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Abstract 

In this study, the dynamic modeling and step input tracking control of single flexible link is studied. The 
Lagrange-assumed modes approach is applied to get the dynamic model of a planner single link manipulator. A 
Step input tracking controller is suggested by utilizing the hybrid controller approach to overcome the problem 
of vibration of tip position through motion which is a characteristic of the flexible link system. The first 
controller is a modified version of the proportional-derivative (PD) rigid controller to track the hub position 
while sliding mode (SM) control is used for vibration damping. Also, a second controller (a fuzzy logic based 
proportional-integral plus derivative (PI+D) control scheme) is developed for both vibration damping and hub 
position tracking. A comparison is made between the performances of these two controllers. The Hybrid 
controller with PD and SM shows better tracking behavior than obtained from the suggested fuzzy (PI+D)2 
controller for a single link flexible manipulator. 
 
Keywords: Flexible Link, Single Link, Hybrid Control, Fuzzy Control. 
 

 المسيطر الهجين على ذراع مرنة مفردة لإنسان آلي 

علياء محسنعلياء محسنالدكتورة  الدكتورة      مناتيمناتي   

 جامعة ذي قار

علوم الحاسبات/ كلية العلوم  

إبراهيم كاظمإبراهيم كاظم  الاستاذ المساعد الدكتور بهاءالاستاذ المساعد الدكتور بهاء  

 جامعة بغداد

 كلية هندسة الخوارزميكلية هندسة الخوارزمي

  الأستاذ الدكتور ولاء الدين خيري سعيدالأستاذ الدكتور ولاء الدين خيري سعيد

 الجامعة التكنولوجية

سيطرة والنظمقسم ال  

  الخلاصة الخلاصة 
تم تطبيق طريقة . single link ذراع ذو وصلة واحدة في هذه الدراسة تم دراسة النموذج الديناميكي والسيطرة على حرآة

وتم .  للحصول على نموذج ديناميكي لذراع الانسان الآليLagrange-assumed modes approach النمط الكفوء -لاآرانج 
 للتحليل Simulink وأداة Matlabي للذراع ذو الوصلة الواحدة والذي تم محاآاته بأستخدام برنامج الحصول على نموذج خط

 للتغلب على مشكلة الاهتزاز في طرف hybrid controllerتم اقتراح مسيطر لتتبع الادخال من فكرة المسيطر الهجين .والمحاآاة 
 لتتبع مسار المفصل بينما تم PD حيث تم تصميم نسخة معدلة من مسيطر .الذراع خلال الحرآة والذي هو من صفات الهياآل المرنة

 Fuzzyمسيطر منطق مضبب (وآذلك تم تطوير مسيطر ثاني .  لتخميد الاهتزازاتsliding modeاستخدام سيطرة النمط المنزلق 
(PI+D)2 (هر تائج اداء المسيطرين والتي تظوتمت مقارنة ن. آطريقة للسيطرة على آل من تخميد الاهتزازات وتتبع مسار المفصل

  .المقترحبوضوح تفوق عمل المسيطر الهجين من النوع الاول مقازنة مع مسيطر المنطق المضبب  
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1. Introduction 

