
Journal of Engineering Volume 14 march 2008 Number1

Available online @ iasj.net 2184

PASSWORD SECURITY VIA NEURAL NETWORKS

 Ass. Lec. Mokhtar Mohammed Hasan

University of Baghdad/ College of Science for Women/ Department of Computer Science

ABSTRACT

 Password security and protection are one of the important research topics in

modem computer systems. Providing privacy, authenticity, integrity and limited

access to data, encryption methods are proposed for password security schemes.

 This paper proposes the use of neural network accessing the system, the system

needs other information extracted from the user's password along with the password

itself, these information is passed to two different neural networks to examine the

authenticity of the user, and then decide whether the user is a legal user or an intruder.

 The extracted information can be summarized by the time period between each two

successive characters in the password and the strength of strike of the user when each

character is typed at login time.

 As a result is a powerful security scheme for password protection and the user has

no wary about password being theft because the related password information can not

be theft.

 الخلاصـــة

فموه الوا الحلوُ حماية كلمة المزَر َ امىيتٍا ٌي احدِ المُاضيغ المٍمة في الاوظمة الحاسوُيية الحديةوة

صحة المؼلُمات َ لؼا الُصُ الّ البياووات المُلوُ ف فوي الىظوات يوت فموق موه لبوا ػلّ الامىية المُثُلية َ

 اشخاص مخُليه للاسباب اػلاي وحتاج الّ طزق حماية لمفتاح المزَر.

 يستؼما الطزيمة الممتزحة ٌي ياستؼما الشبكات الؼلبية مه الا الُلُج الّ الىظات حيث ان الىظات الممتزح

مستخللة مه كلمة المزَر يالاضافة الّ ليمة كلمة المزَر حيث ان ٌذا المؼلُمات يت تمزيزٌا مؼلُمات اخزِ

ػلّ شبكتيه ػلبيتيه مختلفتيه مه الا التاكد مه مُثُليوة المسوتخدت َالسوماح لوً يالودخُ الوّ الىظوات اَ رفو

 ٌذا المستخدت.

ا خوا كلموة الموزَر َ لوُف ال وكطة لكوا خوز ػىودالمؼلُمات المستخللة تمةا الفتزف الزمىيوة يويه حوز َ ا

حز مطبُع اثىاء ا خا كلمة المزَر يالتالي ٌُ يىاء طزيمة ليدف َ كفُءف مه الا حماية كلموة الموزَر َفوي

حالة ت اكتشا كلمة المزَر مه لبا المتطفليه فلا حالة للملك لان المؼلُمات المستخللة مه كلمة الموزَر لا

 تشافٍايستطيؼُن اك

KEY WORD :

Security, Protection, Back Propagation Neural Network, Learning, Testing

INTRODUCTION

 The mechanisms for security and protection of a computer system can be classified

into three concentric circles ([8]):

 The innermost circle represents the memory of a computer—RAM and disk

mechanisms such as base-bound registers, virtual memory mappings, and file

access concern Trojan horses, processes entering supervisor state and gaining

M. M.Hasan Password Security Via neural Networks

Available online @ iasj.net 2185

supervisor privilege, and processes attaining super user privilege.

 The middle circle represents the security perimeter of a system: only

authorized people are allowed to cross the perimeter and establish processes

within; their processes are controlled by the mechanisms of the inner circle.

 The outer circle represents the network—all the other computers and people

who want to interact with a given one. Here the concern becomes the ability to

complete exchange transactions successfully (the central notion of commerce

and collaboration). The biggest problem is authentication. Many of the

vulnerabilities of networked systems arise from inadequate means authenticate

users and machines. Sophisticated cryptographic protocols have been devised

to assist with such aspects as secret communication, digital signatures,

certificates, and money.

 This paper reviews password security and protection, in a computer system and

focuses on password protection using neural networks. Especially, a new method of

password protection is invented.

 There are many ways of password protection used in the current systems scaled

from the easy methods such as encryption process of password for small and minor

importance system to creating accounts for each user with a system list of password

with some constraints for choosing the password itself using the access control list

and access matrix found in the system that has a high importance.

