

## Improving the Accuracy of Handheld GPS Receivers Based on NMEA File Generating and Least Squares Adjustment

Zahraa Ezzulddin Hussein Assistant Lecturer College of Engineering - University of Baghdad <u>E-mail: Zahraaazeldeen@vahoo.com</u>

#### ABSTRACT

**T**his study aims to improve the quality of satellites signals in addition to increase accuracy level delivered from handheld GPS data by building up a program to read and decode data of handheld GPS. Where, the NMEA protocol file, which stands for the National Marine Electronics Association, was generated from handheld GPS receivers in real time using in-house design program. The NMEA protocol file provides ability to choose points positions with best status level of satellites such as number of visible satellite, satellite geometry, and GPS mode, which are defined as accuracy factors. In addition to fix signal quality, least squares technique was adopted in this study to minimize the residuals of GPS observations and enhance its accuracy. Moreover, one hundred reference control points were established using geodetic GPS receiver (GR5 receiver), and fixing them in a specified sites of the University of Baghdad, Al Jadriya campus, which selected as a study area, to evaluate positioning accuracy of handheld GPS before and after adjustment. The study findings showed significant decrease in root mean square error (RMSE) in both horizontal and vertical directions from 9.4 m to 3.2 m and 6.8 m to 2.4 m respectively.

Key words: handheld GPS, least square adjustment, accuracy, NMEA file.

## تحسين دقة مواقع اجهزةالـ GPS المحمولة القائمة على توليد ملف NMEA وتقنية التصحيح بأقل المربعات

م.م زهراء عزالدين حسين قسم هندسة المساحة كلية الهندسة/جامعة بغداد

#### الخلاصة

تهدف هذه الدراسة إلى تحسين جودة إشارات الأقمار الصناعية بالإضافة إلى زيادة مستوى الدقة لاجهزة الـ GPS المحمولة من خلال تصميم برنامج لقراءة ومعالجة بيانات اجهزة الـ GPS المحمولة. حيث تم انشاء ملف بروتوكول NMEA، والتي تشير الى الجمعية الوطنية للإلكترونيات البحرية، من مستقبلات الـGPS المحمولة في الوقت الحقيقي باستخدام البرنامج المصمم. يوفر هذا الملف امكانية اختيار مواقع النقاط مع أفضل مستوى من وضع الأقمار الصناعية مثل عدد الاقمار المرئية والهندسة الفضائية (GDOP، HDOP) وحالة اقمار الـGPS، التي تعرف بأنها عوامل الدقة. ولقد تم الاعتماد على تقنية اقل المربعات في هذه الدراسة أضافة إلى تثبيت جودة الإشارة لتقليل الخطأ المتبقي من رصدات الـGPS الى والت تعزيز دقتها. وعلاوة على ذلك، تم إنشاء مائة نقطة مرجعية باستخدام المستقبلات الجودسية (GR5 receiver) وتثبيتها في مواقع معينة من جامعة بغداد/ الجادرية / الحرم الجامعي التي اختيرت كمنطقة دراسة، التقيم دق المحمولة (قبل وبعد إجراءات التصحيح). نتائج هذه الدراسة أظهرت انخفاضا" ملحوظا" بجذر متوسط مربع الخطأ (RMSE) في كلا المواقع الراسية والافقية للـGRS من حوالي المعين التي الخوضا" معن معانية القل ما يمكن و مواقع معينة من جامعة بغداد/ الجادرية / الحرم الجامعي التي اختيرت كمنطقة دراسة، التقيم دقة مواقع اجهزة الـGPS المحمولة (قبل وبعد إجراءات التصحيح). نتائج هذه الدراسة أظهرت انخفاضا" ملحوظا" بجذر متوسط مربع الخطأ (RMSE) في كلا المواقع الراسية والافقية للـGPS من حوالى 6.8 متر إلى 2.4 متر ومن 9.4 متر الى 3.2 متر على التعاقب .

الكلمات الرئيسية: نظام تحديد المواقع المحمول، التصحيح بأقل المربعات، معاملات الدقة، ملف NMEA.



