
Journal of Engineering Volume   19  October  2013 Number 10  

 

1212 

 

Exact Stiffness Matrix for Nonprismatic Beams with Parabolic 
Varying Depth 

Dr.Musab Aied Qissab Al-Janabi                                                                                                                                                      
Lecturer/ Department of Civil Engineering                                                                                                         

AL-Nahrain University 



ABSTRACT                                                                                                                                                                               
In this paper, an exact stiffness matrix and fixed-end load vector for nonprismatic beams having parabolic 
varying depth are derived. The principle of strain energy is used in the derivation of the stiffness matrix. 
The effect of both shear deformation and the coupling between axial force and the bending moment are 
considered in the derivation of stiffness matrix. The fixed-end load vector for elements under uniformly 
distributed or concentrated loads is also derived. The correctness of the derived matrices is verified by 
numerical examples. It is found that the coupling effect between axial force and bending moment is 
significant for elements having axial end restraint. It was found that the decrease in bending moment was 
in the range of 31.72%-42.29% in case of including the effect of axial force for the studied case. For 
midspan deflection, the decrease was 46.07% due to the effect of axial force generated at supports as a 
result of axial restraint.  
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 الخلاصة

المثبتة للأعتاب الغير موشورية ذات العمق المتغير لاخطيا (قطع  اتساءة و متجه حمل النهايفي هذا البحث، تم اشتقاق مصفوفة الج
الأخذ بنظر الإعتبار تأثير تشوهات القص والتأثير المتبادل بين  مع نفعال في اشتقاق مصفوفة الجساءةقة الإتم استعمال مبدأ طا ىء).مكاف

تم  المثبتة لعناصر ذات احمال موزعة بإنتظام او أحمال مركزة. اتكذلك، تم اشتقاق متجه حمل النهاي القوة المحورية وعزم الإنحناء.
وجد بأن التأثير  ت صحة المصفوفات التي تم اشتقاقها. من خلال النتائج التي تم الحصول عليهااختيار عدة امثلة تطبيقية لغرض اثبا

المتبادل للقوة المحورية مع عزم الإنحناء ذات فاعلية بالنسبة للأعضاء ذات النهايات المقيدة محوريا. فقد لوحظ تناقصا في مقدار عزم 
أما بالنسبة  .بالنسبة للحالة التي تم دراستها في حال تم ادخال تأثير القوة المحورية %42.29الى  %31.72الإنحناء وبنسب تتراوح من  

  في منتصف الفضاء نتيجة لتأثير القوة المحورية المتولدة من تقييد الحركة المحورية للمساند %46.07للهطول، فقد كان التناقص بنسبة  
 .هامقارنة مع الحالة التي تم فيها اهمال تأثير

  

الكلمات الرئيسية: الجساءة، قطع مكافىء،تشوهات القص، القوة المحورية، الأعتاب     
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INTRODUCTION 
Members with variable depth are used in many 
engineering structures such as highway bridges, 
buildings, as well as in many mechanical 
components and aerospace engineering structures. 
In civil engineering construction, nonprismatic 
members are frequently used to optimize material 
distribution and stresses, increase the overall 
stability and stiffness, reduce the dead load 
positive moment and deflection, and sometimes to 
satisfy architectural requirements. Accordingly, 
the analysis of structures having nonprismatic 
elements is of interest in structural, mechanical, 
and aerospace engineering. The analysis of 
nonprismatic members is covered in several 
publications (e.g., Timoshenko and Young 1965; 
AL-Gahtani 1996; Al-Gahtani and Khan 1998; 
Luo et al 2007). Most of the available publications 
deal with the analysis of tapered members only. 
Some particular cases (e.g., Timoshenko and 
Young 1965; AL-Gahtani 1996) deal with the 
analysis of nonprismatic beams having parabolic 
varying depth. However, these cases are limited to 
the analysis only (no stiffness matrix derivation) 
of such type of members involving lengthy and 
tedious calculations which are not applicable for 
use in the analysis packages in which the analysis 
is based on matrix operations. In addition, the 
available analytical solutions do not consider the 
effect of shear deformation and the axial force-
bending moment interaction.  The other 
alternative publications deal with the numerical 
methods of analysis such as the finite element 
method (e.g., Bathe 1996) in which the member is 
discretized to a number of elements and the 
stiffness matrices of the elements are assembled to 
obtain the stiffness matrix for the whole member. 
The main disadvantage resulting from member 
discretization is the large number of input data 
required even for simple structures.                                                                           
      The purpose of this paper is to present an 
exact stiffness matrix for nonprismatic beam 
elements with parabolic varying depth including 
the effect of shear deformation and the axial 
force-bending moment interaction. The 
correctness of the derived stiffness matrix and the 
fixed-end load vector is examined through 
numerical examples.                                                
                         

