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ABSTRACT

T he deterioration of buried sewers during their lifetime can be affected by several factors leading
to bad performance and can damage the infrastructure similar to other engineering structures. The
Hydraulic deterioration of the buried sewers caused by sewer blockages while the structural
deterioration caused by sewer collapses due to sewer specifications and the surrounding soil
characteristics and the groundwater level. The main objective of this research is to develop
deterioration models, which are used to predict changes in sewer condition that can provide
assessment tools for determining the serviceability of sewer networks in Baghdad city. Two
deterioration models were developed and tested using statistical software SPSS, the multiple
discriminant model (MDM) and neural network model (NNM). Zublin trunk sewer in Baghdad city
was selected as a case study. The deterioration model based on the NNDM provide the highest
overall prediction efficiency which could be attributed to its inherent ability to model complex
processes. The MDDM provided relatively low overall prediction efficiency, this may be due to the
restrictive assumptions by this model. For the NNDM the confusion matrix gave overall prediction
efficiency about 87.3% for model training and 70% for model validation, and the overall conclusion
from these models may predict that Zublin trunk sewer is of a poor condition.

Key words: deterioration model, trunk sewer pipe, sewer conditions, multiple discriminant analysis,
artificial neural network.
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1. INTRODUCTION

Sewer networks are subsurface infrastructure systems which collect domestic sewage from
different facilities to sewage treatment plants or other places for disposal. Many parts of the sewer
network have been deteriorated due to several internal and external factors. This network may need
to be replaced, repaired or renovated in order to guarantee their required hydraulic performance and
to avoid possibility of failure, Hemed, 2015. Previous studies in the field of sewer deterioration
models, as Davies et al., 2001 provided a review of the numerous factors that have been recognized
as influencing the structural stability of rigid sewer pipes with their effects on the general process of
pipe deterioration and failure.

Tran, 2007 developed several hydraulic and structural deterioration models in Dandenong in
Victoria, Australia, by using Markov model for prediction of individual pipes, and the result showed
the best performance when predicting sewer deterioration for the selected case study.

Chughtai and Zayed, 2008 applied a multiple regression model on data from two Canadian
municipalities (Pierrefonds and Niagara Falls) to simulate the condition state of sewers. It was
indicated the developed regression models using the determination coefficient (R?) which can
explain 72 to 88 % of the total variability in the operational and structural sewer conditions. Ana,
2009 applied several deterioration models on sewer and inspection data of Leuven and Antwerp
cities, Belgium. The cohort survival model seemed to be the most reliable pipe group model for this
case study. For the pipe-level models, the logistic regression and the probabilistic neural network
(PNN) showed good overall prediction quality.

Khan et al., 2010 developed deterioration models using data from Pierrefonds, Canada. They used
neural network modeling with back propagation (BPNN) and probabilistic (PNN) approaches. They
used about 20% of the available dataset to test the model. The determination coefficient (R?) ranged
within 71 and 86 % depending on the deterioration factors considered. Salman, 2010, applied
several deterioration models (ordinal regression, multinomial logistic regression and binary logistic
regression analysis) on inspection data of Cincinnati city (USA). The binary logistic regression
analysis showed the best performance in predicting sewer deterioration, the total model efficiency
was 66%. Prediction efficiency for good condition was 78% and for bad condition 46%.

There are a number of activities that can be undertaken in order to keep the sewer network
functional and in good shape such as routine maintenance, repair and renovation. This study is
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significance to the general authority for sewerage services to monitor the performance of sewer
systems in Baghdad city, Iraqg, to help utilities to predict future maintenance and rehabilitation or
replacement timing. The research's aim is to predict changes in sewer conditions by develop
deterioration models that are able to provide assessment tools for Zublin trunk sewer in Baghdad
city, Iraq, and to investigate models usefulness and applicability in sewer deterioration modeling.

2. MATERIAL AND METHOD
2.1 Case Study Description

The case study in this paper is the Zublin trunk sewer. It is one of the main lines that collect sewage
from Al-Rusafa side in Baghdad city with an estimated total length of around 25.4 km with
diameters of 1800-2400 mm at depths of 3-7 m. Reaching Al- Rustamiya sewage treatment plant
with 3000 mm in diameter at 6-10 m in depth. This line starts from the municipality of Al-Shaab and
ends at Al-Rustamiya sewage treatment plant (3 expansion) south of Baghdad as shown in Fig. 1.