#### **1. INTRODUCTION**

In general, usage of handheld GPS for several applications is very economic; however it is limited because of its low accuracy. This is due to the fact that the handheld GPS suffers from lacking in generating raw data in real time, Syedul Amin, et al., 2013. National Marine Electronics Association produced uniform protocol, which defined as NMEA protocol, to exchange data between different marine electronics devices. NMEA protocol has special format, which was defined for all marine devices such as GPS. In this paper, the program was designed to read this special format in real time, using a pc as a collector of logging observation. The NMEA standard provides conforming devices those speak the same language, Parmar, 2011. This language can be interpreted by a PC program like the one designed in this study. The accuracy of handheld GPS is not homogeneous and they are ranging between 5-10 meters. Where, the accuracy of GPS devices is based on several factors such as a number of visible satellites, signal strength, period of observation and the geometry of satellites, which are determined by dilution of precision (DOP) or geometric dilution of precision (GDOP), Meduri, and Bramhanadam, 2012. Additionally, the DOP is determined for each of horizontal (HDOP), vertical (VDOP), 3D position (PDOP), and time dilution of precision (TDOP). Accuracy level of GPS observations can be improved by minimizing its residual using least square adjustment method, which provides the best fitting for all GPS track points. Thus, increasing accuracy of handheld GPS is an important factor to give possibility of using it in specific applications consistent with the resulting accuracy. Improving accuracy of low cost GPS was considered by some of researchers in previous studies. This accuracy may be enhanced by decoding the specific format of handheld GPS and generating the RINEX file depending on a developed program in addition to commercial software, Schweiger, 2003. Other hand, the Web services offers the ability to improve the accuracy of low cost GPS receivers a few centimeters or more by exchanging Continuously Operating Reference Stations (CORS) network data using wireless mobile devices, Fraser, et al., 2004. The differential relative positioning technique, which based on using two or more than one receiver in a same time, was applied to get a sub-metric accuracy level less than 5 meters, Acosta, and Toloza, 2012. Thus, the results of this study show best accuracy and simplest approach comparing with previous studies.

#### 2. NMEA STRUCTURE

The National Marine Electronics Association (NMEA) has applied to define the interface between various marine electronic. Information of marine electronics can be sent to computers and to other marine equipment for post-processing. Communication for most GPS receiver is defined within standard of NMEA, Sinivee, 2010. The notion of NMEA is to transmit a line of data named a sentence that is fully autonomous. There are regular signal sentences for each device kind and there is also the capability to define proprietary sentences for usage by the specific company. All devices that use the standard sentences are defined by a two letter prefix in this sentence form, Amin, et al., 2014. Moreover, the NMEA standard relies on ASCII (American standard code for information interchange) format. Each sentence starts with the character of dollar, \$, and ends with a carriage return and a line feed. Identifier and data fields are between the beginning and the end, separated by commas. The first two characters following the \$ include the "talker" identifier, describing the type of instrument sending the data. For example \$ZA for atomic clock or \$GP for GPS receiver. A three letter code, which identifying the type of signal sentence, is followed the talker ID such as GSA referring to GNSS Satellites active, Bosy, et al., 2007; Rajendran, 2010. Additionally, message of NMEA contains information about position, time and velocity which identified as follow, Adrdalan, and Awange, 2000 and Park, et al., 2013.



- A. GNSS Fix Data (GGA) refers to position, time, and fix regarding data for a GPS receiver. The format of GGA sentences is illustrated in **Table 1.**
- B. Geographic Position Latitude/Longitude (GLL) stands for longitude of vessel position, latitude, and time of position. The format of these elements is explained in **Table 2**.
- C. GNSS Satellites Active (GSA) refers to DOP values, satellites used in the navigation solution which mentioned by the GGA or GNS sentence and GPS receiver operating mode. This sentence is listed in **Table 3**.
- D. GNSS Satellites in View (GSV) represents each of satellite ID numbers, number of satellites (SV) in view, elevation, azimuth, and SNR value. Format of this sentence is explained in Table 4.
- E. Recommended Minimum Specific GNSS Data (RMC) stands for position, time, date, path and speed data determined by a GNSS navigation receiver. Format of RMC is decoded in **Table 5**.
- F. Course over Ground and Ground Speed (VTG) represent the elements of actual course and speed relative to the ground. The solution of this format is explained in **Table 6**.