 
 Many of today's robots are required to 
perform tasks which demand a high level of 
accuracy in end-effector positioning. Most robots 
cannot directly sense this position and instead 
calculate it using the joint angles and forward 
kinematics equations. This technique assumes that 
the links connecting the joints are rigid, and thus 
many robots have large, heavy links which behave 
like true rigid links. This prevents oscillations in the 
links which cause errors in the calculated end-
effector position. Since the links are heavy, much of 
the joint motor's power is expended moving the link 
and holding them up against gravity. Also payloads 
must be kept quite small compared to the mass of 
the robot itself, since large payloads will cause 
sagging and vibrations in the links which create 
uncertainty in end-effector position. This results in a 
situation where these rigid robots are very 
inefficient and slow. In an attempt to solve these 
problems, the field of flexible robots was created, 
Natarajan et al (1998).  
In order to fully exploit the potential offered by 
flexible robot manipulator, it is desirable to have an 
explicit, complete, and accurate dynamic model. 
This model must consider the effects of structural 
link flexibility and properly deal with vibrational 
behavior. Different schemes for modeling of the 
manipulators are studied by a number or researchers 
as described below. The mathematical models of the 
manipulators are generally derived from energy 
principles and for a simple rigid manipulator, the 
rigid arms store kinetic energy by virtue of their 
moving inertia and store potential energy by virtue 
of their position in the gravitational field, but the 
flexible arms store potential energy by virtue of the 
deflections of its links. 
 To include bending one may often use the 
Euler-Bernoulli equation which ignores shearing 
and rotary inertia effects. These two effects may be 
incorporated using a Timoshenko beam element 
which generally must be used if the beam is short 
relative to its diameter, Book et al (1990). In most 
models of flexible manipulators Euler-Bernoulli 
beams are used. 
 The robotic systems with flexible links are 
continuous dynamical systems characterized by an 
infinite number of degrees of freedom and are 
governed by nonlinear coupled, ordinary and partial 

differential equations. The exact solution of such 
systems is not feasible practically and the infinite  
 
Dimensional model imposes severe constraints on 
the design of controllers as well. Hence, they are 
truncated to some finite dimensional models using 
assumed modes method (AMM), finite elements 
method (FEM) or lumped parameters method. 
In the literature a number of techniques for deriving 
equations of motions were used to develop the 
dynamic equations of motion of flexible link 
systems. Three main techniques were used by 
researchers, namely: Newton-Euler approach , 
Boyer et al (1996), Lagrangian approach , Geniele 
et al (1997), and Hamiltonian approach ,Benati et al 
(1991). 
The control difficulty of flexible arm is due to the 
non-collocated nature of the sensor and actuator 
positions which results in unstable zero dynamics. 
In other words, the nonlinear system is non-
minimum phase. Therefore, the system has an 
unstable inverse dynamics. The non-minimum 
phase property makes exact asymptotic tracking of a 
desired tip trajectory impossible, if one employ 
causal controllers. Furthermore, the robot should 
handle a wide variety of payloads, the robustness of 
the control system becomes very important , talebi 
et al (1996). 
The control strategies considered in this field can be 
divided into open-loop and closed-loop methods. 
Open-loop control involves altering the shape of 
actuator commands by considering the physical and 
vibration properties of the system. The main source 
of vibration in the flexible manipulator is the 
motion itself. Thus, input torque profiles are 
generated by minimizing input energy at system 
natural frequencies, so that vibration in the flexible 
manipulator system is reduced during and after the 
move. Many types of shaped input strategies are 
developed on the basis of extracting the energies 
around the natural frequencies. These are, Gaussian 
shaped input, low pass filtered torque input and 
band-stop filtered torque input. While closed-loop 
control uses measurements of the system states and 
alters the actuator input in order to reduce the 
system vibration, Azad et al (2003). 
A number of feed-back control strategies have been 
proposed in the literature for the end-point 
trajectory tracking in flexible manipulators. Book et 
al (1975) and Hasting et al (1987), employed linear 
control theory, while Singh et al (1986), De Luca et 
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al (1989), and De Luca et al (1991) made use of 
nonlinear decoupling. They recognized that a multi-
link arm could not be controlled based on their 
approach because of nonlinearities in the dynamics 
of a multi-link arm. 
 Tang et al. (2006) focused on tracking 
control problem of flexible link manipulators. In 
order to alleviate the effects of nonlinearities and 
uncertainties, a combined control strategy based on 
neural network (NN) and the concept of sliding 
mode control (SMC) was proposed systematically. 
The chattering phenomenon in conventional SMC is 
eliminated by incorporated a saturation function in 
the proposed controller, and the computation burden 
caused by model dynamics was reduced by applying 
a two-layer NN with an analytical approximated 
upper bound, which was used to implement a 
certain functional estimate. In addition, the 
Lyapunov analysis can guarantee the signals of 
closed-loop system bounded and the online NN 
adaptive laws made the system states converge to 
the sliding surface. 

