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ABSTRUCT

The one-dimensional, cylindrical coordinate, non-linear partial differential equation
of transient heat conduction through a hollow cylindrical thermal insulation material of a
thermal conductivity temperature dependent property proposed by an available empirical
function is solved analytically using Kirchhoff’s transformation. It is assumed that this
insulating material is initially at a uniform temperature. Then, it is suddenly subjected at
its inner radius with a step change in temperature. Four thermal insulation materials were
selected. An identical analytical solution was achieved when comparing the results of
temperature distribution with available analytical solution for the same four case studies
that assume a constant thermal conductivity. It is found that the characteristics of the
thermal insulation material and the pressure value between its particles have a major
effect on the rate of heat transfer and temperature profile.

KEYWORDS: Nonlinear differential equation, analytical solution, thermal conductivity,
transient, Kirchhoff’s transformation.

4 sl ala A (e 1 e siiall 30 jad) Jaa gt et Ja
Bl adl da ja e e s A Jaa g 3 B ) all A jle 4d gaa

pSl ae el e Jadia 0

Al dvigll and (3 G e

Luigl A0S / 4y paiiveall daalal)
dLadal)

e il 5 ) jall JEBY Al skl clilaay) ) sl Aala¥) das pall Alalall Aslea) Ja o

e 83 5aka 51 jall da 50 pa e ) s Jia 51 Apala I3 5 ) jall Al Jle 48 gae 4l ghasd ale DA (e 3l
5)a Aa Al 8 il AL 3ladl salall oda o (il 381 &3 sl S gt aladiiuly 38 sie 4y it Alalae
Jbmdl a3 ANl e jhd Caal die A5 day g 5l pall Aa jo B alie paad ) Cuia et 8 A4 5 dedatia
Gl a) s sl Jall i ae 43 aa die Gildas Jllad o ) dea sl 23 Adlide A Jle ol se day )
Aa ) g sE Y A8 )l a dua g Apals 5351 all Al jladl sal) () (ol il dey ,Y) VAl 5 )yl
LaS e o pile 5l Al Ll e (Tl dad s 5 jall A jlall salall al 3 o) il a3 5 ) sl
B0l all Sla s ao g8 Addial) 5 ) sl

g S s (a3l a i ¢ ol dpasi ¢ hlad da ¢ Aghad b Abalis Alotaa tgeasi ) ilalS)

1483


mailto:dr.mishal04@gmail.com

Mishaal Abdulameer Abdulkareem

1. INTRODUCTION

The performance of air separation plants,
storage tanks, transfer lines and transport
vessels for cryogenic liquids and liquefied
hydrocarbons depends majorly on the
characteristics of its thermal insulating
materials. Most of these thermal insulations
operate under atmospheric or medium vacuum
pressure, and it use either Perlite (a loose
granulated material of volcanic glass origin
heated at 850-900 C° to vaporize the high
water content that is trapped in its structure and
allowing its volume to be porous and expanded
up to 7-16 times its original volume), or
mineral fibers in the form of shells or mats
(Verschoor and Greebler, 1952), (Kropschot
and Burges, 1962) and (Kaganer, 1969). For
specific applications, when only a small space
is available for thermal insulation, a system of
multilayered foils is used in a high vacuum. It
is preferred in the field of transfer lines of
liquid hydrogen and liquid helium as well as
components in the space technology and in the
field of physical basic experimental research
(Hoffman, 2006). A common property of all
cryogenic thermal insulating materials is that it
operates under high temperature deference
between atmospheric air and cryogenic fluid
temperatures. Therefore, filling it inside a
vacuumed leak tight annular space separating
the atmosphere from cryogenic fluid vessels is
necessary to avoid the drop in its efficiency
due to the penetration and freeze of water
vapor and carbon dioxide.