### **3. METHODOLOGY**

The positioning accuracy of handheld GPS is inhomogeneous along period of observation, because of the constant changing in both of number and geometry of satellites. Thus, the methodology of this study was considered to fix the quality of received GPS signal in addition to increase the level of accuracy. The main stages of this methodology are explained as following:

A. The designed program

Graphical user interface (GUI), using MATLAB Language, was employed and designed to read the NMEA file in addition to adjust the coordinates of GPS track points observed by handheld GPS, (illustrated in **Fig.1**). The program code includes two steps as follow:

1. In the first step, the designed program downloads NMEA data in real time for any period of observation time. Then, this data were processed depending on the quality of satellites signals to determine the positions for all GPS track points. For example, this program downloads the initial GGA sentence of NMEA file as following, **Ince, and Sahin, 2000 and Amin, et al., 2013:** 

\$GPGGA,090726,3316.4104,N,04422.6311,E,1,04,3.6,49.5,M,3.4,M,,\*45 where: \$GPGGA : Protocol header 090726 : UTC position which equals to 09h 07m 26s 3316.4104 : Latitude which equals to 33° 16.4104' N : North 04422.6311: Longitude which equals to 044° 22.6311'

E : East



- 1 : Position Fix Indicator, where number 1 refers to GPS SPS Mode, fix valid
- 04 : Satellites used which range 0 to 12
- 3.6 : Horizontal Dilution of Precision (HDOP)
- 49.5 : Mean sea level
- M : Units in meters
- 3.4 : Geoid separation
- M : Units in meters
- \*45 : Checksum (detect errors in the data)

While, the next GGA sentence for specific period of observations is shown as follow:

\$GPGGA,093112,3316.4079,N,04422.6435,E,1,07,1.9,32.1,M,3.4,M,,\*4B

By comparing between the initial GGA sentence and the next sentence, we can find the following:

- > Period of observation equals to  $23^{m} 46.33^{s}$  which is computed by subtracting the UTC values between the next sentence of GGA and the initial sentence.
- Increasing number of observed satellite from 4 to 7 refers to improve the accuracy of positioning, Meduri, and Bramhanadam, 2012.
- Decreasing HDOP factor from 3.6 to 1.9 refers to increase the level of accuracy, see Table 7.
- Logging rate of this period of observation equals to 2<sup>s</sup>, which is computed by subtracting the UTC values between two sequential sentences, see Appendix A.

2. Least square adjustment was applied in the second step to find the best fitting of GPS track points based on existence of two control points, which are often available from previous surveys with accuracy less than 1 cm derived from practical experiments of this study. In this program, baseline vectors were created between the reference points and the GPS track points to adjust their positions as shown in **Fig. 2**. Where, the least squares adjustment method is considered to minimize the residual of observations (coordinates of GPS track points) based on the following observational equations, **Witchayangkoon**, 2000; Amiri-Simkooei, and Sharifi, 2004 :

$$(x_p + v_{xp}) - x_R = dx_{Rp} + \Delta_x \tag{1}$$

$$\left(y_p + v_{yp}\right) - y_R = dy_{Rp} + \Delta_y \tag{2}$$

$$\left(z_p + v_{zp}\right) - z_R = dz_{Rp} + \Delta_z \tag{3}$$

where,  $(x_p, y_p, \text{ and } z_p)$  are the coordinates of GPS track points,  $(x_R, y_R, \text{ and } z_R)$  are the coordinates of reference control points,  $(dx_{Rp}, dy_{Rp}, \text{ and } dz_{Rp})$  are the baseline vectors,  $(v_{xp}, v_{Rp}, dy_{Rp}, v_{Rp}, v_$ 



 $v_{yp}$ , and  $v_{zp}$ ) are the residual of observations, and  $(\Delta_x, \Delta_y, \Delta_y)$  and  $\Delta_z$ ) are the correction of unknowns (baseline vectors).

#### B. The fieldwork

For accuracy assessment purpose of handheld GPS positions after adjustment, one hundred reference points (as shown in **Fig. 3**.), were established in Baghdad University campus using differential technique (DGPS), with period of observation equals to 25 minutes (static method). These reference points were observed by handheld GPS receiver (Garmin eTrex) to collect GPS track points using two methods of observation, which are observation with adjustment procedure (generating and processing NMEA file) and observation without adjustment. Firstly, GPS track points were collected without the adjustment procedures of this study. While, in the second method of observation, handheld GPS was connected with a PC using the serial port (RS232) to gather NMEA files of track points (for 10 minute period of observation) by the designed program as shown in **Fig. 4**. In later method, GPS track points were adjusted based on the best fitting tools, which is used in this study (processing of NMEA files and least squares technique). Consequently, the handheld positioning, which resulted from both methods, were evaluated by compare them with the reference points.

