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ABSTRACT

In this paper, an exact stiffness matrix and fixed-end load vector for nonprismatic beams having parabolic
varying depth are derived. The principle of strain energy is used in the derivation of the stiffness matrix.
The effect of both shear deformation and the coupling between axial force and the bending moment are
considered in the derivation of stiffness matrix. The fixed-end load vector for elements under uniformly
distributed or concentrated loads is also derived. The correctness of the derived matrices is verified by
numerical examples. It is found that the coupling effect between axial force and bending moment is
significant for elements having axial end restraint. It was found that the decrease in bending moment was
in the range of 31.72%-42.29% in case of including the effect of axial force for the studied case. For
midspan deflection, the decrease was 46.07% due to the effect of axial force generated at supports as a
result of axial restraint.
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INTRODUCTION
Members with variable depth are used in many
engineering structures such as highway bridges,
buildings, as well as in many mechanical
components and aerospace engineering structures.
In civil engineering construction, nonprismatic
members are frequently used to optimize material
distribution and stresses, increase the overall
stability and stiffness, reduce the dead load
positive moment and deflection, and sometimes to
satisfy architectural requirements. Accordingly,
the analysis of structures having nonprismatic
elements is of interest in structural, mechanical,
and aerospace engineering. The analysis of
nonprismatic members is covered in several
publications (e.g., Timoshenko and Young 1965;
AL-Gahtani 1996; Al-Gahtani and Khan 1998;
Luo et al 2007). Most of the available publications
deal with the analysis of tapered members only.
Some particular cases (e.g., Timoshenko and
Young 1965; AL-Gahtani 1996) deal with the
analysis of nonprismatic beams having parabolic
varying depth. However, these cases are limited to
the analysis only (no stiffness matrix derivation)
of such type of members involving lengthy and
tedious calculations which are not applicable for
use in the analysis packages in which the analysis
is based on matrix operations. In addition, the
available analytical solutions do not consider the
effect of shear deformation and the axial force-
bending moment interaction. The other
alternative publications deal with the numerical
methods of analysis such as the finite element
method (e.g., Bathe 1996) in which the member is
discretized to a number of elements and the
stiffness matrices of the elements are assembled to
obtain the stiffness matrix for the whole member.
The main disadvantage resulting from member
discretization is the large number of input data
required even  for  simple  structures.
The purpose of this paper is to present an
exact stiffness matrix for nonprismatic beam
elements with parabolic varying depth including
the effect of shear deformation and the axial
force-bending  moment  interaction.  The
correctness of the derived stiffness matrix and the
fixed-end load wvector is examined through
numerical examples.
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PROBLEM STATEMENT

Consider a nonprismatic Euler- Bernoulli beam
element of length L as shown in Fig. 1(a). The
element is rectangular in cross-section and has a
parabolic varying depth and constant width. Three
degrees of freedom are assumed at each node.
Only the deformation in the plane of the element
and the bending moment about the centroidal
main axis are considered. The positive direction of
displacements and forces are as shown in Fig.
1(b).

The stiffness components corresponding to the
degrees of freedom shown in Fig. 1(b) can be
obtained by using Castiglianos second theorem
(Boresi, A.P. and Schmidt, R.J. 2003), which
states that the deflection caused by an external
force is equal to the partial derivative of the strain
energy (U) with respect to that force. The total
strain energy (U) for the element shown in Fig.
1(a) including the strain energy caused by bending
moment, shear and axial forces can be given by

2 Lo 2
Xy 422 jQX dx
X 2Gb hX 2

U =

1M
2_EII
0

2 1)
L1 X _dx
2Eb ; h,
where My, Qy, Py, Iy, hy, are the bending moment,
shear force, axial force, moment of inertia and the
depth of the element at the distance x respectively;
b, E, G, are the width of the element, Young‘s and
shear modulus of elasticity, respectively. The
bending moment M,, shear force Q,, and the axial

force P, can be found from equilibrium as
follows

My :%Piho(cxz)"‘QiX_Mi (2a)
Qx =Q (2b)
P, =P (20)

The moment of inertia and the depth of the
element cross section at a distance x can be given

by

X

3
=%(1+cx2)3 =1,(1+cx 23 h, =hy(L+cx2)
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where ho=the minimum depth of the element (at
the origin), c=(hy-ho)/(hoL?), and h,= the max-
imum depth of the element.