2.2 Data Collection

The predictor’s selection and the quality and quantity of the collected data affect models prediction.
In this study, data are collected from different departments of Baghdad Mayoralty (design,
implementation, planning, operating, maintenance and Geographic Information Systems). In
addition, other data were collected from different sections in the different municipalities of Al-
Rusafa that Zublin line serves them. The data included: sewer condition, age, material, function,
type, shape, diameter, depth, length, slope and traffic intensity.

3. SEWER STRUCTURAL DETERIORATION MODELS
3.1 Multiple Discriminant Deterioration Model (MDDM)

One of the statistical methods that is used to predict or classify individuals into exhaustive and
mutually exclusive classes based on a set of predictors is Fisher’s linear discriminant analysis LDA,
Huberty, 1994. The aim of MDDM is to estimate the linear relationship between a single
categorical dependent variable (i.e. condition classes) and a set of quantitative independent variables
(e.g. deterioration factors) by maximizing variables in the class scatter, which is called Fisher’s
criterion, Laitinen, 2007, and used this criterion as the calibration technique for the LDA, Johnson
and Wichern, 2002.

3.1.1 Model description

The MDDM uses a group of linear equations of independent variables (i.e. deterioration factors) to
determine classification functions, Kley et al., 2013:

Li = o+ Big Xy + PipXo + ...+ BinX, @
Where

L; is the classification function where i = 1 to j, with j being the number of condition classes, X (1 to
n) are the independent variables, i are the classification coefficients that correspondent to n-number
of independent variables, a is the offset. The determination of the coefficients i can be done by
maximizing the variance between classes relative to the within-class variance of Y, Sharma, 1996.
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3.1.2 Model assumptions

The following are the assumptions needed to be adhered when using MDDM as: linearity of
relationships, equal dispersion matrices and the independent variables follow a multivariate normal
distribution, Hair et al., 1998. Studies, however, have shown mixed evidence with regard to the
sensitivity of MDDM to violations of the above assumptions. Typically, the violations affect the
classification process negatively.

3.1.3 Standardized discriminant functions coefficients

The standardized coefficients ;* are used for the assessment of the relative importance of the
discriminator variable i in the discriminant function. These coefficients can be determined using the
following expression (Sharma, 1996):

Bi* = BiSi )
Where:

Bi* standardized coefficient, B; unstandardized coefficient and S; the pooled standard deviation of
variable i.

3.2 Neural Network Deterioration Model (NNDM)

Neural networks can be used to predict outcome data from input data in a manner that simulates the
operation of the human nervous system. Unlike statistical models, NNs have no assumptions related
with the model structure because it is determined by data. Generally, the model can simulate non-
linear relationships within the deterioration process and can handle ordinal outputs such as condition
classes. In the case of sewer deterioration modeling, the mathematical relationships between
independent variables (deterioration factors) and dependent variable (sewer condition classes) are
investigated through learning from past data the deterioration behavior of pipes. Then, the gained
knowledge from the past data is generalized and stored in the NNs to predict the pipe's condition,
Tran et al., 2007.

3.2.1 Model structure

Generally, a neural network is composed of artificial neurons that are connected together
and ranged in different layers in order to reduce the complexity, Al-Bargawi and Zayed, 2008, as
shown in Fig. 2. The connection weights, which attach the connections between neurons are
determined by minimizing the error between the predicted output and the actual output value using
the observed data, Salman, 2010. The NNs have always a special input signal values equal 1, with a
bias weight. The function of bias weight is to allow or stop the input signals going through by (being
non-zero value) or (being zero-value) respectively.

Mathematically, a neural network function can be written as below:
Y = f (T, Xi wi) ©)

Where, Y the output signal, Xi the input signal, K the number of input signals, Wi the connection
weights, f the activation function.
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3.2.2 Feed-forward type

Feed forward type of NNs was used in this study to reduce the unnecessary complexity when
determining NN models structure, Lou et al., 2001. As can be seen from Fig. 2, the connections in
the network flow forward from the input layer to the output layer without any feedback loops.