#### C. Accuracy assessment

Accuracy assessment of GPS track points can be applied based on computation of root mean square error (RMSE) for the delivered observations. For specific number of GPS track points (n) defined by geocentric coordinates (X, Y, and Z), the vertical and horizontal RMSE, in addition to the total 3D RMSE are explained as following, **Misra and Enge, 2001 and Diggelen, 2007**:

$$RMSE \ vertical \ error = \sqrt{\frac{\sum \Delta Z^2}{n}}$$
(4)

RMSE horizontal error (2D RMSE) = 
$$\sqrt{\frac{\sum \Delta X^2 + \Delta Y^2}{n}}$$
 (5)

RMSE of three dimensional error (3D RMSE) = 
$$\sqrt{\frac{\sum \Delta X^2 + \Delta Y^2 + \Delta Z^2}{n}}$$
 (6)

where  $\Delta X, \Delta Y, \Delta Z$  refers to the coordinates difference between GPS track points observed by handheld GPS and reference points measured by DGPS. Additionally, the distance error (D-error) between track and reference points can be calculated as following, **Boal, 1992**:

$$D - error = \sqrt{\Delta X^2 + \Delta Y^2 + \Delta Z^2} \tag{7}$$

### 4. RESULTS

The results delivered from this study refer to significant improvement of positioning accuracy for all GPS track points, which were adjusted based on the methodology suggested in this study. The results showed that the vertical accuracy of GPS track points, which was computed based on the RMSE values, decreased from 6.8 m to 2.4 m by applying the adjusted procedures. Additionally, both of horizontal accuracy and three dimensional accuracy values were reduced with a percentage reaches to 66% and 65% respectively as shown in **Table 8**. Thus, distance error were computed for all GPS track points (before and after adjustment technique), and summarized in **Fig. 5**. It is remarkable that a considerable improvement in the homogeneity of the resulting

coordinates, which was delivered by decreasing the standard deviation value from 4.3713 m to 1.0909 m. Thus, differences of coordinates values, which computed relative to the reference points, were summarized in **Table 9**, for some of GPS track points.

## 5. CONCLUSIONS

This study showed the ability to enhance the quality of handheld GPS signals using a designed program for receiving and processing NMEA files. Additionally, the accuracy of handheld GPS positioning were increased to about 3m based on least squares adjustment technique with existing two control points. Moreover, decreasing of standard deviation to around 75% refers to the homogeneity improvement regarding distribution of errors on all GPS track points. Therefore, this study give the facility to use the low cost GPS in certain applications compatible with accuracy of 3 meters such as for GIS applications.

## REFERENCES

- Acosta, N., and Toloza, J., 2012, *Techniques to Improve the GPS Precision*, International Journal of Advanced Computer Science and Applications, Vol.3, No.8, PP.125-130.
- Adrdalan, A., and Awange, J.L., 2000, Compatibility of NMEA GGA with GPS Receivers Implementation, GPS Solutions journal, Vol.3, No.3, PP.1-3.
- Amin, M. S., Reaz, M. B. I., Bhuiyan, M. A. S., and Nasir, S. S., 2014, Kalman Filtered GPS Accelerometer Based Accident Detection and Location System: A Low-Cost Approach, Current Science, Vol.106, No.11, PP.1548-1554
- Amiri-Simkooei, A., and Sharifi, M., 2004, Approach for Equivalent Accuracy Design of Different Types of Observations, Journal of Surveying Engineering, Vol.130, No.1, PP.1-5.
- Boal, J. D., 1992, Guidlines and Specifications for GPS Surveys, Geodetic Survey Division, Canada.
- Bosy, J., Graszka, W., and Leończyk, M., 2007, ASG-EUPOS. A Multifunctional Precise Satellite Positioning System in Poland, European Journal of Navigation Vol.5, No.4, PP.2-6.
- Diggelen, F. v., 2007, GNSS Accuracy: Lies, Damn Lies, and Statistics, GPS World, Vol.18, No.1, PP.26-32.
- Fraser, R., Mowlam, A., and Collier, P., 2004, Augmentation of Low–Cost GPS Receivers via Web Services and Wireless Mobile Devices, Positioning, Vol.1, No.08, PP.85-94.
- Ince, C. D., and Sahin, M., 2000, Real-time Deformation Monitoring with GPS and Kalman Filter, Earth, planets and space, Vol.52, No.10, PP.837-840.
- Meduri, S.R, and Bramhanadam, P.S, 2012, Comparison of Dilution of Precision (DOP) in Multipath and Error free Environment Using Single Frequency Global Positioning



*System*, International Journal of Engineering and Advanced Technology (IJEAT), Vol.1, No.5, PP.445-448.