Substituting egs. (2a), (2b), (2c), and (3) into
eq. (1) and after integrations, the following exact
expression for the strain energy can be given as

P. 2hy?
4

U

{Pizlo(aoh‘ (&) -PiMhy(a,)

" 2EI,
+M i2(a3)+PiQi ho(a4) —M;Qj (as)

+Q;%(as +2EI K, ) } 4)
where
=t (52)
0
I ETE R VRPN S
a = - {4[2% 4sm(2¢0)] 25 ¢Ocos¢0} (5b)
11 1.
3, ZE{E% —§5|n(4¢o)} (5¢)

8, = _B(%% +%sin(2¢o)j+%0033 gy sin %} (5d)

RS R S S (5¢)
Y| 204cl?)?  (L4cl?) 2
1] 1

=—|1-— 5
% 2| (1+cL2)2} 0

1
a6=g(a2) (59)
and

124, 1
K, = .4y =tan"*(\c L) ,and A, =bh
v ZGAO\/E ¢0 ( ) 0 0
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(6)

The partial derivative of the strain energy (U)

with respect to P;, Q;, and M; can be given
respectively as follows

h 2
oU 1 [P [2|0a0 +%(61)J+

T ™
P, 2El,
Qi (ho(ay))—M; (hg(ay))

U _ o _ 1 [Pi(ho(@:))+Q; (2(a) +4EIoK, )
Qi ' 2Elg| M, (as)

8
ouU 1
a6 = ga R (10(@2) Qi (@) + M (22)

)

where u;, v, and ¢ are the displacement

components in horizontal ,vertical directions, and
rotation angle at node (i) respectively.

The stiffness coefficient (k;) of an element can
be defined as the force or moment at node (i)
required to induce a unit displacement or rotation
at node (j) with all other displacements equal to
zero. Therefore, egs. (7), (8), and (9) will be used
to derive the stiffness matrix of the element.

Writing egs. (7), (8), and (9) in a matrix form
yield the following

2
(2|0a0+h%(al)) (ho(as)) ~(ho(a2)) P
(ho(as)) (2(ag) +4EIGK, ) —(as) Qi
_(ho (az)) —(as) (2a3) M;

Ui

= 2Elyqv;

0.

(10)

or

[D]{F}=2E15{s};{F}=2E1,[D] {5}
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(11)
where
dy; dyp dyg
[D]: dy, dyp d23
dig dy dgg
2
(Zloao"'h%(al)) (ho(a4)) _(ho(az))
= (ho(as)) (2(ag) +4EIGK, ) —(as)
~(hy(a,)) —(as) (2a3)
(12)
P U;
{F}: Qi ;{5}:2E|0 Vi (13)
M; 0,
AXIAL STIFFNESS

Applying a unit axial displacement at node (i)
with all other displacements equal to zero (i.e. put
ui=1, vi= 0, and g, =0 in the displacements vector

d), the stiffness coefficients corresponding to
that displacement can be found by solving eq. (11)
for the column matrix F , hence

2El
kip =P :To(dssdzz —dy) (14a)
—2ElI
ky =Qj = ) % (daady, —dyadp) (14b)
2El
kg =M; :To(d23d12 —dy3d5,) (14c)

From equilibrium, the force vector (or stiffness
coefficients) at node (j) corresponding to the unit
axial displacement at node (i) can be given as

kg1 =Qj =Ky (14e)
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h, —h
kGlej =Ky ( 12 0)+k21|—_k31 (14f)
where
A =dyy (A5, 055" ) ~dyp (550, —d1adlps) +
d13(d23d12 _d13d22)
(15)

FLEXURAL STIFFNESS

Following the same procedure given for the
derivation of axial stiffness, the flexural
(translational and rotational) stiffness coefficients
can be obtained by applying a unit lateral
displacement or a unit rotation (with all other
displacements equal to =zero) to obtain the
translational or rotational stiffness coefficients,
respectively.