 

                                                                           

 

PROBLEM STATEMENT                              
                                                                                                                              

Consider a nonprismatic Euler- Bernoulli beam  
element of length L as shown in Fig. 1(a). The 
element is rectangular in cross-section and has a 
parabolic varying depth and constant width. Three 
degrees of freedom are assumed at each node. 
Only the deformation in the plane of the element 
and the bending moment about the centroidal 
main axis are considered. The positive direction of 
displacements and forces are as shown in Fig. 
1(b).                                                                         
                                                                                    
    The stiffness components corresponding to the 
degrees of freedom shown in Fig. 1(b) can be 
obtained by using Castigliano's second theorem 
(Boresi, A.P. and Schmidt, R.J. 2003), which 
states that the deflection caused by an external 
force is equal to the partial derivative of the strain 
energy (U) with respect to that force. The total 
strain energy (U) for the element shown in Fig. 
1(a) including the strain energy caused by bending 
moment, shear and axial forces can be given by 

0 0

0

2 2
1 1.2

22 2

2
1

2

L L

L

M Qx xU dx dx
E I Gb hx x

Px d x
Eb hx

= +

+

∫ ∫

∫

    (1)                                                                     

where Mx, Qx, Px, Ix, hx,  are the bending moment, 
shear force, axial force, moment of inertia and the 
depth of the element at the distance x respectively; 
b, E, G, are the width of the element, Young's and 
shear modulus of elasticity,  respectively. The 
bending moment Mx, shear force Qx, and the axial 
force  Px can be found from equilibrium as 
follows                                                                                
                                                          

2
0

1 ( )
2x i i iM P h cx Q x M= + −               (2a)                                                                                                                                                                                                

x iQ Q=  (2b)                                                                   
x iP P=                                                             (2c)       

   The moment of  inertia and the depth of  the 
element cross section at a distance x can be given 
by                   

3
2 3 2 30

0(1 ) (1 )
12x

bh
I cx I cx= + = + ; 2

0 (1 )xh h cx= +   
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                                                                            (3) 

 where h0=the minimum depth of the element (at 
the origin), c=(h1-h0)/(h0L2), and h1= the max-
imum depth of the element.                                                                                                                                             

      Substituting eqs. (2a), (2b), (2c), and (3) into 
eq. (1) and after integrations, the following exact 
expression for the strain energy can be given as    

                                                      
2 2

2 0
0 0 1 0 2

0

2
3 0 4 5

2
6 0

1 ( ) ( ) ( )
2 4

( ) ( ) ( )

( 2 ) (4)

i
i i i
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P h
U P I a a P M h a

EI

M a P Q h a M Q a

Q a EI K


= + −



+ + −


+ + 


     

where  

                                                                                                                                       
0

0
0

a
c A
φ

=                                                          (5a)     

                                                                                                                                                                                                                       
3

1 0 0 0 0
1 3 1 1 1sin(2 ) sin cos

4 2 4 4
a

c
φ φ φ φ

  = − −  
    

(5b)  

                                                             

2 0 0
1 1 1 sin(4 )

2 84
a

c
φ φ = −  

                               (5c)  

3
3 0 0 0 0

1 3 1 1 1sin(2 ) cos sin
4 2 4 4

a
c

φ φ φ φ
  = + +  

  
(5d)  