The sudden filling of an empty cryogenic
liquid storage tank initially at atmospheric
temperature with a cryogenic liquid at its
saturation temperature will initiate a sudden

high temperature difference between the
terminals of the annular space containing the
thermal insulating material. This high
temperature  difference is  behind the

dependence of thermal conductivity of the
thermal insulation material on its temperature.
In addition, it will initiate a potential for the
evaporation of cryogenic liquid due to the
transient heat transfer inside the cryogenic
liquid storage tank. This energy loss is of a
great economic interest especially when the
size of cryogenic liquid storage tank is
relatively big.
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(Zivkovic et al, 2010) have used the PAK-
T software package, which is based on the
finite element method using the Galerkin
approach to solve the non-linear transient two-
dimensional heat conduction through an
insulation wall of tank for transportation of
liquid aluminum. The objective was to
optimize, under certain boundary conditions,
the thickness of the insulation material which
its thermal properties is a temperature
dependent.

(Singh, Jain and Rizwan-Uddin, 2008)
presented an analytical double-series solution
for transient heat conduction in polar
coordinates (2-D cylindrical) for multi-layer
domain in the radial direction with spatially
non-uniform but time-independent volumetric
heat sources. Inhomogeneous boundary
conditions of the third kind are applied in the
direction perpendicular to the layers. Only
homogeneous boundary conditions of the first
or second kind are applicable on &= constant
surfaces.

(Amiri, Kayhani and Norouzi, 2012) have
investigated analytically the unsteady heat
conduction in composite fiber winded
cylindrical shape laminates. This solution is
valid for the most generalized boundary
conditions that combine the effects of
conduction, convection and radiation both
inside and outside the cylindrical composite
laminates. The Laplace transformation has
been used to change the problem domain from
time into frequency. An appropriate Fourier
transformation has been derived using the
Sturm-Liouville theorem. Due to the difficulty
of applying the inverse Laplace transformation,
the Meromorphic function method is utilized to
find the transient temperature distribution in
laminate.

In this
cylindrical
differential

one-dimensional,
coordinate, non-linear partial
equation of transient heat
conduction through a hollow cylindrical
thermal insulation material of a thermal
conductivity temperature dependent property
proposed by an available empirical

function (k =a+ bTC), (Hoffman, 2006), is

solved  analytically  using  Kirchhoff’s
transformation. This insulating material is

paper, the
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initially at a uniform temperature (T; ). Then, it
is suddenly subjected at its internal radius
(r=R,) to a constant temperature
(T,),(T, <T,). Four thermal insulation
materials were selected, (Hoffman, 2006), each
of outside radius of (Im). The first is Perlite of
thickness (800mm) with a characteristic mean
particle diameter of (d,, =0.5mm) and density
of (p=64kg/m3) at (105 Pa) atmospheric
pressure. The second is Perlite of thickness
(600mm)with a characteristic mean particle
diameter of (d, =0.5mm) and density of

(p=50kg/m3) at a gas pressure(<0.1Pa).
The third is Microglass spheres of thickness
(400mm) with a characteristic mean particle

diameter of (d, =0.1mm) and density of

(p =225kg / m3) at a gas pressure(<1Pa). The
fourth is micro fine Fiberglass mats of
thickness (200mm) with a mean fiber diameter

of (d,=1.143zm) and density of

(p =240 kg/m3) at a gas pressure(<1Pa). To
validate the results, the temperature
distribution will be compared with an available
analytical solution for the same four case
studies that assume a constant thermal
conductivity. A summery table will present the
general analytical solution for the history of
temperature profiles and heat transfer rates of
any size and type of thermal insulation material
that is subjected at (r=R,) with a constant

temperature (T, ), (T, <T;).

2. STATEMENT OF THE
PROBLEM
Consider a cylindrical storage tank of
liquefied cryogenic fluid is thermally insulated
with a hollow cylindrical super insulating
material of temperature dependent thermal
conductivity proposed by an available

empirical function (k =a+bT°), and of inside
radius (R,) and outside radius(R,). This

insulating material is initially at a uniform
temperature (T; ). Then, it is suddenly subjected

at (r=R,)) with a constant
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temperature (T, ), (T, <T;) as shown in Fig. 1.

It is required to find the transient temperature
distribution of the insulating material and the
rate of heat transfer.

3. ANALYTICAL SOLUTION
To solve this problem, the following
assumptions are considered:

1. The temperature is a function of (r,t)

only,  (Transient,  One-dimensional
solution), and no heat transfer in
(9and z) directions.