- Misra, P. and Enge, P., 2001, Global Positioning System. Signals, Measurements and Performance. Ganga-Jamuna Press, Massachusetts, U.S.
- Park, B., Lee, J., Kim, Y., Yun, H., and Kee, C., 2013, DGPS Enhancement to GPS NMEA Output Data: DGPS by Correction Projection to Position-Domain. Journal of Navigation, Vol.66, PP.249-264.
- Parmar, S. N., 2011, Design and Implementation of GPS based Navigation System for Location based Services, in International Conference on Technology Systems and Management (ICTSM) proceedings published by International Journal of Computer Applications (IJCA), PP.24-27.
- Rajendran, G., Arthanari, M., and Sivakumar, M., 2010, A Simplified NMEA Sentence Generator for the Simulation of GPS Tracking, Global Journal of Computer Science and Technology Vol.10, No.14, PP.19-26.
- Schwieger, V., 2003, Using Handheld GPS Receivers for Precise Positioning, 2nd FIG Regional Conference, Marrakech, Morocco, December 2-5, 2003.
- Sinivee, V., 2010, Simple Yet Efficient NMEA Sentence Generator for testing GPS Reception Firmware and Hardware, Novel Algorithms and Techniques in Telecommunications and Networking, Springer Netherlands, PP.207-210.
- Syedul Amin, Md., Bhuiyan, M.A.S., Reaz, M.B.I. and Nasir, S.S., 2013, GPS and Map Matching Based Vehicle Accident Detection System, IEEE Student Conference on Research and Development (SCOReD), Putrajaya, 16-17 December 2013.
- Witchayangkoon, B., 2000, Elements of GPS Precise Point Positioning, Maine: University of Maine.

Table 1. Format of signal sentences regarding to GGA – GNSS Fix Data, Adrdalan, and<br/>Awange, 2000 and Park, et al., 2013.

| Field     | Name                  | Explanation                                     |
|-----------|-----------------------|-------------------------------------------------|
| hhmmss.ss | UTC Time              | UTC of position in hhmmss.sss format            |
| 1111.111  | Latitude              | Latitude in ddmm.mmmm format                    |
| А         | N/S Indicator         | N' = North, S' = South                          |
| ууууу.ууу | Longitude             | Longitude in dddmm.mmmm format                  |
| А         | E/W Indicator         | E' = East, W' = West                            |
| X         | GPS quality indicator | GPS quality indicator                           |
| Uu        | Satellites Used       | Number of satellites in use, $(00 \sim 24)$     |
| v.v       | HDOP                  | Horizontal dilution of precision, (00.0 ~ 99.9) |
| W.W       | Altitude              | Mean sea level altitude in meter                |
| X.X       | Geoid separation      | In meter                                        |

| Zzzz | DGPS Station ID           | Differential reference station ID,<br>NULL when DGPS not used |
|------|---------------------------|---------------------------------------------------------------|
| Hh   | Detect errors in the data |                                                               |

# Table 2. Format of GLL – Geographic Position – Latitude/Longitude, Adrdalan, and Awange,2000; Park, et al., 2013 and Amin, et al., 2014.

| Field      | Name Explanation          |                                           |
|------------|---------------------------|-------------------------------------------|
| 1111.111   | Latitude                  | Latitude in ddmm.mmmm arrangement         |
| А          | N/S Indicator             | N' = North, S' = South                    |
| ууууу.ууу  | Longitude                 | Longitude in dddmm.mmmm arrangement       |
| В          | E/W Indicator             | E' = East, W' = West                      |
| hhmmss.sss | UTC Time                  | UTC of position in hhmmss.sss arrangement |
| А          | Status                    | A= data adequate, V= data not adequate    |
| Hh         | Detect errors in the data |                                           |

| Table 3. | Format of GSA – GNSS Satellites Active and DOP, Adrdalan, and Awange, 2000 and |
|----------|--------------------------------------------------------------------------------|
|          | Park, et al., 2013.                                                            |

|       |                           | 1 ark, et al., 2015.                                |
|-------|---------------------------|-----------------------------------------------------|
| Field | Name                      | Explanation                                         |
|       |                           | Mode                                                |
| А     | Mode                      | 'M' = Manual, required to run in 2D or 3D style     |
|       |                           | 'A' = Automatic, acceptable to mechanically shift   |
| X     | Mode                      | Fix form                                            |
| Λ     |                           | 1= Fix not accessible, 2= 2dimention, 3= 3dimention |
| xx's  | Satellite ID              | In the best way 12 satellites are involved in each  |
| XX S  |                           | GSA sentence.                                       |
| u.u   | PDOP                      | Position dilution of precision (00.0 to 99.9)       |
| v.v   | HDOP                      | Horizontal dilution of precision (00.0 to 99.9)     |
| Z.Z   | VDOP                      | Vertical dilution of precision (00.0 to 99.9)       |
| Hh    | Detect errors in the data |                                                     |