3.2.3 Activation functions

The values of units in the succeeding layer are linked to the weighted sums of units in a layer by the
activation function. The hyperbolic tangent function was used for the hidden layer neurons and the
softmax function was used for output layer neurons in this study, since using automatic architecture
and the output is categorical, IBM® SPSS® Statistics 20 User Guide.

4. RESULTS AND DISCUSSION
4.1 Data Processing

The dataset available for this network contained 103 records corresponding to individual manhole-
to-manhole sewer length. In this database some sewers have erroneous entries, e.g. pipes with zero
diameters, length and slopes; these sewers were discarded from the analysis. Here, 4 samples with
zero length and slope were taken out from the analysis, reducing the useful samples to 99. Out of the
99 useful sewer samples, 79 were set aside for calibration and 20 were for validation. The selection
of the pipes for calibration and validation was done using simple random sampling. Some of the
entries in the Zublin trunk sewer database are of non-numeric type (e.g. shape, material). These
types of data were then converted to numeric type by assigning codes to them, thus facilitating
analysis. The data that is needed to build the models and its codes are shown in Table 1.

4.2 Development of Sewer Structural Deterioration Models
4.2.1 MDDM
4.2.1.1 Coefficients of the classification and standardized discriminant functions

The classification functions coefficients can be used to classify easily sewers into condition states.
Whereas, the coefficients of the standardized discriminant functions can be used to assess the
relative importance of the discriminator variables, as shown in Table 2.

4.2.1.2 Sample prediction

A similar function to Eq. (1) can be written using the above coefficients to create the four
classification functions for the prediction of the condition states of the Zublin sewers. The following
classification functions, L;, can be written for condition states i = 2, 3, 4, 5 (there is no sewer pipe in
condition 1, which is excellent):

L, = —6.834 X Type + 3.365 X Age + 0.029 X Diameter + 4.929 X depth + 0.064 X
Length + 25.754 X Slope + 11.299 X Traffic + 51.375 X Material — 151.750

L3 = —7.944 X Type + 4.286 X Age + 0.029 X Diameter + 2.595 X Depth + 0.069 %
Length + 32.207 X Slope + 10.458 X Traffic + 44.421 X Material — 156.076
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L, = —9.352 X Type + 5.009 x Age + 0.029 x Diameter + 2.520 X Depth + 0.057 X
Length + 32.185 X Slope + 9.508 X Traffic + 44.367 X Material — 172.877

Ls = —9.130 X Type + 5.996 x Age + 0.030 X Diameter + 2.110 X Depth + 0.058 x
Length + 28.655 X Slope + 8.213 X Traffic + 43.040 x Material — 204.833

To make a classification, the observed values of the predictors are inserted into the classification
functions above to calculate a classification score. The observation is assigned to the class with the
highest classification score.

4.2.2 NNDM

In this model, approximately 64% of the data were assigned for training, 17% for testing and 19% to
a holdout sample. Furthermore, values of all the scale input factors are rescaled using normalized
method according to Eq. (4) to improve network training.

X-min

X = (4)

max—min

4.2.2.1 Training of NNDM

NNDM training in this study, is used to calculate the model structure (i.e. the network weights and
the hidden neurons numbers). For the hidden neurons numbers, four neurons in the hidden layer has
chosen by automatic architecture selection. The optimization algorithm that is used to estimate the
network weights is scaled conjugate gradient with batch training type as they suitable for small
datasets.

4.2.2.2 Sample prediction

The model architecture is listed in Table 3, the condition of a sewer with a particular characteristic
can then be predicted.

The non-linear relationship between the input and output data can be written as follows:

C =X, X;W; + (Wo) ®)
H; = tanh (C) (6)
e(Hk)

Where: n the number of the predictors, W, bias weight, H; the output of the hidden neurons, Y; the
output of the output neuron, Hy is the input for Y;.

