While the gains for the SMC (A =10, ¢ =
0.1, K;=10, K= 4).

A (1 radian) step reference is applied to the hybrid
controller, as well as the fuzzy (PI+D)* controller
(with Kp = 4000 and Kp = 800 for rigid part and Kp
=4000 and kD = 600 for flexible part).

The proposed hybrid controller demonstrates a
significant improvement over the other controller
(fuzzy (PI+D)?) as illustrated in Fig. 4. The
manipulator tracks the step reference trajectory with
almost no overshoot or undershoots. The hybrid
controller has better settling time (2.5 sec) and has
virtually no ripple.

The fuzzy (PI+D)* controller results show that
there is small oscillations in the transient response
causing the step response to reach steady-state in
(4.7 sec). The fuzzy controller has slightly longer
settling time 3.5 sec.

The control signal for the rigid link and for the
flexible mode is shown in Fig. 8 while the tracking
error signal is shown in Fig. 6. Both results show
that the two controllers approaches give unequal
torque values for the rigid link and for the deflection
as shown in Fig. 7. It can be noticed that the error
system with hybird controller reaches zero steady
state error after a few seconds (3 sec) while system
response when using the fuzzy (PI+D)2 controller
there is (0.1) steady state error.

6. Conclusions

In this paper, a model for the single flexible-link
manipulator which describes both linear and
nonlinear behavior of the entire system has been
developed.
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Two approaches to control the flexible link
manipulator are used. The first one is a hybrid (PD
and sliding mode) controller. Where, the augmented
PD controller is used as a hub position control while
the sliding mode control is used to damp out the
vibration of tip position. The second control
approach is to use a fuzzy (PI+D)* controller for
both, the hub angle control and tip deflection
control.

The hybrid controller has a steady state error which
reaches zero in a fast manner and gives good
tracking to the trajectory while the fuzzy (PI+D)>
has a small steady state error when both controllers
try to track the step reference input.

The control torque signal for the hybrid controller
shows higher initial torque and lower mean value
torque signal than that using fuzzy (PI+D)>.

In general the hybrid controller shows better
behavior than the proposed fuzzy (PI+D)* controller
for the single flexible link manipulator.
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List of Symbols

e(t) Tracking error

EI Flexural rigidity (N.m?)

J Total inertia (kg.m?)

Jn Hub inertia (kg.m?)

Jp Payload inertia (kg.m?)

K Stiffness matrix

Kp Derivative gain

Ks Sliding gain

K; Integral gain

K, proportional gain

Kupr PI constant control gain

L Lagrangain

/ Length of the link (m)

M Inertia matrix

m; Mass of the link (kg)

m, Mass of the payload (kg)

P Position vector of any point along the

link

q Generalized coordinate

qr Velocity of the rigid part
qs Desired velocity of joint coordinate

r Position vector of link end
S() Time-varying sliding surface
T Kinetic energy

T, Kinetic energy for link

T Kinetic energy for hub

T, Kinetic energy for payload

us Control signal for flexible part

u, Control signal for rigid part

V Potential energy

Ve Potential energy due to elasticity

Ve Potential energy due to garvity

wi(x,t)  Deflection of a point x along the i"
link

wy Defection at tip position (m)

% Joint position of the link (degree)

® Eigen function of the link

0 Flexible mode of the link

0.1 Position of the center of mass

p Mass density (kg/m)
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Fig. 1 Single Flexible Link Manipulator

Table 1 The Link parameters for simulation of manipulator, Azad et al 2003

Parameter Value | Units
Length 1.22 m
Mass density 0.24 kg/m
Flexural rigidity 11.82 | N.m’
Hub mass 2 kg
Hub moment of 135 | Kg. m’
inertia

Payload mass 0.045 Kg
Payload inertia 0.067 | Kg.m”
damping 0.1 o
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Fig. 2 Fuzzy PI+D control system Sooraksa et al 1998.
v - - Output
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Vibration Output
Fig. 3 The fuzzy (PI+D)’ control approach Sooraksa et al 1998.
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(a) Tracking position (b) Tracking velocity
Fig. 4 Comparison of tracking performance of hybrid and fuzzy (PI+D)’ controllers.
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(a) Tip deflection position
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Fig. 5 Comparison of first mode suppression

performance of hybrid and fuzzy (PI+D)*

controllers.

Torgue due to joint, M.m

Torgue due to deflection, M.m

Fig.
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(a) Control torque signal for the rigid part.
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Time sec

(b) Control torque signal for the flexible
part.
6 Control torque signal of hybrid and fuzzy
(PI+D)? controllers.
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(b) Flexible part error signal.

Fig. 7 Tracking error signals.
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