Hence, by substituting ui=0, vi= 1, and 6, =0 in
the displacements vector &, the translational
stiffness coefficients can be given as

—2El
kip=P = P % (dadyy —dyadp3) (16a)
2EI
k22 =Qi =To(d33d11 _d132) (16b)
—2El
ks =M; = ) % (dpedyy —diqdy,) (16c)

From equilibrium, the stiffness coefficients or
the force vector at node (j) corresponding to the
unit lateral displacement at node (i) (i.e. ui=0, v;=
1,and 6, =0) can be given as

Kyp =—kgp =P (16d)

ks, =Qj =Ky (16e)
hy o

Keo =M j =kp,( > )+ Kol —Kgp (16f)

Similarly, the rotational stiffness coefficients can
be obtained by substituting u=0, v;= 0, and
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¢ =1in the displacement vector[s] and solving
eq. (11) as follows

2El
kig=P = P % (d 0y, —digd ) (172)
—2El
Ko =Q; = 1 . (dgsdyy —dy30s,) (17b)
2El
kg =M; = P % (dpydy; —dy,”) (17c)
and from equilibrium
kg3 =Pj =—Ky3 (17d)
Ks3 =Qj =—Kp3 (17¢)
h —ho
Kea =M j =kys( > )+ Kol —Kgg (17)
Taking advantage of the symmetry

characteristic in the stiffness matrix, and from
equilibrium requirements, the other coefficients of
the 6*6 stiffness matrix can be given as follows

ki, = _ZE' 0 (dadyy —dps°) (18a)
Kpa = %(ds?pl12 —dydy) (18b)
Kgy = %(d 23012 —d13d5;) (18¢c)
as =258 (A =) (18d)
Ksy = _25' O (d330;, —dy5d,3) (18e)
k64=k14(h1;h°)+k24L—k34 (18f)
Kys :%(d%d12 —dy50,53) (19a)
Kz = 2 Ay ) (19b)
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2El

Kss :To(d23dll —dy30;p) (19¢)
—2ElI
k45 :To(dssdlz _d13d23) (19d)
2El
Kss =T°(d33d11—d132) (19)
h, —hy
Kgs =Kys( 5 )+KosL —Kgs (19f)
h, —hy
kyg =Ky ( 2 ) +kok —kgy (20a)
h, —hy
Ko = kia( 5 ) +kol —Kgp (20b)
h, —hy
kag =Ky ( 2 )+ Kol —Kgs (20c)
h, —hy
Kge ==Ky ( 5 )—Ka L +kgy (20d)
h, —hy
Kse =—Kyo( 2 ) — kL +Ksgp (20e)
h, —hy
Kes =Ky ( 5 ) +Keol —Kgg (20f)

where A is given by eqg. (15)

Similar results can be obtained for the stiffness
coefficients given by egs. (18a)-(20f) by using
the same procedure presented before. Therefore,
substituting for My, Q,, and P, in the strain energy
expression (eg. (1)) interms of the nodal force
vector at node (j) and following the same previous
procedure will yield the same expressions given in
egs. (18a)-(20f).

The obtained stiffness coefficients can be written
in a matrix form as

I(12 k13 k14
I(22

—kll
k23 I(24
k33 k34

(21)

sym. Kag

k66

For a beam element having an orientation as
shown in Fig. 2, the stiffness coefficients can be
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obtained by the same previous procedure. The
stiffness matrix for this case can be written
interms of the obtained coefficients (egs. (14a)-
(20f)) of the above stiffness matrix as follows

ki k_12 k_13 |€14 I515 k:lG
Koo k_23 k_24 k_25 k_ze
[K—J _ Kas k_34 k_35 k_36 (22)
sym Kaa k_45 k_46
Kss k_56
L k66_
in which
— 2El,
kg = —(dead 22 —Ugs’) (23a)
— 2El,
kip = _(d33d12 —dy5d53) (23b)
ki = 14( )+k24|- K3q (23c)
—2El,
Kig = % (dgsdy, d232) (23d)
—2El,
kis = % (d 3301, —dy5d3) (23¢)
—2El,
Kig = 2301 —d1305;) (23f)
2El
Ky = 0 (dgq0ly; —di57) (243)
kzs— 12( )+k22L K3z (24b)
—2El,
Kog = % (daadyy —dyad ) (24c)
—2El
k25 = g (d33d11 —d132) (24d)
—2El,
Ko = (! 23011 —dy3ds5) (24e)
k33— 16( )+k62|- Ksg (241)
— h,—h
Kag = —Kyg () kgl +kgy (25a)
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Q5=—hgm h%—knL+Mz (25b)
Ko = 13( )+k23|— Kss (25¢)
Kas = 2200 (A5l ~d%) (250)
Kas :ﬂ(d a3y —did ) (25e)
Kyo = 2E'° (ddyy —dyady0) (25f)
Kss :%(dwdn—dm ) (26a)
Ksg = 2L, (dqdyy —dygds,) (26b)
Kes =ﬂ(c|zzo|n—c|12 ) (26¢)