4 2 2 2
1 1 1 1
2 22(1 ) (1 )

a
c cL cL

 
= − + 

+ +  
                   (5e) 

5 2 2
1 11
2 (1 )

a
c cL

 
= − 

+  
                                      (5f) 

( )6 2
1a a
c

=                                                          (5g) 

and       
                                                                                                                                    

0

0

1.2
2vK
GA c

φ
= , 1

0 tan ( )c Lφ −= ,and 0 0A bh=  

                                                                            (6)   
   The partial derivative of the strain energy (U) 
with respect to Pi, Qi, and Mi can be given 
respectively as follows                                          

                                  

( ) ( )

2
0

0 0 1

0
0 4 0 2

2 ( )1 2
2

( ) ( )

i
i

i
i i

h
P I a aU u

P EI
Q h a M h a

  
+ +  ∂  = =   ∂  
−  

        (7)    

                                                                             

( ) ( )0 4 6 0

0 5

( ) 2( ) 41
2 ( )

i i v
i

i i

P h a Q a EI KU v
Q EI M a

 + +∂
= =  

∂ −  
                                    

                                                                            (8) 

 

( ) ( )0 2 5 3
0

1 ( ) (2 )
2i i i i

i

U P h a Q a M a
M EI

θ∂  = = − − + ∂
                                                            

                                                                            (9)  

where ui, vi, and iθ  are the displacement 
components in horizontal ,vertical directions, and 
rotation angle at node (i) respectively.  

   The stiffness coefficient (kij) of an element can 
be defined as the force or moment at node (i) 
required to induce a unit displacement or rotation 
at node (j) with all other displacements equal to 
zero. Therefore, eqs. (7), (8), and (9) will be used 
to derive the stiffness matrix of the element.                       
    Writing eqs. (7), (8), and (9) in a matrix form 
yield the following  

                

( ) ( )
( ) ( )
( )

2
0

0 0 1 0 4 0 2

0 4 6 0 5

0 2 5 3

0

(2 ( )) ( ) ( )
2

( ) 2( ) 4 ( )
( ) ( ) (2 )

2

i

v i

i

i

i

i

h
I a a h a h a P

h a a EI K a Q
h a a a M

u
EI v

θ

 
+ −       + −  

   − −   
  

 
 =  
 
 

                                                                          (10) 

or      

                                                                                                                                      
[ ]{ } { }02D F EI δ= ;{ } [ ] { }1

02F EI D δ−=  
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                                                                          (11)  
where 

                                    

[ ]

( ) ( )
( ) ( )
( )

11 12 13

12 22 23

13 23 33

2
0

0 0 1 0 4 0 2

0 4 6 0 5

0 2 5 3

(2 ( )) ( ) ( )
2

( ) 2( ) 4 ( )
( ) ( ) (2 )

v

d d d
D d d d

d d d

h
I a a h a h a

h a a EI K a
h a a a

 
 =  
  
 

+ − 
 
 = + −
 − − 
  

                                                                         (12) 

 

 { }
i

i

i

P
F Q

M

 
 =  
 
 

;{ } 02
i

i

i

u
EI vδ

θ

 
 =  
 
 

                          (13) 

 

AXIAL STIFFNESS 

Applying a unit axial displacement at node (i) 
with all other displacements equal to zero (i.e. put 
ui=1, vi= 0, and 0iθ =  in the displacements vector 
δ ), the stiffness coefficients corresponding to 
that displacement can be found by solving eq. (11) 
for the column matrix F , hence                 

 20
11 33 22 23

2
( )i

EI
k P d d d

λ
= = −                         (14a) 

0
21 33 12 13 23

2
( )i

EI
k Q d d d d

λ
−

= = −                    (14b) 

0
31 23 12 13 22

2
( )i

EI
k M d d d d

λ
= = −                     (14c)  

    From equilibrium, the force vector (or stiffness 
coefficients) at node (j) corresponding to the unit 
axial displacement at node (i) can be given as 

 

41 11jk P k= = −                                                (14d) 