## Table 4. Format of GSV – GNSS Satellites in View, Adrdalan, and Awange, 2000 and Park, etal., 2013 .

| Field | Name                      | Explanation                                             |
|-------|---------------------------|---------------------------------------------------------|
| Х     | Number of message         | Whole number of GSV messages to be transferred (1-3)    |
| U     | Order number              | Order number of current GSV message                     |
| Xx    | Satellites in view        | Total number of satellites in view $(00 \sim 12)$       |
| Uu    | Satellite ID              | Greatly 4 satellites are included in each GSV sentence. |
| Vv    | Elevation                 | Elevation of satellite in degrees, $(00 \sim 90)$       |
| Zzz   | Azimuth                   | Satellite azimuth angle in degrees, (000 ~ 359)         |
| Ss    | SNR                       | C/No in dB (00 ~ 99)                                    |
|       |                           | Useless when not tracking                               |
| Hh    | Detect errors in the data |                                                         |

ууууу.ууу

Α

x.x

u.u

Xxxxxx

V

Hh

| Table 5.1 official of Rive Recommended Winning Specific GR55 Data, Auruanan, a |               |                                                                       |  |
|--------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------|--|
| Awange, 2000; Park, et al., 2013 and Amin, et al., 2014.                       |               |                                                                       |  |
| Field                                                                          | Name          | Explanation                                                           |  |
| hhmmss.ss                                                                      | UTC Time      | UTC time in hhmmss.sss format                                         |  |
| х                                                                              | Situation     | Situation<br>'A' = Data Suitable<br>'V' = Navigation receiver caution |  |
| 1111.111                                                                       | Latitude      | Latitude in dddmm.mmmm format.                                        |  |
| А                                                                              | N/S Indicator | North='N', South='S'                                                  |  |

Longitude E/W Indicator

Speed above ground

Track above ground

UTC Epoch

Style index

Detect errors in the data

| Table 5. Format of RMC – Recommended Minimum Specific GNSS Data, Adrdalan, and |
|--------------------------------------------------------------------------------|
| Awange, 2000; Park, et al., 2013 and Amin, et al., 2014.                       |

Longitude in dddmm.mmmm arrangement

East='E', West='W'

Speed above ground in knots (000.0 ~ 999.9)

Track above ground in degrees (000.0 ~ 359.9)

UTC epoch of position solution, ddmmyy

Style index

'N' = Files not adequate, 'A' = at large style 'D' = differed style, 'E' = Expected style

| Table 6. Format of VTG - Course over Ground and Ground Speed, Awange, 2000 and Amin, et | t |
|-----------------------------------------------------------------------------------------|---|
| al., 2014.                                                                              |   |

|       |                           | un, 2011.                                                                                                |
|-------|---------------------------|----------------------------------------------------------------------------------------------------------|
| Field | Name                      | Explanation                                                                                              |
| X.X   | Course                    | Track above ground, degrees Right (000.0 ~ 359.9)                                                        |
| y.y   | Course                    | Track above ground, degrees Magnetic (000.0 ~ 359.9)                                                     |
| u.u   | Quickness                 | Quickness above ground in knots (000.0 ~ 999.9)                                                          |
| v.v   | Quickness                 | Quickness above ground in kilometers per hour (0000.0 ~<br>1800.0)                                       |
| М     | Style index               | Style index<br>'N' = not adequate, 'A' = at large style, 'D' = = differed style,<br>'s' = Expected style |
| Hh    | Detect errors in the data |                                                                                                          |

| Table 7. Values of dilution of p | precision, Awange, 2000 and Amin, et al., 2014. |
|----------------------------------|-------------------------------------------------|
|----------------------------------|-------------------------------------------------|