For elements having no axial force-bending
moment coupling such as when the centroidal axis
of the element is straight (i.e. the element is
symmetric about centroidal axis), the obtained
coefficients can be modified by substituting the
following values for the[ D ]matrix coefficients
(eq. (12)) such that

dy; dpp dig (2ly2) 0 0
[D]=|dy, dy dos | = 0 (2ag)+4EIGK, ) ~(as)
dig dpg dag 0 —(a5) (2a3)

(27)

FIXED-END LOAD VECTOR DUE TO
UNIFORM LOAD

Consider a nonprismatic beam element with a
parabolic varying depth under a uniform load q as
shown in Fig. 3(a). By using the principle of
superposition and knowing that the sum of all
displacement components in each direction at the
fixed end must be zero, the flexibility matrix
equation corresponding to node (i) can be written
as
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%(ﬂl) QC—(’(y) . f 2 (1, - )
hy 1 1
& el I(l_ (L+cL?)?
1 1
E T )—( —(1+cL2)2J )
h
70(01)
_q_Jsin* g
_03/2 8\/5
~@

where

1 1 .
a= §¢o —55"‘(4%)

B

2

:%cos @ Singy + ( & +— sm(2¢0)j

y=|1+ 122_
(1+cL?)

(1+cL2)j

3 1. 1 .
o = (§¢0 —Zsm(2¢0)+§sm(4¢o)j

1 1 .
"N ZE[% +Zsm(2¢o)j

J% " (5-27,)

|

(28)

(29)

(30)

(31)

(32)

(33)

(34)

Writing the flexibility matrix [F] in eq. (28) in

the form
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fi1 f1o fig
[F]: f21 f22 fzs
far fap fas
1 ho
f(ﬂl) g(?’) \/—(71 B)
h 1 -1 1
=& @) E(lf(lm_z)z]
1 1
\f( )—( mj f(ﬁ) |
v J

(35)

and solving eq. (28) for the unknown fixed end
reactions Py , Qg , and M yields

sin ¢,

hyo
L 23f32)——2

_q
Pri = l//£4C3/2

a
_ZCT(f 23f12 —f 22f13)]

(](33f 22 —f (f33f12 _f32f13)

(36a)
g —hyn sin ¢y
QFi _;[W(f:{;le f31f23)+ 2 (f33fll_f31f13)
a
+W(f23f11_f21f13)j
(36b)
g hex sin ¢0
M _;(4(:3/2 (Faof g1 —Fyf p) ———2 o7 (faof 11 —Fafso)

a
_Z(:T(f 22fll _f21f12))

(36¢)
where
w =F11(F 2of 33 —F3af 23) —F 10 (Faaf 21 —F31f 23)
+F13(Faof o1 —Faif22)
(37)

The right hand side of eq. (28) represents the
free-end displacement vector at node (i) due to
applied load q.
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From equilibrium, the fixed-end reactions at
node (j) can be given as

Py =—Ps, Qf =dL Qg , and

hy — L2
M'—PH[ 2 jQH IVlFi_qT

(38)

FIXED-END LOAD VECTOR DUE TO
CONCENTRATED LOAD

For a beam element loaded by a concentrated load
(P) at an arbitrary location defined by a distance
(L,) from the left support as shown in Fig. 3(b),
the fixed-end load vector can be derived by using
the same procedure given before. The flexibility
matrix equation for this case can be given
as