2. The temperature dependant thermal

conductivity of the insulating material is
proposed by an available empirical

function k:a+bT°).
3. The mean specific heat capacity (C,,)
and the density (p) of the insulating

material are temperature independent
properties.

4.  The initial temperature of the insulating
material is constant(T; ).

5. The insulating material is suddenly
subjected at (r=R;) with a constant

temperature (T,) and held at its initial
temperature value(T;) at its outside
surface at(r =R,).

6. No convection or radiation heat transfer
at the boundaries.
7. Nointernal heat generation.

Since all of the thermal properties of the
insulating material are temperature
independent except the thermal conductivity,
which is a temperature dependent property, and
there is no heat generation and no convection
or radiation heat transfer at the boundaries.
Therefore, the cylindrical coordinates, one-
dimensional, non-linear  transient  heat
conduction partial differential equation, with
its initial and Dirichlet boundary condition are
given as follows:
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or 10 oT
oo )
T(r0)=T, 1)
T(Rl!t) =To
T(Rz’t) :Ti

To linearize the non-linear partial
differential equation in system (1), a corrected
Kirchhoff’s transformation, (Arpaci, 1966), in
accordance to the zero lower limit of the
absolute temperature scale, as shown in Fig. 2,
is used as follows:

w= [k(T)dT )
0

Substituting eq. (2) into system (1) and
rearranging yields;

1 oy 10( ow
I A ——— -
Pn k(T) ot r ar( arj

y(r0) =y, @)
y(Ry,t) =y,
w(Ry, 1) =y,

v, = [kT)aT
0

TD
#; = [k(T)dT
Ti
Vo =V + K
To homogenize system (3), assume;
Q=y -~y (4)

Substitute eq. (4) into system (3) and
rearranging, yields;

2
. Lo 20 10
k(T) ot  or* ror
Q(r,0)=0 ()
QR ) =44
Q(R,,t) =0
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Assume:
oYV _Q-m

Vi—V¥, —H; (6)
Q=—p;0+

Substitute eq. (6) into system (5) and
rearranging yields;

1 (7)

T,
pamT

km _ Ti _ /ui
To _Ti To _Ti

TCUMT
Cp=t—

To solve system (7), assume;
o(r,t)=0,(r)+06,(r,t) ®)
6,(r)=c, In(r)+c, 9)

Substitute the boundary conditions of system
(7) into eq. (9) and rearranging, yields;

01(r)=% (10
Assume;
6,(r,t)=R(r)(t) (12)
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Substituting eq. (11) into system (7) and using
the method of separation of variables, then
rearranging, yields;

R(r)=c,J,(Ar)+c,Y,(4r) (12)

7(t)=c et (13)

Substitute eg. (10), (12) and (13) into eq. (8),
yields;

e(r,t){%} '

[c,3, (Ar)+ ¢, Y, (Ar le,e !

(14)

To estimate the value of(4), substitute the

boundary condition of system (7) into eq. (14)
and rearranging yields;

3Ry

A TN

3,(R) _3,0R,) _ 3,(R) Y, (R,)
Y,(R)  Y,(R,) ~ 3,(iR,) Y, (R,)
Jo(ﬂan)YO(ﬂnRZ)_

15
Jo(ﬂnRz)Yo(/ian)zo =

The values of (4,) represent the roots of eq.
(15), where(n =1,2,3,...,0). Assume:

Uo(2,r)=J0(2,r Vo (4,R,) -

3o (2aRo o (Aar) 1o

Substitute the initial condition of system (7)
into eq. (14), and use eqg. (16), then
rearranging, yields;

f(r)=Y, (AHRZ){l—

Hence;

)

In(R, / R,)

f(r)=>c,Us(4,r) . Where: ¢, =c,c,
=1
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f(r)= Cluo(/llr)+ Czuo(ﬂzr)
+CU o (45r)+

= chu 0 (inr)
n=1

(17)

Multiply eq. (17) by [rU,(4,r)] and integrate
the result over the interval [R;,R,] with the
assumption that the integral of the infinite sum

is equivalent to the sum of the integration
(Arpaci, 1966), we have;