Alwan  et al (2008)  suggested   the 
dynamic modele and control; of a robot with single 
flexible-link with revolute joint, which rotates in the 
horizontal plane. The dynamic equations are derived 
using the (assumed mode)/Lagrangian formulation, 
based on Euler-Bernoulli beam theory. Both the 
rigid degrees of freedom and the elastic degrees of 
freedom of the system are treated as generalized 
coordinate. Although the equations of motion of the 
system are highly nonlinear and coupled, due to the 
dynamic model derived in this work takes into 
account   the coupling effects   between   rigid   
body motions and elastic deformation. The inverse 
dynamic method is used to present the Trajectory 
Control of Flexible Robot Arm; the desired position 
of the end point of the manipulator is given versus 
time, and the required joint torques are determined, 
The main difficulty is that the numerical solution of 
the inverse dynamic problem of flexible 
manipulators normally diverges. The computed 
joint torques can be used as feedforward controls 
which minimize the work of the feedback controller 
needed to compensate modeling errors. 
 
In this work several control schemes have been 
suggested and simulated for step input to possessing 
interesting nonlinear and non-minimum phase 
features for one flexible link manipulator.  
 

2- Dynamic Modeling Of A Single Flexible 
Link 

 
The schematic of a planar single-link flexible 
manipulator is shown in Fig. 1. Where (X , Y) is an 
inertial coordinate frame, and (x , y) is the 
coordinate assigned for a flexible link moving with 
instantaneous Center of Mass (CoM). θ, w(x,t), ℓ, 
and τ represent the hub angular position, the 
deflection along the arm, the length of the link, and 
the torque applied to the hub, respectively. 

Single link flexible arm modeled as an 
Euler-Bernoulli beam in rotation. At one end, the 
arm is clamped on a rigid hub mounted directly on 
the vertical shaft of a DC motor, the other end is 
free to flex in a horizontal plane, and has a mass mp 
as a payload. It is assumed that the length of the 
beam, ℓ is much greater than its width, thus 
restricting the beam to oscillate in the horizontal 
direction. Neglecting the effects of shear 
deformation and rotary inertia, the deflection of any 
point on the beam is given by the Euler-Bernoulli 
beam equation Thomson (1981). 
 The Euler-Bernoulli beam theory and the 
assumed modes method can be used to express the 
deflection w(x,t) of a point located at a distance x 
along the link as: 
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where )(xiφ  is the mode shape function and )(tiδ  is 
the time varying modal function and n is the number 
of finite modes.  
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 In order to derive the equations of motion 
for this system which is a combination of a lumped 
parameter part (the hub rotation and the payload 
mass) and distributed parameter part (the link 
deformation); an energy-based method is the most 
convenient, i.e. Lagrange formulation. The 
Lagrangian, L, of the system can be determined by 
substituting equation for the total kinetic energy and 
the total potential energy ( . 
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Therefore, the kinetic energy T and the potential 
energy V of the system have to be computed. 

 ph TTTT ++= l    (3) 
where Th is the kinetic energy contributions from 
the hub: 

 
2
0
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2
1)(

2
1 wmtJT hhh && += θ

                (4) 

Where ow  is the deflection at the hub.From the 
geometric boundary condition this is equal to zero.  
Tℓ from the link: is: 

 dxppT t &&
l

l ∫=
02

1     (5) 

Where  

 
 
Similarly, the kinetic energy associated with the 
payload can be written as: 

 
22 )(

2
1

2
1 tJwmT ppp θ&& l +=

  (6) 