To make a classification, the observed values of the predictors are inserted into the equations above
to calculate a classification score, which is a value between 0-1. The observation is assigned to the
class with the highest classification score.
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4.2.2.3 Independent Variable Importance

The importance of each independent variable was computed in determining the neural network
based on the combined training and calibrating samples, IBM® SPSS® Statistics 20 User Gide.
Table 4 appears that variables age and traffic have the greatest effect on how the network classifies
sewers followed by diameter, material, type, slope, length, depth respectively. The independent
variable importance is a measure of the amount of changes in value, and predicted the network
model for different values of the independent variable while normalized importance is simply the
importance values divided by the largest importance values and expressed as percentages.

4.3 Model Performance Evaluation

For evaluating model performance, the model error (i.e. the difference between predicted and
observed values) must be quantified, Wright et al., 2006. When high model error, the performance
model is low. The confusion matrix is often used for ordinal and categorical outputs. The validation
dataset should be used to effectively test the model, Baik et al., 2006.

4.3.1 Confusion matrix

When comparing an observed values with model prediction, four possible situations can be
observed: (1) true positive (TP) when the model correctly predicts the sewer condition (i.e. pipe in
good condition), (2) true negative (TN) when the model correctly predicts the sewer condition (i.e.
pipe in poor condition), (3) false positive (FP) when the model incorrectly predicts the sewer
condition as a
negative case (i.e. sewer in good condition predicted as being in bad condition), and (4) false
negative (FN) when the model incorrectly predicts the sewer condition as a positive case (e.g. sewer
in poor condition predicted as being in good condition) as shown in Table 5. The TP11 in this table
means the number of pipes which were observed and correctly predicted in condition 1. In addition,
01, 02 and O3 represent the total pipes number which were observed in condition 1, 2 and 3
respectively and P1, P2 and P3 represent the total pipes number which were predicted in condition
1, 2 and 3 respectively, Tran, 2007.

The overall predicted efficiency (OPE) was used to evaluate the performance prediction of MDDM
and NNDM which were developed in this study to predict the changes of pipe conditions. The OPE
can be computed from the confusion matrix using Eq. (8). Evaluating

TP11+ TP22+TN33
PE =
0 01+ 02+ 03 (8)

Tables 6 and 7 are the confusion matrices for MDDM and NNDM. Which showed that the
deterioration model based on the NNDM provide the highest overall prediction efficiency. The high
overall prediction efficiency by the NNDM could be attributed to its inherent ability to model
complex processes. The MDDM provided relatively low overall prediction efficiency, this may be
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due to the restrictive assumptions by this model such as the assumption of the normality of the
predictor variables which is difficult to satisfy with the given dataset.

5. CONCLUSIONS AND RECOMMENDATIONS

In this paper, the MDDM and NNDM, were developed, tested and evaluated using the sewer dataset
as an assessment tool for determining the serviceability of the Zublin trunk sewer. Among these two
models, the NNDM was found to have a high overall prediction efficiency level than MDDM. This
model, however, is susceptible to bias in predicting the conditions of sewers with the greatest
number of samples in the calibration dataset. According to NNDM the most effective factors
influence deterioration model is age, traffic, diameter, material, type, slope, length, depth
respectively.

The overall conclusion from these models may predict that Zublin trunk sewer is of a poor
condition. To solve this problem continuous maintenance may keep the sewer in good condition and
it working in a high performance level reaching the design limits. A good documentation of all
observations and problems will help reviewing the sewer system performance as well as providing a
good source of information for future planning.
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Figure 1. Zublin trunk sewer layout (Mayoralty of Baghdad).
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Figure 2. Structure of the NNs (Al-Bargawi and Zayed, 2008).
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Table 1. Summary code of sewer network.
Data Measurement type Codes
Sewer condition Ordinal 1-excellent, 2- very good, 3- good, 4- poor, 5-
very poor.
Age [years] Continuous
Pipe material Nominal categorical | 1- Concrete, 2- PVC, 3- GRP.
Function Nominal categorical | 1- Combined system, 2- separate system.
Type Nominal categorical | 1- Gravity sewer, 2- pressure Sewer.
Pipe shape Nominal categorical | 1- Circular, 2- rectangular.
Size [mm] Continuous
Depth [m] Continuous
Length [m] Continuous
Slope [m/m] Continuous
Traffic intensity (based on | Ordinal 1- Low, 2- medium, 3- high.

location)

Table 2. Coefficients of the classification and standardized discriminant functions.