R,

I rf (r)J, (2, r)dr =
. (18)

o0 RZ

Dc, Jruo(lmrpo(inr)dr

n=1 Ry

All the terms on the right hand side of eq. (18)
equals zero, except when (m = n), hence;

R,

jrf (rJ,(2,r)dr

R
Cp=—

n

= (19)
I ruZ(a,r)dr

Ry

The denominator of eq. (19) is estimated as
follows, (Carslaw and Jaeger, 1959);

Ry

IrUOZ(/Inr)dr =

" (20)
223 (aR) =33 (4aR, )]

72235 (4Ry)

To estimate the nominator of eq. (19), the
following are used, (Carslaw and Jaeger,
1959);

R, B
,[on(/lnr)dr _ 2[J0(/1n§21) J,(4,R,)]
”anO(Aan)

Ru




Mishaal Abdulameer Abdulkareem Analytical Solution of Transient Heat Conduction
Through a Hollow Cylindrical Thermal Insulation
Material of a Temperature Dependant Thermal

Conductivity

RZ
jrln(r/ R, U, (4,r)dr =
Ry

2030 (4,R)IINR, /R,)

Hence;

J‘ rf (r)lJ,(4,r)dr =
f (21)
2_[¥o (2R )= 36 (4R, )]
7w Jo(}“n Rl)

Substitute eqg. (20) and (21) into eqg. (19), and
rearranging yields;

C, =

“ [Yo (/1n R, )][_ Jo (ﬂ’n R, )][J 0 (ﬂ“n
9 (4,R)- 32 (4R, )]

R) (22)

Substitute eq. (22) into eq. (14), and
rearranging yields;
a(r,t){—l"zg’/?)}_

" (23)
Z7z[J (4, R ][J R (2 re- et

JH@ R

Substitute eq. (4) into (6), and rearranging
yields;

Jk(T)dT J-k(T)dT

o(r,t)="2 (24)

Jk(T)dT

Hence, equate eq. (23) and eq. (24) leads to the
general analytical close form solution, and it is
given as follows;

1488

‘T[k(T)dT —Tfk(T)dT
0 0

{ In(r /R, )} -

Tjkde In(R, /R,)
= 703, (4, R ][J (2 Ry} Bt
nZ: [‘]0 RZ)JJO(/Inr)e

To normalize eq. (25), assume the following:

R,
Ry

(26)

Ay = ARy
Therefore:-

U, (r)=3, (1 vo ae) -

ol (ar)

Hence, substituting eq. (26) into eq. (25) and
rearranging, yields the general analytical close
form solution of unsteady temperature
distribution through the cylindrical thermal
insulation material, as follows:

(27)

]-k(l')dT —Tfk(r)dT
* — 0 0

Ti
j k(T)dT

SRR 5
NG AR

The unsteady heat transfer through the
cylindrical thermal insulation material is given
as follows:-

q(r.t)= —(—k(T)A(r) 5T(f,t)j

(29)
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Apy=2rrL (30)
Differentiating eg. (25) and rearranging, yields:
-
J.k(r)dT
at(rt) |7, 1
o | k) {?}
(31)
_r
In(Ry /Ry)

el BolinRe [oliny )]
B s

—2ant
ar Je~"n%n

>

n=1

Where:

Ul(ﬂ'nr):Yl(ﬂ“nr)‘]O(ﬂ“n RZ)_
Jl()“n r)Yo (’1n Rz)

Substituting eq. (30) and eq. (31) into (29),
yields:-

Ti

I k(T)dT
TO
R 32)
In(Ry /Ry)

7(2nrf3o(4nR2)[90 /InR,l)]J (ﬂnr)e—ﬂﬁamt

Z:;‘ [Jo (nR1) - Jo(/lnRz)J

) _,
L

0

To normalize eq. (32), substitute eq. (26) into
eg. (32) and rearranging, yields:-

Ti
Ik(l’)dT

T

0

L (33)

In(¢)

i”(ﬁnr ]Jo(in )]Jo(ﬁn)l *( ) (2 Fro

s
lJO j'n) Jg /1n§

q

— =27
L

n=1

Where:
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Uy (e )=, (e o, (1) -