| DOP Value | Ranking   | Explanation                                                                                                                                  |
|-----------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------|
| < 20      | Poor      | Observations are inaccurate                                                                                                                  |
| 10-20     | Fair      | Denotes a low confidence level. Positional<br>observations should be used only to show a very<br>irregular estimate of the current location. |
| 5-10      | Mild      | Positional observations could be used for designs,<br>however the fix quality could still be improved                                        |
| 2-5       | Good      | Positional observations could be used to make reliable in-route navigation plans to the user.                                                |
| 1-2       | Excellent | For precise positional observations                                                                                                          |
| < 1       | Ideal     | For peak possible confidence level                                                                                                           |

| GPS points           | RMSE<br>(vertical<br>error) | RMSE<br>(horizontal<br>error) | RMSE<br>(three dimensional<br>error) | standard deviation |  |
|----------------------|-----------------------------|-------------------------------|--------------------------------------|--------------------|--|
| Before<br>adjustment | 6 8131 9 384                |                               | 11.5970                              | 4.3713             |  |
| After<br>adjustment  | 2.4012                      | 3.1667                        | 3.9741                               | 1.0909             |  |

Table 8. Resulting errors of GPS track points.

**Table 9**. Difference of coordinates between reference points and GPS track points for arbitrary sample of points.

| No. | Reference Control Points |             |            | GPS Track Points<br>(before adjustment) |        |         | GPS Track Points<br>(after adjustment) |           |        |
|-----|--------------------------|-------------|------------|-----------------------------------------|--------|---------|----------------------------------------|-----------|--------|
|     |                          |             |            |                                         |        |         |                                        |           |        |
|     | 1                        | 2691756 652 | 442080 126 | 27.055                                  | 11 201 | 10 756  | 10.200                                 | 1 5 1 9 4 | 1 2762 |
| 1   | 3681756.653              | 442080.126  | 37.055     | 11.801                                  | 10.756 | 10.388  | 1.5184                                 | 1.2763    |        |
| 2   | 3681814.996              | 442074.611  | 37.173     | 9.6115                                  | 6.6597 | 5.0265  | 2.8727                                 | 1.6527    | 0.3945 |
| 3   | 3681817.526              | 442012.727  | 37.141     | 1.5255                                  | 7.8554 | 10.368  | 2.9382                                 | 2.5492    | 0.2954 |
| 4   | 3681819.211              | 441960.039  | 37.186     | 3.2952                                  | 10.082 | 0.84906 | 0.4820                                 | 3.9264    | 1.9872 |
| 5   | 3681881.184              | 441960.216  | 37.516     | 4.5455                                  | 3.218  | 1.8351  | 0.0897                                 | 0.2153    | 0.5635 |
| 6   | 3681930.842              | 441955.21   | 37.563     | 7.572                                   | 3.7965 | 11.509  | 3.5739                                 | 1.8633    | 2.2434 |
| 7   | 3681930.848              | 441955.224  | 37.552     | 5.9841                                  | 8.8633 | 0.15307 | 1.9778                                 | 0.2711    | 3.5906 |
| 8   | 3681987.892              | 441960.177  | 37.495     | 7.2642                                  | 6.9174 | 9.6885  | 1.1543                                 | 1.0762    | 2.3768 |
| 9   | 3682054.395              | 441961.244  | 37.476     | 7.8596                                  | 10.539 | 10.828  | 1.9035                                 | 1.4732    | 2.6224 |
| 10  | 3682052.282              | 442019.832  | 37.492     | 1.8268                                  | 2.311  | 9.4917  | 3.7528                                 | 2.4817    | 1.1314 |
| 11  | 3682010.698              | 442017.069  | 37.811     | 0.72846                                 | 4.6779 | 3.5996  | 0.8207                                 | 1.7565    | 0.1090 |
| 12  | 3681954.797              | 442014.695  | 38.057     | 8.8102                                  | 1.2505 | 9.5109  | 3.5047                                 | 2.4404    | 0.8144 |
| 13  | 3681882.434              | 442007.819  | 37.835     | 9.3927                                  | 6.3888 | 3.0402  | 2.0797                                 | 0.2153    | 3.4487 |
| 14  | 3681871.347              | 441911.405  | 38.302     | 0.85146                                 | 7.5096 | 0.29618 | 1.7717                                 | 2.1920    | 2.2674 |
| 15  | 3681857.675              | 441846.845  | 38.312     | 0.74451                                 | 1.5553 | 5.4074  | 2.7216                                 | 1.4855    | 0.3129 |
| 16  | 3681848.25               | 441795.361  | 38.224     | 8.068                                   | 10.273 | 5.9813  | 1.8254                                 | 0.1914    | 2.9530 |
| 17  | 3681858.177              | 441742.009  | 38.025     | 0.58541                                 | 3.766  | 7.6996  | 0.1520                                 | 3.8170    | 2.9695 |
| 18  | 3681867.205              | 441687.375  | 38.277     | 9.4366                                  | 3.4698 | 5.9744  | 3.7498                                 | 2.0535    | 0.9636 |
| 19  | 3681866.141              | 441626.473  | 37.76      | 9.8212                                  | 7.1415 | 6.4371  | 1.0399                                 | 3.0359    | 3.9734 |
| 20  | 3681932.233              | 441634.247  | 37.025     | 3.9705                                  | 4.9403 | 9.5281  | 1.4268                                 | 3.0114    | 0.4402 |
| 21  | 3681944.419              | 441677.567  | 37.735     | 4.1185                                  | 5.5513 | 4.4139  | 2.3882                                 | 1.7224    | 2.9229 |
| 22  | 3682021.664              | 441668.044  | 37.394     | 8.1548                                  | 6.8133 | 7.8213  | 1.0447                                 | 0.3792    | 1.8039 |
| 23  | 3682012.264              | 441608.496  | 37.133     | 5.8934                                  | 4.7815 | 5.7298  | 2.5603                                 | 0.5282    | 1.8113 |
| 24  | 3682036.929              | 441743.654  | 37.454     | 0.79905                                 | 4.9323 | 11.629  | 2.6088                                 | 3.3080    | 1.2323 |
| 25  | 3681988.463              | 441755.84   | 37.518     | 9.3687                                  | 8.7482 | 9.1878  | 1.6095                                 | 3.5369    | 2.8023 |
| 26  | 3682012.79               | 441805.479  | 37.993     | 9.079                                   | 10.119 | 9.2419  | 0.9675                                 | 3.0393    | 1.1637 |
| 27  | 3682055.342              | 441793.475  | 37.249     | 11.744                                  | 1.3363 | 4.7529  | 1.1098                                 | 0.0244    | 1.4988 |
| 28  | 3682055.827              | 441839.834  | 37.307     | 5.9047                                  | 3.0971 | 0.44359 | 1.7477                                 | 1.2172    | 1.1634 |
| 29  | 3682013.483              | 441859.114  | 37.814     | 11.693                                  | 8.7171 | 1.7756  | 0.9701                                 | 3.7467    | 3.4408 |