Predictor Classification functions coefficients Standardized discriminant
variables functions coefficients

2 3 4 5 1 2 3
Type -6.834 -7.944 -9.352 -9.130 .145 .359 -.280
Age 3.365 4.286 5.009 5.996 -1.030 011 .032
Diameter .029 .029 .029 .030 -.048 -.060 -.129
Depth 4.929 2.873 2.595 2.110 544 .956 .823
Length .064 .069 .057 .058 .075 .064 -.449
Slope 25.754 26.346 32.207 28.655 -.062 -.405 .545
Traffic 11.299 10.458 9.508 8.213 407 -.116 -.098
Material 51.375 44,421 44.367 43.040 322 702 .795
(Constant) -151.750 | -156.076 | -172.877 | -204.833
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Table 3. Estimation of hidden and output parameters.

Predicted
Hidden Layer 1 Output Layer
[Condit | [Condition | [Condition | [Condition
Predictor H(1:1) | H(1:2) | H(1:3) | H(1:4) | ion=2] =3] =4] =5]
Input Layer |(Bias) .052 1.530 406 343
[type=1] 184 |.539 -182-  |-.344-
[type=2]  |-.513- |.807 -091- |-.158-
[traffic=1] |-088- |.513 -1.443- | 475
[traffic=2] |.983 |.569 1.221  |-.113-
[traffic=3] |-1.756-|1.124 |.169 -.231-
[material=1]| 016  |.466 -939- |-.170-
[material=2] | - 361- |.408 1.125 |-.376-
age 4.078 |-4.823- |-1.254- |.322
diameter  |-1.130-(-.225- |-1.191- |-.340-
depth -.085- |.220 -1.187- |-.135-
length 766 |.015 -334-  |.467
slope 301 [-.319- |.631 -.199-
Hidden (Bias) -500- |.162 1.195 -.253-
Layer 1 H(1:1) -3.017- |-.880- 3.191 1.432
H(1:2) 1.835 |1.071 1.707 -4.749-
H(1:3) 747 |-1.643- 2.301 -1.854-
H(1:4) 083  |.493 -.058- -.312-
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Table 4. Independent Variable Importance.
Normalized Normalized
parameter Importance Importance parameter Importance Importance
Type .063 13.3% Diameter .078 16.5%
Traffic 187 39.8% Depth .036 7.7%
Material 072 15.3% Length .043 9.1%
Age 471 100.0% Slope .050 10.7%
Table 5. Confusion matrix.
Predicted condition
1 2 3 Total
(good) (fair) (poor)
Observed | 1 (good) TPy FP1, FP13 04
condition |5 gair) FP2 TPz FP2s 0;
3 (pOOf) FN31 FN32 TN33 03
Total P, P, Ps

Table 6. Prediction efficiencies during the calibration and validation of the MDDM.

Predicted Group Membership

Condition 2 3 4 5 Total
Calibration (a) | Count 2 6 1 0 0 7
3 3 10 4 1 18

4 0 1 25 3 29

5 0 0 2 23 25

Validation (b) | Count 2 1 2 0 0 3
3 0 2 1 4 7

4 0 0 5 0 5

5 0 0 0 5 5

a.81.0% of calibration sample correctly classified.
b.65.0% of validation sample correctly classified.
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Table 7. Prediction efficiencies during the calibration and validation of the NNDM.

Predicted
Percent
Sample Observed 2 3 4 5 Correct
Training 2 2 2 0 0 50.0%
3 0 10 3 1 71.4%
4 0 0 20 1 95.2%
5 0 1 0 23 95.8%
Overall 32% | 20.6% | 36.5% | 39.7% 87.3%
Percent
Holdout 2 1 3 0 0 25.0%
3 0 5 1 0 83.3%
4 0 2 4 0 66.7%
5 0 0 0 4 100.0%
F?"era" 50% | 50.0% | 25.0% | 20.0% | 70.0%
ercent
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