THE PROPOSED SYSTEM

 In order to prevent the password from being attacked by the pentrators, we have to

design a good password features, these features represent the combinations of the

characters in the password itself as well as the information that are taken from the

password typing. The proposed system uses three different information for password

protection:

- The value of the password itself

-The time period between each two successive password's characters (may be

letters, or special characters and so on).

- The key strike of the characters

 If we notice that, the password characteristics are difficult to achieve by the

pentrators which are the strength of the key strike and the time period between each

two successive characters, even if the pentratos can guess the password characters in

some how, he can not for sure obtain the other password's characteristics which are

the time period between each two successive characters and the strength of the key

strike, because these information is supplied to the system at the login time by only

the actual user who created the password and information is not saved in a system

password file because we use neural networks for analyzing the correctness of such

information, so, the password protection is achieved.

NEURAL NETWORKS FOR PASSWORD PROTECTION

 The aim of a neural network is to recognize the other information extracted from

the password at login time, let us rewrite these information again:

Journal of Engineering Volume 14 march 2008 Number1

Available online @ iasj.net 2186

 The time period between each two successive characters in the password

(PT as a shortcut for time period between password characters)

 The strength of the strike for each character in the password

(ST as a shortcut for strike of characters in password)

 As I mentioned, the extracted information is not saved in any system file to prevent

accessing by other intruders, so the neural network will be used to recognize PT and

ST information in order to check the user authenticity a long with the password itself.

 We used a neural network called Back Propagation Neural Network that is

developed by Paul Werbos [1], this net used here for the following purposes:

- Very popular model in neural networks

- Easy to training Can estimate the behave of the input patterns

- Supervised training algorithm

 The estimation property means that, the user ,for example, have one character

password length, and PT =300 milliseconds, the user want to login the system, he can

not repeat the same operation with PT=300 milliseconds every time he logs in the

system, so the neural network manages this input with acceptable range of error.

 The supervised property of this algorithm made it suitable for the proposed system

because I have the input features represented by the PT and ST after formulating it to

a suitable input codes, and these information should indicate exactly one user after

matching with the value of the password itself, in other words, the system have the

input features and the desired output user which is the supervised version of neural

network is suitable for this purpose.

AN OVERVIEW FOR A BACK PROPAGATION NEURAL NETWORK

 There are two stages in this network:

- The learning stage of the neural network

 There are two phases in its learning cycle, one to propagate the input pattern and

the other to adapt the output. It is the error signals those are backpropagated in the

network operation to the hidden layer (s). It does not have feedback connection, but

errors are backpropagated-during training, least mean squared error is used.

 The input patterns represent by the PT and ST information as mentioned before,

and the output represents the authenticity measure of that user.

 This neural network composed of three different layers, the input layer which take

the input pattern, and the hidden layer, and the output layer which represents the

neural network response, a further point is that the network shown in Figure (5) is

fully connected, which means that the output of every neuron in one layer is

connected to an input of every neuron in the next layer, starting from the input layer

and ending at the output layer. Not every multi-layered perception is connected in this

way but this is the most common way of doing it.

 Errors in the output determine measures of hidden layer output errors, which are

used as a basis for adjustment of connection weights between the input and hidden

layers. Adjusting the two sets of weights between the pairs of layers and recalculating

the outputs is an iterative process that is carried on until the errors fall below a

tolerance level. Learning rate parameters scale the adjustments to weights. A

momentum parameter can also be used in scaling the adjustments from a previous

iteration and adding to the adjustments in the current iteration.

M. M.Hasan Password Security Via neural Networks

Available online @ iasj.net 2187

- The testing stage of the neural network

 Once training is completed, the weights are set and the network can be used to find

output for new inputs. The dimension of inputs are limited by the number of neurons

in the input layer, and the dimension of outputs are limited by the number of neurons

in the output layer.