L Mole)

And the heat transfer at the inner surface of the
thermal insulation material (r* =1) is given as:

T
TJ‘k(r)dT

q—0:27r
L

. (34)

UL )= il o). o)

The general analytical close form solution of
unsteady heat transfer through the cylindrical
thermal insulation material is given as follows:

a._
Yo
1
o
w n(lﬁr*){Jo(ﬂ,ﬁéﬂ{Jo n 1 o 7(/1*)2':0
% [38(4)- 98 AR e

3.1 Casestudy (1): k(T)=Kk,
3.1.1 Temperature profile:
Substitute the value of (k,, ) into eq. (28)

and rearranging, yields;

T-T, _ In!r ’ Z‘O:ﬂ'\] A& N30\
Ti-To In(§) n=1 ‘]g ﬂ’n ‘]O n GE

3.1.2 Heat transfer:

(xinr*)e‘()“:)z Fo
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Substitute the value of (k) into eq. (33)
and rearranging, yields;

%=27rk (T, -T,)
1
In(¢)

72- * - *  * *
&l ooz - (- Yot
2 pate-sstel
3.2 Casestudy (2): k(T)=a+hT®

3.2.1 Temperature profile:
Substitute the temperature dependent
thermal conductivity that is proposed by an

available empirical function (k(T):a+bTC ,

(Hoffman, 2006) into eq. (28) and rearranging,
yields;

aT+ D Tt |_ aTO—FAEL—T§+1
c+1 c+1

ﬂ+imﬂ—ﬂﬁ£4ﬁ
c+1 c+1

Where:

-5 (36)

To solve eq. (36), assume the following:-

b TC+1
c+1

f=[9(T)-9(T,)]-olg(T)-o(T, )]

The root T of eq. (37) is found using the
approximate numerical iterative Newton
Method, (Gerald, 1989);

g(T)=aT +

(37)

_df

Tar

dT
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Tnew = Told - fOi
f(;Id
T =Ty - [9(Toia )—9(T, )]-5lg (T )-9(T, )]

K(Torq)

3.2.2 Heat transfer:
Substitute the value of (k(T) = a+bT°)
into eq. (33) and rearranging, yields;

P r*)e—(z:)z Fo

THERMAL CONDUCTIVITY
The dependence of thermal conductivity
on temperature is suggested by the empirical

function (k =a+bT"® ) (Hoffman, 2006). The
values of (a,b,c) for the four selected thermal
insulation materials are given in Table 1. This
empirical function is valid in a temperature
rang of (77 — 400K ). The thermal conductivity

of the first insulation material, Perlite in air at
(105 Pa) atmospheric pressure, is linearly

dependent on temperature, (Perlite Institute
Thermal Data Sheet, 1970). In the literatures
(Christiansen and Hollingworth, 1958) and
(Christiansen, Hollingworth and Marsh, 1959),
measurements of the thermal conductivity of
micro fine Fiberglass mats are published. This
material consists of fibers type ‘AA’ of Owens-
Corning Fiberglass Corporation. The behavior
of the thermal conductivity and its mean value
for each of these thermal insulating materials
for a temperature range of (77 -300K) is

shown in Fig. 3.

4.

5.  SPECIFIC HEAT CAPACITY

Each of the four selected thermal
insulation materials is originally made from
Quartz glass. Therefore, the temperature

dependence of specific heat capacity of Quartz
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glass for a temperature range of (77 —300K )

is given in Table 2, (Corruccini and Gniewek,
1960). In order to evaluate the mean value of
specific heat capacity (C,,) of Quartz glass, its

relation with temperature is represented using a
4™ Degree polynomial fit as shown in Table 3
and it is plotted with its mean value in Fig. 4.

6. THERMAL DIFFUSIVITY

The behavior of thermal diffusivity and
its mean value for each of the four selected
thermal insulation materials for a temperature
range of (77 —300K ) is shown in Fig. 5.