                                                                 
51 21jk Q k= = −                                               (14e)                                                                          

1 0
61 11 21 31( )

2j
h h

k M k k L k
−

= = + −
                

(14f) 

 

  where                                                       

( )2
11 33 22 23 12 33 12 13 23

13 23 12 13 22

( )

( )

d d d d d d d d d

d d d d d

λ = − − − +

−
                                              

                                                                          (15) 

FLEXURAL STIFFNESS 

Following the same procedure given for the 
derivation of axial stiffness, the flexural 
(translational and rotational) stiffness coefficients 
can be obtained by applying a unit lateral 
displacement or a unit rotation (with all other 
displacements equal to zero) to obtain the 
translational or rotational stiffness coefficients, 
respectively.                                                            
                                                                                                                                                        
    Hence, by substituting ui=0, vi= 1, and 0iθ =  in 
the displacements vector δ , the translational 
stiffness coefficients can be given as                     

                                                                               
0

12 33 12 13 23
2

( )i
EI

k P d d d d
λ

−
= = −                   (16a) 

20
22 33 11 13

2
( )i

EI
k Q d d d

λ
= = −                        (16b) 

 0
32 23 11 13 12

2
( )i

EI
k M d d d d

λ
−

= = −                 (16c) 

 

     From equilibrium, the stiffness coefficients or 
the force vector at node (j) corresponding to the 
unit lateral displacement at node (i) (i.e. ui=0, vi= 
1, and 0iθ = ) can be given as                                    

42 12 jk k P= − =                                                (16d) 

                                                                                                                  
52 22jk Q k= = −                                                (16e) 

1 0
62 12 22 32( )

2j
h h

k M k k L k
−

= = + −                 (16f)                                                

Similarly, the rotational stiffness coefficients can 
be obtained by substituting ui=0, vi= 0, and 
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1iθ = in the displacement vector [ ]δ  and solving 
eq. (11) as follows 

0
13 23 12 13 22

2
( )i

EI
k P d d d d

λ
= = −                       (17a)  

0
23 23 11 13 12

2
( )i

EI
k Q d d d d

λ
−

= = −                    (17b)  

20
33 22 11 12

2
( )i

EI
k M d d d

λ
= = −                        (17c) 

and from equilibrium 

43 13jk P k= = −                                                 (17d) 

                                                                                                                  
53 23jk Q k= = −                                                (17e) 

1 0
63 13 23 33( )

2j
h h

k M k k L k
−

= = + −
               

 (17f)    

        Taking advantage of the symmetry 
characteristic in the stiffness matrix, and from 
equilibrium requirements, the other coefficients of 
the 6*6 stiffness matrix can be given as follows 

20
14 33 22 23

2
( )

EI
k d d d

λ
−

= −                              (18a)   

                                                                                                                 
0

24 33 12 13 23
2
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EI

k d d d d
λ

= −                              (18b)   
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2
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−

= −                           (18c)  

20
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2
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EI
k d d d

λ
= −                                (18d) 
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2
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EI
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λ
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= −                           (18e)                                                        

1 0
64 14 24 34( )

2
h h

k k k L k
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= + −                           (18f)   

0
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2
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k d d d d

λ
= −                              (19a)  

20
25 33 11 13

2
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λ
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0
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2
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k d d d d

λ
= −                              (19c)  

0
45 33 12 13 23

2
( )
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k d d d d

λ
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= −                           (19d)  

20
55 33 11 13

2
( )

EI
k d d d

λ
= −                                  (19e)  

1 0
65 15 25 35( )

2
h h

k k k L k
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= + −                           (19f)  

1 0
16 11 21 31( )

2
h h

k k k L k
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1 0
26 12 22 32( )

2
h h

k k k L k
−

= + −                          (20b)  

1 0
36 13 23 33( )

2
h h

k k k L k
−

= + −                          (20c)  

1 0
46 11 21 31( )

2
h h

k k k L k
−

= − − +                        (20d)  

1 0
56 12 22 32( )

2
h h

k k k L k
−

= − − +                        (20e)  