- Applying Neural Network in the System

 The proposed system uses two different neural networks:

1) PTNN (Period Time Neural Network) : that is used for PT features

2) STNN (Strike Time Neural Network) : that is used for ST features

 Both neural networks have the same general structure with same input, hidden and

output neurons, the difference is with the type of the input information as an input

pattern for each network, after the user start entering the password, the system collect

the PT information and ST information, and when user finishes entering the

password, the system search in system list of password in order to recognize the user

as a first step, when matching is found, the system takes the user number that is

assigned for each user inside the system, like user 1 has number =1, user 2 has

number =2, and so on, this number taken and combined with PT and ST information

to form two input vectors, PTNN input vector, STNN input vector, and use the

corresponding neural network to recognize that vector pattern, if both of neural

network responds for that user, the user will be allowed to enter the system, if one of

them fails or both fails , the access is denied for that user.

PTNN

 This neural network is used to recognize the PT feature of the current user, this

network has 111 input nodes, 223 hidden nodes, and one output node, the input

information here represented by the PT features as well as the user number to form

the input vector for that neural network.

CALCULATING INPUT NEURONS

 The longest password length in this system is 10 characters, and if we compute the

numbers of pairs in this longest password we find 9 pairs with 9 elapsed times, and

the time elapsed between the finish typing the last character in the password and

pressing the login key, so we have 10 periods each of which represented by 10_bits,

the time measure here in milliseconds by doubling the number; 50 milliseconds wait

means 100 milliseconds; 500 milliseconds wait means 1000 milliseconds (1 second),

so we have a maximum time of 2
10

*2=2048 milliseconds=2.048 seconds elapsed time

between each two successive characters the user can range, so we have 10 different

input information each of 10_bits = 100_bits=100 neuron plus 10_bits for user

number=110_bits=110 neurons, plus one for bias the total is 111 nodes.

 Assume that the password was "my pasword", 10 characters, so there are 9 pairs of

two successive characters in this password, and the tenth pair is between writing the

last password character and pressing the login key:

Transferring and Pressing to Login Button

Journal of Engineering Volume 14 march 2008 Number1

Available online @ iasj.net 2188

Where I=Information, so, each information takes:

10_bits = 10_information * 10_bits_for_each=100_bits

We need extra 10_bits for user number, so, the total of:

100_bits + 10_bits_for_user_number = 110_bits = 110 neurons

110 + 1 for bias = 111 neurons at the input layer

CALCULATING HIDDEN NEURONS

 The number of hidden neurons are estimated, there is no ideal equation to compute

the number of hidden neurons in back propagation neural network, so this number is

depend on the experimental results and testing, some references emphasis on the

following equation that we use it:

Hidden_neurons = Input_neurons * 2 +1

 Table (1) shows the different number of hidden neurons compared to the number of

cycles need to learn the neural network assuming the system consists of 20 users, so

we get the final number of hidden neurons.

Table (1) _ preliminary experiment results

CALCULATING OUTPUT NEURONS

 The number of output neurons used in this system are just one, after supplying the

input vector features for the neural network, the output will be an authenticity

measures that scaled between 0 and 1, as the output value goes to one, the user is more

authenticate, as the output value goes to 0 the authenticity reduced, so we need a

threshold to recognize between authentic users and no authentic users, this threshold

decided to be 0.7, some errors are allowed here because it is difficult to the user to

Hidden

number

Iterations

number

Error

20 4000 0.3544

50 4000 0.3541

130 4000 0.0219

160 4000 0.0195

190 4000 0.0183

223 4000 0.0031

M. M.Hasan Password Security Via neural Networks

Available online @ iasj.net 2189

supply the same exact PT and ST in each time which is one of the reasons of using

back propagation neural network, figure (5) shows the layout of PTNN.

Fig (5) _ the layout of PTNN

STNN

 The design of this neural network is identical to this one that used in PTNN except

that the codes in the input vector represents different kind of information, this

network also has 111 input nodes, 223 hidden nodes, and one output node, the input

information here represents the ST features a long with the user number to form the

input vector for that neural network.

CALCULATING INPUT NEURONS

 The longest password length in this system is 10 characters, each character has its

own ST, so the system computes 10 different periods for ST, also each character has

10_bits representation which allows 2.048 seconds the ST of each character in the

password.