1 ho ]
f(ﬂl) 5(7) 2\/» (7’1 ;
By L it lo.
8c 7 c32 4c (1+CL2)2 MFI
Fi
1 1
o dmay) w0
51
—P !5,
53
(39)
where
_—hy 11 1
%= (2{(1+ch) (1+cL2)}{(1+cL2)2
—m] HALNE (4 B~ +/7))]
1
(40a)
= e[ 5 ) - S -sina)
1 1
+Ll\/g((1+CL2)2 (@+cLP)? J]
(40b)
1 _ 1 1
3 _I[4Ll\/g(ﬂ_ﬁ)+[(l+cL12)2 - (L+cL?)? j]
(40c)
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Bz%cos Bsing +— ( ¢ +— sm(2¢1)]

¢ =tan (Ve Ly)
(41)

and all other constants are previously defined.

Solving eq. (39) yields the following expressions
for the unknowns fixed-end reactions at node (i)
interms of the flexibility matrix coefficients

P
Pri 25(51(1c 33f 22 =T 23 32) =65 (F 315 =3 13)
+03(f 512 _f22f13))
(42a)
P
Qr = ;(_51“ saf 21 ~Taf 23) + 8 (Fasfyy —Tifs)
—53 (f 23f 11 -f Zlf 13))
(42Db)
P
Mg =;(51(f32f 21 —Faif20) =0 (F3of 1y —F3if15)

+03(f pof 5 —f 21f12))
(42c)

And from equilibrium, the fixed-end reactions
at node (j) can be given as

P =—Pr Qg =P -Qp ,and
h,—h

MFj:PFi£ oj“‘QFi—MFi—P(L—Ll)

(43)
NUMERICAL EXAMPLES

To verify the correctness of the derived matrices,
the following examples are considered.

Example 1

Consider the beam shown in Fig. 4 which has a
single span of length, L=1units and fixed at both
ends. The beam is carrying a uniformly distributed
load, g=1. The depth of the beam is hy =1units at
the left end and increase parabolically to h; =2
units at the right end and has a unit width, b=1
units. The beam was analyzed by Khan and Al-
Gahtani (1995) by using the boundary integral
method (BIM). Using the same dimensionless
data adopted by Al-Gahtani and Khan, the beam is
reanalyzed by using the derived expressions for
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the fixed-end load vector. The results

presented in Table 1.

are

Example 2

Consider a three-span continuous bridge girder
having a parabolic varying depth as shown in Fig.
5. The depth of the girder varies from h=2.5 units
at both ends and midspan to h=7.5 units at interior
supports. This problem has been analyzed by
Timoshenko and Young 1965 ; Al-Gahtani and
Khan (1998).Using the same dimensionless data,
the problem is reanalyzed by using the derived
stiffness matrices and the fixed- end load vector.
The analysis results (at nodes 1,2,3,4,and 5) are
presented in Table 2 together with those obtained
by Timoshenko and Young (1965) ; Al-Gahtani
and Khan (1998). It can be seen that when the
girder is restraint against horizontal (axial)
displacement at supports (i.e. all supports are
hinges), the results diverge significantly from that
obtained by other methods as given in the last
column of Table 2. This is due to the coupling
effect between the axial force generated from
axial restraint and the bending moment which
reduces the displacement, rotations, and bending
moments.

Example 3

Finally, consider the beam shown in Fig. 6 which
has a span of unit length and a depth varies
parabolically from h=1.0 units at left end to h=2.0
units at the right end. The beam is supported at
the left end on a translational spring with a
stiffness constant of K=10 , fixed at the right end
and carrying a concentrated load P=1.0 at the left
end. The beam is analyzed by using the derived
stiffness  matrix interms of the given
dimensionless data. The analysis results are
presented in Table 3 in which the third column
show the results when the shear deformation is
considered. The results show a significant effect
for shear deformation. This is due to the large
translational stiffness relative to the rotational
stiffness for this beam.