1 0
66 16 62 36( )

2
h h

k k k L k
−

= + −                           (20f) 

where λ  is given by eq. (15) 

    Similar results can be obtained for the stiffness 
coefficients given by eqs. (18a)-(20f)  by using 
the same procedure presented before. Therefore, 
substituting for Mx, Qx, and Px in the strain energy 
expression (eq. (1)) interms of the nodal force 
vector at node (j) and following the same previous 
procedure will yield the same expressions given in 
eqs. (18a)-(20f).                                                                                                   
The obtained stiffness coefficients can be written 
in a matrix form as 

[ ]

11 12 13 14 15 16

22 23 24 25 26

33 34 35 36

44 45 46

55 56

66

.

k k k k k k
k k k k k

k k k k
K

sym k k k
k k

k

 
 
 
 

=  
 
 
 
  

                (21) 

For a beam element having an orientation as 
shown in Fig. 2, the stiffness coefficients can be 
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obtained by the same previous procedure. The 
stiffness matrix for this case can be written 
interms of the obtained coefficients (eqs. (14a)-
(20f)) of the above stiffness matrix as follows 

 

11 12 13 14 15 16

22 23 24 25 26

33 34 35 36

44 45 46

55 56

66

.

k k k k k k
k k k k k

k k k k
K

sym k k k
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 
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 
  

          (22) 

in which                                                                   
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2
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2
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2
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35 12 22 32( )

2
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2
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−
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2
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0
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2
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0
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2
( )
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k d d d d

λ
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20
55 33 11 13

2
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0
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2
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2
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For elements having no axial force-bending 
moment coupling such as when the centroidal axis  
of the element is straight (i.e. the element is 
symmetric about centroidal axis), the obtained 
coefficients can be modified by substituting the 
following values for the[ D ]matrix coefficients 
(eq. (12)) such that 

 

[ ] ( )
11 12 13 0 0

12 22 23 6 0 5

13 23 33 5 3

(2 ) 0 0
0 2( ) 4 ( )
0 ( ) (2 )

v

d d d I a
D d d d a EI K a

d d d a a

   
   = = + −   
   −   

                                                                        

                                                                          (27) 

FIXED-END LOAD VECTOR DUE TO 
UNIFORM LOAD                                          
                                                                                
Consider a nonprismatic beam element with a 
parabolic varying depth under a uniform load q as 
shown in Fig. 3(a). By using the principle of 
superposition and knowing that the sum of all 
displacement components in each direction at the 
fixed end must be zero, the flexibility matrix 
equation corresponding to node (i) can be written 
as               
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h

q
c c

β γ γ β

γ α

α β

α

φ

α

 − −
 

  
 −   −     +        − − −   +  

 
 
 
 

=  
 
 −
 
 

                                                                          (28) 

where                                                                                                                              

0 0
1 1 sin(4 )
8 32

α φ φ= −                                          (29)  

3
0 0 0 0

1 3 1 1cos sin sin(2 )
4 4 2 4

β φ φ φ φ = + + 
 

          (30)  

2 2 2
1 21

(1 ) (1 )cL cL
γ

 
= + −  + + 

                            (31)  

1 0 0 0
3 1 1sin(2 ) sin(4 )
8 4 32

α φ φ φ = − + 
 

                 (32)                                               

( )
2 2

0 0 0
1 0 1

0
2

4 4
I h h
A

β φ β γ
 

= + + −  
 

                     (33)  

1 0 0
1 1 sin(2 )
2 4

γ φ φ = + 
 

                                     (34) 

    Writing the flexibility matrix [ ]F  in eq. (28) in 
the form  

                                                             

[ ]
11 12 13

21 22 23

31 32 33

0 0
1 1

0
3/2 2 2

0
2 2

1 ( ) ( ) ( )
8 2

1 1 1( ) ( ) 1
8 4 (1 )

1 1 1( ) 1 ( )
42 (1 )

f f f
F f f f

f f f

h h
cc c

h
c cc cL

h
cc cL c

β γ γ β

γ α

α β

 
 =  
  
 − −
 
 