Where lw  is the deflection at the end of the link  
 The potential energy of the link is 
composed of two parts: the gravitational energy Vg, 
and the strain potential energy Ve owing to the 
flexure of the link Chapnik et al (1991), 

 ge VVV +=     (7) 
 Since the movement of the link is assumed 
in the horizontal plane only, the gravitational energy 
can be neglected. The potential energy resulting 
from the elastic deformation of the link is given by: 
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   (8) 
 The potential energy Ve, of the system is 
stored in the flexible modes and can be attributed to 
"modal stiffnesses" K which are evaluated by 
integrals over the length of the link. 
 Then the dynamic equations of the system 
can be derived using the Euler-Lagrange. A system 
with n+1 generalized coordinates q must satisfy n+1 

differential equations of the form:  
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 The computational details on various 
differentials and integrals can be found in Manaty  

 
2008, results are a coupled set of second order 
dynamic equations: 
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where r and f denote rigid and flexible part, 
respectively. M(qi)  and Kff are  the positive definite 
symmetric inertia matrix and positive definite 
diagonal stiffness matrix respectively .  
The elements (i=n+1, j=n+1) of the inertia matrix 
and stiffness matrices for a single link robot with 
one vibration mode take on the expression below.
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3. Hybrid Controller 
 

 Similarly to most of the contributions in the 
field, the proposed control method is developed for 
the one-link flexible arm as a first step towards 
general multi-link arms. The suggested control 
approach consists of  two sub-controllers; one is 
slow sub-controller to tracking the desired input, 
and the other is fast sub-controller to damp out 
vibration. Using the dynamic model eq. (11) and  
eq. (12), a hybrid controller is designed. The rigid 
sub-controller will be built using the inverse control 
approach (Augmented PD controller), while the 
flexible sub-controller is sliding mode control 
(SMC).  
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3.1 Augmented PD Controller 
 
 The purposes of slow sub-controller are 
tracking input without steady state error and 
reducing coupling effect from flexibility. To design 
the control ur for the n joint coordinates qr, infinitely 
stiff links are assumed. The rigid body model for 
the manipulator can be recovered from the n upper 
rows of eq. (12), by setting qi = 0 for all (ne )flexible 

links. This yields 0=== eee qqq &&&  , and the 
equations of motion are then  
 
 rrrrrrrrr uqgqqCtqqM =++ )()()()( , &&&              (12) 
 
Accurate measurements of joint variables, either 
angles or displacements and joint velocities are 
assumed to be available. If the tip location rt of the 
manipulator is of interest, then 
 

 )( rt qfr =             (13) 

the vector of desired joint coordinates 
d
rq  must be 

computed using the inverse kinematic equation 
 
 )(

1 d
t

d
r rq f −
=                      (14) 

 The well-known inverse dynamics control 

method is chosen here, where the control ru  is 
taken to be a function of the manipulator state in the 
form; 
 )(),()( rrrrrrrrr qgqqCuqMu ++= &  
                        (15) 
 Because the mass matrix Mr is invertible, 
the combined system reduces to 
 

 rr uq =&&                (16) 

where ru  represents a new input vector, which is 
still to be chosen, for  the system. 
The approach 
 

 rqKqKu rDrpr +−−= &           (17) 
with constant control matrices KP and KD leads to a 
simple linear second-order system, 
 

 rqKqKq rprDr =++ &&&            (18) 
where r is the reference input. Under the assumption 
of positive definite matrices KP and KD, this system 

is asymptotically stable. Given a desired 

trajectory
d
rq , one may choose 

 

 
d
rp

d
rD

d
r qKqKqr ++= &&&            (19) 

The tracking error r
d
r qqe −= then satisfies the 

homogeneous second-order differential equation 
 

 0=++ eKeKe pD &&&             (20) 
 