SUMMARY AND CONCLUSIONS

In this paper, an exact stiffness matrix and fixed-
end load vector for beams with parabolic varying
depth are derived. An exact integrations were
carried out to obtain the strain energy equation
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including bending, shear, and axial strain energies
which is used to obtain the exact expressions for
the coefficients of the stiffness matrix. The
correctness of the derived expressions is examined
through numerical examples. It is found that the
derived stiffness matrices and the equivalent load
vector are efficient for the analysis of structures
having members with parabolic varying depth.
Furthermore, the derived matrices can be used in
the structural analysis softwars as compared to the
available analytical solutions. The obtained results
show a significant effect for axial force-bending
moment coupling in continuous beams with axial
restraint.
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h, = depth of beam at any section x;

lo, Ix = moment of inertia of beam cross-section;
K, = coefficient defined in eq. (6);

[K],[K ] = stiffness matrices;

L = length of beam;
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M, P, Q = bending moment, axial force, and shear 6,6, = rotational angles at nodes i, j;
force;

A = variable defined in eq. (15);
U = total strain energy; variable defined in eq. (15);

#,,¢, = variables defined by eq. (6) and eq. (41)

u, v = displacements in X and Y directions; .
respectively; and

a,B.v,a, By, = Vvariables defined in egs. (29)-

(34): w = variable defined in eq. (37).

0,,0,,0, = variables defined in egs. (40a)-(40c);

NOTATION

The following symbols are used in this paper:

Ao = minimum cross-sectional area of beam element;
b = width of beam cross-section;

¢ = depth variation variable;

[D] = matrix defined by eqg. (12)

E = Young's modulus;

[F] = flexibility matrix defined by eq. (35);

G = shear modulus;

ho, hy = minimum ,and maximum depth of beam respectively;
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Table 1. Fixed-End Actions

Variable BIM? Exact®
Pes 0.0000 0.0088
Qr1 0.4267 | 0.4232
M 0.0568 | 0.0564
Pr 0.0000 | 0.0088
Qr2 0.5733 | 0.5768
Mg, 0.1301 0.1287

& Khan and Al-Gahtani (1995)
b Present Analysis

Table 2. Supports Reactions, Midspan Deflection, and Angles of rotation

Exact® Exact®
Variable BIM? Slop-Deflection® (Free horizontal (Horizontal disp.
disp.) is restraint)

Py 0.000 0.000 0.000 -6.489
P, 0.000 0.000 0.000 98.978
Py 0.000 0.000 0.000 -128.116
Ps 0.000 0.000 0.000 35.667
Q: 1.510 1.500 1.337 7.090
Q. 72.450 72.850 72.644 66.165
Q. 46.620 46.150 46.768 40.187
Qs -12.580 -12.500 -12.732 -5.433
M, -593.750 -594.000 -598.393 -408.562
M, 124.810 138.600 125.941 72.680
M, -452.810 -453.000 -458.562 -283.633
v, - - -30086.330 -16224.470
51 290.250 376.560 387.600 -59.462
52 -423.920 -551.880 -560.712 -212.144
54 615.500 800.640 809.900 433.410
55 -775.540 -1006.200 -1018.890 -502.100

 Al-Gahtani and Khan (1998)

® Timoshenko and Young (1965)

¢ Present Analysis

V,=EloV,, 6,=El,6,, 6,=Ely6,, 6,=El,0,, 6,=El, 6,
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Table 3. Displacements, rotation, and Support reactions

Exact Exact
Variable (no shear (with shear
deformation) | deformation)

Ug -0.01577 -0.00776
A -0.04950 -0.07515
01 0.09460 0.04658
Q: 0.4950 0.7515
Q> 0.5050 0.2485
M, -0.5050 -0.2485

AY

QiVi

Pi,u;

Misai

(b)

Fig. 1. A beam element with parabolic varying depth:
(a) typical element; (b) degrees of freedom and nodal forces
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Fig. 2. A beam element with parabolic varying depth

‘_HHqulHHH

hy

A

(@)

h,

(b)

Fig. 3. Beam with parabolic varying depth fixed at both ends under the action of:
(a) uniformly distributed load; (b) concentrated load
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g=1.0
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L=1.0 |
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Fig. 4. A Beam with parabolic varying depth (example 1)

g=1.0
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Fig. 5. A three-span continuous bridge girder (example 2)

P=1.0

J
1.01 1
%K;lo

L=1.0

Fig. 6. A Beam with parabolic varying depth elastically supported at one end
and fixed at the other end (example 3)
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