 − = −   +  
  − − −   +  

                                                                           

                                                                          (35) 

and solving eq. (28) for the unknown fixed end 
reactions FiP , FiQ , and FiM yields                         

   
4

0 1 0
33 22 23 32 33 12 32 133/2 2

23 12 22 133/2

sin
( ) ( )

4 8

( )
2

Fi
hqP f f f f f f f f
c c

f f f f
c

α φ
ψ

α


= − − −


− − 


                                                                        (36a)  

4
0 1 0

33 21 31 23 33 11 31 133/2 2

23 11 21 133/2

sin
( ) ( )

4 8

( )
2

Fi
hqQ f f f f f f f f
c c

f f f f
c

α φ
ψ

α

 −
= − + −


+ − 


                                                                        (36b)  

4
0 1 0

32 21 31 22 32 11 31 123/2 2

22 11 21 123/2

sin
( ) ( )

4 8

( )
2

Fi
hqM f f f f f f f f
c c

f f f f
c

α φ
ψ

α


= − − −


− − 


                                                                        (36c)  

where                                                        

11 22 33 32 23 12 33 21 31 23

13 32 21 31 22

( ) ( )
( )

f f f f f f f f f f
f f f f f

ψ = − − −

+ −
                                                                                                    

                                                                          (37) 

   The right hand side of eq. (28) represents the 
free-end displacement vector at node (i) due to 
applied load q.  
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    From equilibrium, the fixed-end reactions at 
node (j) can be given as                                                

Fj FiP P= − ,  Fj FiQ qL Q= − ,  and 
2

1 0

2 2Fj Fi Fi Fi
h h qLM P Q M
− 

= + − − 
 

                                 

                                                                          (38) 

FIXED-END LOAD VECTOR DUE TO 
CONCENTRATED LOAD 

For a beam element loaded by a concentrated load 
(P) at an arbitrary location defined by a distance 
(L1) from the left support as shown in Fig. 3(b), 
the fixed-end load vector can be derived by using 
the same procedure given before. The flexibility 
matrix equation for this case can be given 
as

0 0
1 1

0
3/2 2 2

0
2 2

1

2

3

1 ( ) ( ) ( )
8 2

1 1 1( ) ( ) 1
8 4 (1 )

1 1 1( ) 1 ( )
42 (1 )

Fi

Fi

Fi

h h
cc c

P
h

Q
c cc cL M
h

cc cL c

P

β γ γ β

γ α

α β

δ
δ
δ

 − −
 

  
 −   −     +        − − −   +  

 
 =  
 
 

                                                                          (39) 

where 

( )

0
1 2 2 2 2

1

1 1 02 2
1

1 1 12
8 (1 ) (1 ) (1 )

1 4 ( ) ( )
(1 )

h
c cL cL cL

L c
cL

δ

φ β φ β

   −
= − +    + + + 


− + + − + +  

                                                                                  

                                                                        
(40a)   

2 0 1 0 13/2

1 2 2 2 2
1

1 1 1( ) (sin(4 ) sin(4 )
2 84

1 1
(1 ) (1 )

c

L c
cL cL

δ φ φ φ φ
 = − − − 
 

 
+ −  + + 

            

                                                                        (40b)  

3 1 2 2 2 2
1

1 1 14 ( )
4 (1 ) (1 )

L c
c cL cL

δ β β
  −
 = − + −   + +  

                                                                  

                                                                        (40c)  

 

3
1 1 1 1

1 3 1 1cos sin sin(2 )
4 4 2 4

β φ φ φ φ = + + 
 

,  

1
1 1tan ( )c Lφ −=                                                       

                                                                          (41) 

and all other constants are previously defined. 