| 30 | 3681949.014 | 441882.158 | 38.02  | 1.7747  | 8.4579 | 4.5719   | 1.5889 | 1.9177 | 2.2600 |
|----|-------------|------------|--------|---------|--------|----------|--------|--------|--------|
| 31 | 3681936.117 | 441836.105 | 38.215 | 0.91694 | 4.9301 | 1.7159   | 1.9585 | 1.0792 | 3.9590 |
| 32 | 3681909.788 | 441784.371 | 38.321 | 9.587   | 11.163 | 0.056634 | 0.7347 | 3.4466 | 0.1305 |
| 33 | 3681791.576 | 441619.32  | 37.623 | 7.8005  | 8.1424 | 3.0435   | 1.3278 | 2.9950 | 2.1731 |
| 34 | 3681718.139 | 441620.216 | 37.704 | 10.118  | 3.5275 | 0.32232  | 0.6770 | 3.8088 | 3.6619 |
| 35 | 3681745.826 | 441734.395 | 37.71  | 1.1197  | 9.5746 | 8.5368   | 1.0057 | 2.3143 | 1.7710 |
| 36 | 3681798.809 | 441731.341 | 36.987 | 9.4009  | 7.4871 | 9.905    | 3.5824 | 1.9300 |        |
| 37 | 3681737.609 | 441778.682 | 38.166 | 0.42027 | 4.8657 | 2.996    | 1.2470 | 0.2213 | 3.0152 |
| 38 | 3681728.833 | 441826.792 | 38.28  | 5.7708  | 10.57  | 3.3682   | 0.5278 | 1.4237 | 1.5835 |



Figure 1. Designed program for loading and processing NMEA file.



Figure 2. Illustrative sketch for the GPS baselines, which created between the GPS track points and the control points using the designed program.





Figure 3. Distribution of reference control points in the campus of the University of Baghdad.



Figure 4. The connection between a Pc and Garmin GPS for data post - processing.



Figure 5. The histogram of distance error for all GPS track points before and after adjustment.