Choosing KP and KD as diagonal gain matrices of 
the type   
 

}......{ 22
1 np diagK ωω=     

}2.........2{ 11 nnD diagK ωδωδ=             (21) 
results in a closed-loop system that is globally 
decoupled. Each joint response is equal to the 
response of a second-order system characterized by 
a natural frequency ωi and a damping ratio δi. 
 The method of inverse dynamics is 
attractive because the nonlinear coupled dynamics 
of the manipulator is canceled and replaced by n 
linear decoupled second-order systems. However, 
such exact cancellation schemes leave open many 
issues of sensitivity and robustness due to 
unavoidably imperfect compensation. These issues 
are addressed in several books dealing in details 
with modeling and control of robot manipulators, 
e.g. Spong et al 1989. However the final control law 
used in this paper is given by 
 

 )(),()( rrrrrrrrr qgqqKuqMu ++= &             (22) 
 

)()(2
r

d
rpr

d
rDrr qqKqqKqu −+−+= &&&&

       (23)                 
 
3.2 PI - Sliding Mode Controller (SMC) 

 
 The flexible sub-controller should be 
designed to damp out vibration. Sliding Mode 
Control (SMC) is often favored as a basic control 
approach, especially because of its insensitivity 
property toward the parametric uncertainties and the 
external disturbances. SMC are characterized by 
control laws that are discontinuous on a certain 
manifold in the state space, the so-called sliding 
surface. The control law is designed such that the 
representative point’s trajectories of the closed-loop  
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system are attracted to the sliding surface and once 
on the sliding surface they slide towards the origin .  
However the major drawback in the SMC approach 
is the undesired phenomenon of chattering because 
of the discontinuous change of control laws across 
the sliding surface. In practical engineering systems, 
chattering may cause damage to system 
components, as well as excite unmodeled and high 
frequency plant dynamics , Kwatny et al (1987). 
 There exist several techniques to eliminate 
chattering. PI-SMC approach provides an effective 
way to resolve the chattering problem. In general, 
the first step to illustrate the standard SMC is to 
define a time-varying sliding surface, S(t), that is 
linear and stable. The S(t) acting on the tracking-
error expression selected in this work, is: 
 

 )()()( tetetS &+= λ            (24) 
 

where λ  is a strictly positive  constant, and )(te is 

the tracking error, while )(te&  is the time derivative 
of the tracking error e(t). Since the aim of this 
controller is to damp out the vibration to zero, 

therefore )(tq f  and )(tq f&  are used instead of e(t) 

and )(te& respectively, then eq. 24) becomes 
 

 )()()( tqtqtS ff &+= λ            (25) 
 
 Sliding mode means that once the state 
trajectory has reached the sliding surface 

0),( =eeS &  the system trajectory remains on it 
while sliding into the origin (0,0), independently of 
model uncertainties, unmodeled frequencies, and 
disturbances, Quang (2000). 
 To keep the ),( eeS &  at zero, the control law 
is designed to satisfy the following sliding condition 
(Lyapunov function): 
 
 0)()(

2
1

≥= tStSV T              (26) 

Its time derivative becomes SSV && =   and the control 
uf  is chosen such that  
 

 )()()( tStStS η−≤&
            (27) 

where η  is a positive constant that guarantees the 
system trajectories hits the sliding surface in a finite  

time. Essentially, eq. (26) states that the squared 
“distance” to the surface, as measured by SS T , 
decreases along all system trajectories. Thus, eq. 
(27) provides a sufficient reaching condition such 
that the tracking error ie will asymptotically 
converge to zero, Quang (2000). In order to meet 
that condition, the control law is chosen as follows  

 )sgn( SKu Sf −=            (28) 
where the sliding gain Ks > 0 and sgn(S) is a sign 
(or signum) function, which is defined as 
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 As explained before, using a sign function 
often causes a chattering problem. A proportional-
integral combination of the sliding function is 
proposed in a boundary layer in place of the signum 
function by Quang (2000). This continuous 
controller can force the system states to reach the 
sliding surface and attain high tracking 
performance. The equation for this saturated 
proportional-integral functions is given by  
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where 

 
;

Φ
=

S
PIσ

  
where 0>IK  is an integral gain, and 0it  is the 
initial time when the system states enter the 
boundary layer )(tB  which is defined as ,Nguyen et 
al (2003), 
 

 0},),(,{)( >ΦΦ≤= teSetB            (31) 
 
where ),( txS is the distance between state e  and 
sliding surface S, Φ  is the boundary layer thickness. 