7. RESULTS

Consider four empty cylindrical storage
tanks of liquid nitrogen for instance. Each of
these tanks is thermally insulated with a hollow
cylindrical super insulating material of outside
radius(R, =1m) and initially at(T; =300K).
The first thermal insulation material is Perlite
of thickness (800mm) with a characteristic
mean particle diameter of (d,, =0.5mm) and
density  of (p:64kg/m3) at (105 Pa)
atmospheric pressure. The second is Perlite of
thickness (600 mm)with a characteristic mean

particle diameter of (d,, =0.5mm) and density
of (p =50kg / m3) at a gas pressure(< 0.1Pa).
The third is Microglass spheres of thickness
(400mm) with a characteristic mean particle
diameter of (d, =0.1mm) and density of
(p:225kg/m3) at a gas pressure(<1Pa).
The fourth is micro fine Fiberglass mats of
thickness (200 mm) with a mean fiber diameter
of (d,=1143xm) and density of
(p:240kg/m3) at a gas pressure(<1Pa).
The thermal conductivity of the four selected

thermal insulation materials is temperature
dependent and is proposed by an available

empirical function (k =a+bT°® ) (Hoffman,
2006). The values of (a,b,c) are given in

Table 1. Then, each of these tanks is suddenly
filled with  saturated liquid nitrogen
at(T, =77K). Therefore, each of the four

Volume 19 November 2013

1491

Journal of Engineering

selected thermal insulation materials is
subjected at (r=R,) with a constant
temperature of (T, =77 K).

To plot the transient temperature

distribution and the rate of heat transfer of the
insulating material, it is necessary to estimate

the roots(/fr:). The values of these roots are

given in Table 4, (Cole et. al., 2011).

Figure 6 shows the profiles of temperature
distribution for each of the four selected
thermal insulation materials for two case
studies. The first considers a constant mean
value of thermal conductivity (k) for the

temperature range (77 —300K). The general

analytical close form solution of the first case
study is identical to the solution of (Carslaw
and Jaeger, 1959) using the same assumptions.
Therefore, the validation of the analytical
solution is accomplished perfectly. The second
case study is for a temperature dependent
thermal conductivity proposed by an available

empirical function (k =a+hbT® ) (Hoffman,

2006). Each profile of the second case study
was converged after a maximum of 5 iterations
for a  temperature residual value

of (1><10‘6 c° ) Table 5 shows the summery of

the present work analytical solutions for both
case studies.

Figure 7 shows the heat transfer profiles
for each of the four selected thermal insulation
materials. It is clear that the thermal insulation
material that has the lowest value of thermal
conductivity has the lowest heat transfer value.
Table 5 shows the summery of the present
work analytical solutions.

For both Figures 6 and 7, it is clear that
the characteristics of the thermal insulation
material and the pressure value between its
particles have a major effect on the rate of heat
transfer and consequently the temperature
profile. For instance, the dominant heat transfer

mode when choosing Perlite at (105 Pa)

atmospheric pressure is by heat conduction of
the interstitial gas between the particles,
whereas the heat transfer by radiation is
negligible. When the pressure within a thermal
insulation material is lowered to a value, the
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percentage of heat transfer by heat conduction
of the interstitial gas between the particles
becomes negligibly small when compared with
the percentage heat transfer by radiation and
conduction over the bulk material. The gas
pressure, at which this is reached, depends on
the characteristic diameter of the thermal
insulation material. For Perlite with a
characteristic mean  particle  diameter
of (d,, =0.5mm), a gas pressure of (< 0.1Pa) is
sufficient, for Microglass spheres with a
characteristic mean  particle  diameter
of(d,, =0.1mm) and for micro fine Fiberglass
with a mean fiber diameter of (dm =1.143;m),
itis(<1Pa) respectively.

Figures 8 and 9 shows the time history of
temperature profiles and rate of heat transfer
for each of the four selected thermal insulation

materials for a temperature dependent thermal
conductivity proposed by an available

empirical function (k =a+bT"¢ ) (Hoffman,

2006).

The general analytical solution for the
history of temperature profiles and heat
transfer rates of any size and type of thermal
insulation material that is subjected to the
assumptions that are listed in article (3) is
given in Table 5 and is plotted in Figures 10
and 11 respectively.