Solving eq. (39) yields the following expressions 
for the unknowns fixed-end reactions at node (i) 
interms of the flexibility matrix coefficients  

(

)

1 33 22 23 32 2 33 12 32 13

3 23 12 22 13

( ) ( )

( )

Fi
PP f f f f f f f f

f f f f

δ δ
ψ
δ

= − − −

+ −
                                       

                                                                        (42a) 

(

)

1 33 21 31 23 2 33 11 31 13

3 23 11 21 13

( ) ( )

( )

Fi
PQ f f f f f f f f

f f f f

δ δ
ψ
δ

= − − + −

− −
                                    

                                                                        (42b)          

(

)

1 32 21 31 22 2 32 11 31 12

3 22 11 21 12

( ) ( )

( )

Fi
PM f f f f f f f f

f f f f

δ δ
ψ
δ

= − − −

+ −
                                     

                                                                 (42c) 

      And from equilibrium, the fixed-end reactions 
at node (j) can be given as                                      

Fj FiP P= − , Fj FiQ P Q= − ,and 

1 0
1( )

2Fj Fi Fi Fi
h h

M P Q M P L L
− 

= + − − − 
 

                            

                                                                          (43) 

NUMERICAL EXAMPLES 

To verify the correctness of the derived matrices, 
the following examples are considered. 

Example 1 

Consider the beam shown in Fig. 4 which has a 
single span  of length, L=1units and fixed at both 
ends. The beam is carrying a uniformly distributed 
load, q=1. The depth of the beam is h0 =1units at 
the left end and increase parabolically to h1 =2 
units  at the right end and has a unit width, b=1 
units. The beam was analyzed by Khan and Al-
Gahtani (1995) by using the boundary integral 
method (BIM). Using the same dimensionless 
data adopted by Al-Gahtani and Khan, the beam is 
reanalyzed by using the derived expressions for 
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the fixed-end load vector. The results are 
presented in Table 1.  

Example 2 

Consider a three-span continuous bridge girder 
having a parabolic varying depth as shown in Fig. 
5. The depth of the girder varies from  h=2.5 units 
at both ends and midspan to h=7.5 units at interior 
supports. This problem has been analyzed by 
Timoshenko and Young 1965 ; Al-Gahtani and 
Khan (1998).Using the same dimensionless data, 
the problem is reanalyzed by using the derived 
stiffness matrices and the fixed- end load vector. 
The analysis results (at nodes 1,2,3,4,and 5) are 
presented in Table 2 together with those obtained 
by Timoshenko and Young (1965) ; Al-Gahtani 
and Khan (1998). It can be seen that when the 
girder is restraint against horizontal (axial) 
displacement at supports (i.e. all supports are 
hinges), the results diverge significantly from that 
obtained by other methods as given in the last 
column of Table 2. This is due to the coupling 
effect between the axial force generated from 
axial restraint and the bending moment which 
reduces the displacement, rotations, and bending 
moments.    

Example 3 

Finally, consider the beam shown in Fig. 6 which 
has a span of unit length and a depth varies 
parabolically from h=1.0 units at left end to h=2.0 
units at the right end. The beam  is supported at 
the left end on a translational spring with a 
stiffness constant of K=10 , fixed at the right end 
and carrying a concentrated load P=1.0 at the left 
end. The beam is analyzed by using the derived 
stiffness matrix interms of the given 
dimensionless data. The analysis results are 
presented in Table 3 in which the third column 
show the results when the shear deformation is 
considered. The results show a significant effect 
for shear deformation. This is due to the large 
translational stiffness relative to the rotational 
stiffness for this beam.  

SUMMARY AND CONCLUSIONS 

In this paper, an exact stiffness matrix and fixed-
end load vector for beams with parabolic varying 
depth are derived. An exact integrations were 
carried out to obtain the strain energy equation 

including bending, shear, and axial strain energies 
which is used to obtain the exact expressions for 
the coefficients of the stiffness matrix. The 
correctness of the derived expressions is examined 
through numerical examples. It is found that the 
derived stiffness matrices and the equivalent load 
vector are efficient for the analysis of structures 
having members with parabolic varying depth. 
Furthermore, the derived matrices can be used in 
the structural analysis softwars as compared to the 
available analytical solutions. The obtained results 
show a significant effect for axial force-bending 
moment coupling in continuous beams with axial 
restraint.  
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hx =  depth of beam at any section x; 