 If 1≥PIσ  the integration term in eq. (30) 
will be reset to zero to prepare for the system state 
entering boundary layer. It is assumed that the 
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chosen integration gains IK  are sufficiently large 
such that 
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>>+

PIPIIPIi

PIPIIPI

allforK
allforK

σσσ
σσσ

&

&

  (32) 

 Inequalities (33) imply that PIρ  increases 

for all 0>PIσ , and PIρ  decreases for all 0<PIσ  
Nguyen et al (2003).  
 
 

4. The Fuzzy (Pi+D)2 Controller 
 
 This approach was proposed by Soorasksa 
et al 1998, to control the flexible link manipulator. 
The overall fuzzy PI+D control law can be obtained 
by algebraically summing the fuzzy PI control law 
and the fuzzy D law together. The result is 
 

)()(
)()()(

nTKTnTu
nTuKTnTunTu

uDuDD

PIuPIPIPID

∆−−
+∆+−=              (33) 

 The overall Fuzzy PI +D control system is 
shown in Fig. 2.  

Similar to the classical (PI+D) controller 
which uses two integrators, the fuzzy (PI + D)2 

control approach uses two fuzzy (PI + D) 
controllers. The first controller is used for set-point 
tracking control, while the second one is used for 
vibration damping. The block diagram of this 
approach is shown in Fig. 3. 
 
Eight rules, “ D output” had been used for fuzzy 
control output. The formulation for these rules is 
given by Tang et al (2001). 
 
 
5. Simulation Results And Discussion 

 
 The simulation results for a robotic system 
that has single link with one mode are discussed. 
The numerical model used in the simulations is 
illustrated below. It is derived by using the assumed 
modes method with clamped-free shape functions 
presented in section 2. The link parameters are 
given in Table 1, these parameters are taken from 
Azad et al (2003). One mode shape approximation 
is used for this example. The inertia M, stiffness K, 
and damping D matrices, are obtained by using the 
Matlab program given in Manaty (2008). 
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The simulation results of a single link with one 
mode approximation using controllers (the hybrid 
and the fuzzy (PI+D)2) designed in section 3 and 4 

to track a step reference input are shown in Fig.s 4 
and 5. 
In this simulation, gains for the hybrid controller are 
chosen as (KP=5 and KD = 5) for augmented 
controller. While the gains for the SMC (λ = 10, φ = 
0.1, KI = 10, KS= 4). 
A (1 radian) step reference is applied to the hybrid 
controller, as well as the fuzzy (PI+D)2 controller 
(with KP = 4000 and KD = 800 for rigid part and KP 
= 4000 and kD = 600 for flexible part). 
The proposed hybrid controller demonstrates a 
significant improvement over the other controller 
(fuzzy (PI+D)2) as illustrated in Fig. 4. The 
manipulator tracks the step reference trajectory with 
almost no overshoot or undershoots. The hybrid 
controller has better settling time (2.5 sec) and has 
virtually no ripple. 
The fuzzy (PI+D)2  controller results show that 
there is small oscillations in the transient response 
causing the step response to reach  steady-state in 
(4.7 sec). The fuzzy controller has slightly longer 
settling time 3.5 sec. 
The control signal for the rigid link and for the 
flexible mode is shown in Fig. 8 while the tracking 
error signal is shown in Fig. 6. Both results show 
that the two controllers approaches give unequal 
torque values for the rigid link and for the deflection 
as shown in  Fig. 7. It can be noticed that the error  
system with hybird controller reaches zero steady 
state error after a few seconds (3 sec) while system 
response when using the fuzzy (PI+D)2 controller 
there is (0.1) steady state error. 
 