8. CONCLUSIONS

It is found that the characteristics of the
thermal insulation material and the pressure
value between its particles have a major effect
on the rate of heat transfer and temperature
profile. The dominant mode of heat transfer
when choosing a specific thermal insulation
material at atmospheric pressure is by heat
conduction of the interstitial gas between its
particles, whereas the heat transfer by radiation
is negligible. When the pressure within a
thermal insulation material is lowered to a
vacuum level, the percentage of heat transfer
by heat conduction of the interstitial gas
between its particles becomes negligibly small
when compared with the percentage heat
transfer by radiation and conduction over the
bulk material. On the other hand, the optimum
selection of thermal insulating material for a
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specific cylindrical storage tank of liquefied
cryogenic fluid is that with a minimum heat
leakage (minimum boil off rate of cryogenic
fluid), a minimum amount of insulating
material (minimum cost) and a maximum
storage capacity of the storage tank (minimum
thickness of the thermal insulating material).
This optimum selection is accomplished when
choosing the micro fine Fiberglass mats when
compared with the three other thermal
insulating materials.
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NOMENCLATURE

a Constant

A Cross section area, m?

b Constant

c Constant

C Specific heat Capacity, kJ/kg.K

Particle diameter, mm
Fourier Number

m
o
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Jo.J1  Ordinary Bessel functions of the 1%

kind, zero and 1* order respectively

Thermal conductivity, W/m.K

Length, m

Rate of heat transfer, W

Distance along the r-direction, m

Inner radius, m

Outer radius, m

Temperature, K

Time, second

Yo, Y1 Ordinary Bessel function of the 2"
kind, zero and 1* order respectively

~H41uUV-or~
N -

GREEK SYMBOLS

o Thermal diffusivity, m*/s

) Dimensionless parameter

A,  Root values of equation (15), m™
u Area under the Kirchhoff’s
transformation curve, W/m
Dimensionless parameter
Density, kg/m®
Dimensionless parameter
Area under the Kirchhoff’s
transformation curve, W/m
Ratio of outer to inner radius
Area under the Kirchhoff’s
transformation curve, W/m

Hao @

< Jw

SUBSCRIPTS

i Initial

m Mean

0 Inner surface

SUPERSCRIPTS
* Dimensionless sign
** Acrbitrary
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Table 1 Suggested empirical function and constant values for the selected thermal
insulation materials, (Hoffman, 2006).

_ _ Empirical function (k —a+ bT°), W/mK)
Insulating material
a b c
Perlite in air
p=64kg/m*,d_=0.5mm, p=10° Pa 8.25x10°° 1.165x107* 1.0
Perlite - vacuum
p=50kg/m® d_=05mm, p<0.1Pa 1.9112x107 3.4757 x107% 3.678
Microglass spheres — vacuum
p=225kg/m®,d_=0.1mm, p<1Pa 3.7037x107* 7.4041x107% | 3.0158
Fiberglass — vacuum
p=240kg/m? d_=1.143um, p<iPa | 2.7074x107* 3.083x107 3.0

Table 2 Data values of specific heat capacity for Quartz glass with temperature,
(Corruccini and Gniewek, 1960).

T (K) 50 100 150 200 250 300
C (Jg.K) 0.095 0.21 0.41 0.54 0.65 0.745

Table 3 Data values for a 4™ Degree polynomial fit of specific heat capacity for
Quartz glass with temperature.

C(T)=Z4:ﬂnT“ . (J/kg.K)

Bo Py B B B

2.16667 x102 | -6.485582 9.92778 x1072 -3.9926 x10* 5.333x107

Table 4 First Five Roots of : (4 Vo (7€)~ Y, (4 )3, (1°¢), (Where £=R, /R, , & >1),
(Cole et. al., 2011).

& 2 2 A 2y A
0.80 12.55847031 25.12877 37.69646 50.26349 62.83026
0.60 4.69706410 9.41690 14.13189 18.84558 23.55876
0.40 2.07322886 4.17730 6.27537 8.37167 10.46723
0.20 0.76319127 1.55710 2.34641 3.13403 3.92084
0.10 0.33139387 0.68576 1.03774 1.38864 1.73896
0.08 0.25732649 0.53485 0.81055 1.08536 1.35969
0.06 0.18699458 0.39079 0.59334 0.79522 0.99673
0.04 0.12038637 0.25340 0.38570 0.51759 0.64923
0.02 0.05768450 0.12272 0.18751 0.25214 0.31666
0.00 0.00000000 0.00000 0.00000 0.00000 0.00000
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Table 5 Summery of analytical solutions.