I0, Ix = moment of inertia of beam cross-section; 

Kv = coefficient defined in eq. (6); 

[K],[ K ] = stiffness matrices; 

L = length of beam; 
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M, P, Q = bending moment, axial force, and shear 
force; 

U =  total strain energy; 

u, v =  displacements in X and Y directions; 

1 1 1, , , , ,α β γ α β γ  =  variables defined in eqs. (29)-
(34); 

1 2 3, ,δ δ δ  = variables defined in eqs. (40a)-(40c); 

,i jθ θ  =  rotational angles at nodes i, j; 

λ = variable defined in eq. (15); 

0 1,φ φ  = variables defined by eq. (6) and eq. (41) 
respectively; and 

ψ = variable defined in eq. (37). 

 

 

NOTATION 

The following symbols are used in this paper: 

A0 =  minimum cross-sectional area of beam element; 

b =  width of beam cross-section; 

c =  depth variation variable; 

[D] =  matrix defined by eq. (12)   

E = Young's modulus; 

[F] =  flexibility matrix defined by eq. (35); 

G =  shear modulus; 

h0, h1 =  minimum ,and maximum depth of beam respectively; 
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                        Table 1. Fixed-End Actions                                
            

  
 

      
      

       
      
      
      
      
      
       

   

Table 2. Supports Reactions, Midspan Deflection, and Angles of rotation       
           
           

           
           
            

Exactb  BIMa Variable 
0.0088 0.0000 PF1 

0.4232 0.4267 QF1 

0.0564 0.0568 MF1 

0.0088 0.0000 PF2 

0.5768 0.5733 QF2 

0.1287 0.1301 MF2 
a  Khan and Al-Gahtani (1995)       
b Present Analysis                                

Variable BIMa Slop-Deflectionb 
Exactc 

(Free horizontal 
disp.)     

Exactc 

(Horizontal disp. 
is restraint) 

P1 0.000 0.000 0.000 -6.489 
P2 0.000 0.000 0.000 98.978 
P4 0.000 0.000 0.000 -128.116 
P5 0.000 0.000 0.000 35.667 
Q1 1.510 1.500 1.337 7.090 
Q2 72.450 72.850 72.644 66.165 
Q4 46.620 46.150 46.768 40.187 
Q5 -12.580 -12.500 -12.732 -5.433 
M2 -593.750 -594.000 -598.393 -408.562 
M3 124.810 138.600 125.941 72.680 
M4 -452.810 -453.000 -458.562 -283.633 

3v  ˗ ˗ -30086.330 -16224.470 

1θ  290.250 376.560 387.600 -59.462 

2θ  -423.920 -551.880 -560.712 -212.144 

4θ  615.500 800.640 809.900 433.410 

5θ  -775.540 -1006.200 -1018.890 -502.100 
a  Al-Gahtani and  Khan (1998) 
b Timoshenko and Young (1965) 
c  Present Analysis 

3v =EI0 3v , 1θ =EI0 1θ , 2θ =EI0 2θ , 4θ =EI0 4θ , 5θ =EI0 5θ   
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Table 3. Displacements, rotation, and Support reactions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           
           
           
           
           
           
           
           
           
           
           

          

             Fig. 1 . A beam element with parabolic varying depth:                                                                                 
        (a) typical element; (b) degrees of freedom and nodal forces                       
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0.2485 0.5050 Q2 
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Fig. 2. A beam element with parabolic varying depth                        

 

 

 

 

 

 

 

 

 

           
           
           
           
           

           

 

 

 

 

          Fig. 3. Beam with parabolic varying depth fixed at both ends under the action of:                                                                     
                       (a) uniformly distributed load; (b) concentrated load                                        
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           Fig. 4. A Beam with parabolic varying depth (example 1)                                   

 

 

  

 

 

  

 

Fig. 5. A three-span continuous bridge girder (example 2)  

    

           
           
           
           
  

 

 

 

             Fig. 6. A Beam with parabolic varying depth elastically supported at one end              
                                   and fixed at the other end (example 3) 
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