6. Conclusions 
 
In this paper, a model for the single flexible-link 
manipulator which describes both linear and 
nonlinear behavior of the entire system has been 
developed.  
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Two approaches to control the flexible link 
manipulator are used. The first one is a hybrid (PD 
and sliding mode) controller. Where, the augmented 
PD controller is used as a hub position control while 
the sliding mode control is used to damp out the 
vibration of tip position. The second control 
approach is to use a fuzzy (PI+D)2 controller for 
both, the hub angle control and tip deflection 
control. 
The hybrid controller has a steady state error which 
reaches  zero in a fast manner and gives good 
tracking to the trajectory while the fuzzy (PI+D)2 
has a small steady state error when both controllers 
try to track the step reference input. 
The control torque signal for the hybrid controller 
shows higher initial torque and lower mean value 
torque signal than that  using fuzzy (PI+D)2.  
In general the hybrid controller shows better 
behavior than the proposed fuzzy (PI+D)2 controller 
for the single flexible link manipulator. 
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List of Symbols 
 
e(t) Tracking error 

EI Flexural rigidity (N.m2) 

J Total inertia  (kg.m2) 
Jh Hub inertia  (kg.m2) 
JP Payload inertia  (kg.m2) 
K Stiffness matrix 
KD Derivative gain 
KS Sliding gain 
KI Integral gain 
Kp proportional gain 
KUPI PI constant control gain 
L Lagrangain 
l Length of the link (m) 
M Inertia matrix 
ml Mass of the link (kg) 
mp Mass of the payload (kg) 
P Position vector of any point along the 

link  
q Generalized coordinate 

r Velocity of the rigid part 

 
Desired velocity of joint coordinate 

r Position vector of link end 
S(t) Time-varying sliding surface 
T Kinetic energy 
Tl Kinetic energy for link 
Th Kinetic energy for hub 
Tp Kinetic energy for payload 
uf Control signal for flexible  part 
ur Control signal for rigid part 
V Potential energy 
Ve Potential energy due to elasticity 
Vg Potential energy due to garvity 
wi(x,t) Deflection of a point x along the ith 

link 
wl Defection at tip position (m) 
θ Joint position of the link (degree) 
φ Eigen function of the link 
δ Flexible mode of the link 
θc(t) Position of the center of mass  

ρ Mass density (kg/m) 
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Fig. 1 Single Flexible Link Manipulator 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

Table 1 The Link parameters for simulation of manipulator, Azad et al 2003 
  

Parameter Value Units 

Length 1.22 m 

Mass density 0.24 kg/m 

Flexural rigidity 11.82 N . m2 

Hub mass 2 kg 

Hub moment of 

inertia 

1.35 Kg. m2 

Payload mass 0.045 Kg 

Payload inertia 0.067 Kg.m2 

damping 0.1 __ 

 

),( txwxy += θ
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Fig. 2   Fuzzy PI+D control system Sooraksa et al 1998. 

 
Fig. 3 The fuzzy (PI+D)2 control approach Sooraksa et al 1998. 

 

 
(a) Tracking position 

 

 
(b) Tracking velocity 

Fig. 4 Comparison of tracking performance of  hybrid and fuzzy (PI+D)2 controllers. 

Output
 

Vibration Output
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(a) Tip deflection position 

 

 
(b) Tip deflection velocity 

Fig. 5  Comparison of first mode suppression 

performance of hybrid and fuzzy (PI+D)2 

controllers. 

 
(a) Control torque signal for the rigid part. 

 

 
(b) Control torque signal for the flexible 

part. 

Fig. 6 Control torque signal of hybrid and fuzzy 

(PI+D)2 controllers. 
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(a) Rigid part error signal. 

 

 

(b) Flexible part error signal. 

 

Fig. 7 Tracking error signals. 

 

 
 
 
 
 

 
 
 
 
 