Case Thermal Temperature profile Heat transfer
study | conductivity T,[IK] q,[W]
W/ mK]
Tkr)aT — f(ryaT : —fﬁﬁh*OQEy%@mUiffkﬁﬁm
o | . Jemar - Jkm o _n@) & [ule) ule] P
=t - AN 9 ) A P
[keryaT In¢) & 2l )-3¢lme)
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()] & =3, el (oo tefe
Ln(é)} glJéoﬁn)—Jéoi’;i)f‘)(i“r k
T_TO = g:27Z|(m(T|_T0)
1 | k(T)=k Ti_T(°) (e (2] L G D9, )13, (2]

" In(r” B > 7| inf Jo /1n - ,(/1 )zFo I:L_ . ﬂ-ﬂ'nr 30 A’ng ‘10 ﬂ’n 'Jl* /At: (Z)FO}
R w2 it aatie] ek
{aT-+k)Tc*l}—{aTo—kt)T§+l} flzzz;r{ aT, + b 'ﬂ°1}——[aT 4——£L—T°”}}
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2 | k(T)=a+bT® [aTi+bTi° 1} [aT +Cb+1T°+1}

)3, (e )9, (4]

EHOE

(/I}Zr*)e’(l; fro

HEYREHGH)

Fo=a,t/R’ |,

u; () = vl

(22 oo (2o 2 )Ll(x;)e—(ﬁ:ﬁo},
o (4e)- 3,

A = A,Ry

1495

(%

Yolié)

U;(’fr:)z Yl(/ﬁ )JO(’l;‘f)_ Jl(ﬁ: ){0(’1;"5)




Mishaal Abdulameer Abdulkareem Analytical Solution of Transient Heat Conduction
Through a Hollow Cylindrical Thermal Insulation
Material of a Temperature Dependant Thermal
Conductivity

T
100 e | 1 | I 1 - , | . | , |
. Perlite in air - — C(T)=fi, T+f, T, T, T
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1 L 08 = + 4 #C(T) (Corruccini md Gniswek, 1960)
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Fig. 3 Thermal conductivity, (Hoffman, 2006) 100 200 300
(i) Solid lines  k(T)=a+bTe T
(i) Dashed lines  k(T)=k, (77-300 K) Fig. 4 Specific heal capacity for quariz glass.
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Fig. 5 Thermal diffusivity,
(i) Solid lines, a(T)=k(T)/pC,,
(i) Dashed lines, a(T)=a,, (77-300 K)
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100 — |
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Fig. 8 Temperature profiles.
(i) Solid lines {present work), k(T)=a+bT-
(i) Dashed lines (present work and (Carslaw and Jaeger, 1959)), k({T)=k_ (77-300 K).

100 — 1 | 1 | 1 | 1 | 1 =

3 Fiberglass 3

. Perlite in air -vacuum -

1 d,=05mm d,=1.143um [

R,=0.2m R,=0.8 m

g e6hr Perlite-vacuum 3

3 d,=0.5 mm =

. R,=0.4 m u

7 48 hr B
'3 E

£ 3 -

E - C

o
0.1 | E
Microglass

g —vacugm E

p d,=0.1 mm -

7 R,=0.6 m B

) 120 hr i

0.0M T T T T T T T T T
o 0.2 0.4 0.6 0.8 1

r, [m]
Fig. 7 Heat transfer profiles.
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(c) Microglass spheres-vacuum (d_=0.1 mm, R,;=0.6 m) (d) Fiberglass-vacuum (d _=1.143 um, R,;=0.8 m)

Fig. 8 History of temperature profiles.
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Fig. 9 History of heat transfer profiles.
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Fig. 10 History of temperature profiles.
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Fig. 11 History of heat transfer profiles.
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