 The ST for each character is computed by computing the time elapsed between

holding down the keyboard key and releasing up this key which represents the ST for

that character, these 10 different periods as well as the user number are presented to

the neural network in order to decide the authenticity of that user.

 As an illustration example, assume that the password was "my pasword", 10

characters; the ST information will be computed from:

Input Layer

Neurons

Hidden Layer

Neurons

Output Layer

Neuron

PT Input

vector

features

with user

number

Journal of Engineering Volume 14 march 2008 Number1

Available online @ iasj.net 2190

So, each information takes 10_bits = 10_information * 10_bits_for_each=100_bits

We need extra 10_bits for user number, so, the total of:

100_bits + 10_bits_for_user_number = 110_bits = 110 neurons in input layer

110 + 1 for bias = 111 neurons

Calculating Hidden Neurons

 The number of hidden neurons are 221 in the same way computed in section

(5.2.1.2).

CALCULATING OUTPUT NEURONS

 There is one neuron used as an output neuron as illustrated in section (5.2.1.3),

figure (6) shows the layout of the STNN.

Fig (6) _ the layout of STNN

LEARNING STAGE OF THE PTNN AND STNN

 Once the required system is installed on a target computer, the system needs now to

learn the neural network to the available users in this system so the weights are saved.

 Any new registered user in the system, his ID and Password will be taken as

tradition, the system store the ID, password, user number that is generated by the

system, and the extracted information from the password at the moment of typing the

password will be used to learn the neural network, as a result, we can use the neural

network at log in for registered users.

 The Back-propagation network undergoes supervised training with a finite number

of pattern pairs consisting of an input pattern and a desired or targets output pattern.

An input pattern is presented at the input layer. The neurons here pass the pattern digits

to the next layer neurons, which are in a hidden layer. The outputs of the hidden layer

Input Layer

Neurons

Hidden Layer

Neurons

Output Layer

Neuron

ST Input

vector

features

with user

number

M. M.Hasan Password Security Via neural Networks

Available online @ iasj.net 2191

neurons are obtained by using perhaps a bias, and also a threshold function with the

activation determined by the weights and the inputs. These hidden layer outputs

become inputs to the output neurons, which using possibly a bias and a threshold

function with their activation to determine the final output from the network.

 Learning Algorithm:

 Let x0(0), x0(l), x0(2), up to x0(111) be the input vector features to the input

layer.

 Let y1(0), y1(1), y1(2) up to y1(223) be the input of the hidden layer, which is

the output of the input layer.

 Let y2 be the final output value.

 w1(i ,j) is the weights connection between input node i and hidden node j

 w2(i) is the weights connection between hidden node i and output node

 x1(1), x1(2), up to x1(111) and x2 is a temporary storage

 As a first step, the system has to initialize all weights with a random number scaled

between 0 and 1 an d must be not equal to zero.

 The system has to compute the hidden neurons which is:

 We need a derivative function to ensure that the output will fall in the range 0 to 1; the

one that is most often used successfully in multilayered perceptrons is the sigmoid

function, shown in Figure (7).

 So, using the sigmoid function, the hidden layer inputs can be computed from the

following equation:





111

0

)(0*),(1)(1
i

ixjiwjx

)1(

1
)(1

)(1 ixe
iy




… Equation 1

… Equation 2

Journal of Engineering Volume 14 march 2008 Number1

Available online @ iasj.net 2192

Fig (7) _ sigmoid function

 For positive values of x, as x increases y approaches 1. Similarly, for negative

values of x, as the magnitude of x increases y approaches 0. In addition, when x = 0, y

= 0.5, So the output is continuous between 0 and 1 and is therefore differentiable.

 The temporary output of the hidden layer is computed from the following equation:

 Using the sigmoid function, the final output can be computed from the following

equation:

 If the actual Neural Network output which is (y2) is far a way from the desired

output, we have to go to the next step, which is Weight Adaptation..

 Use a recursive algorithm starting at the output nodes and working back to the first

hidden layer Adjust weight by:

 Where

η : is a gain term

δ : is an error term for output node which can be computed from the following

)1(

1
2

2xe
y








223

1

)(1*)(22
i

iyiwx … Equation 3

… Equation 4

iii ytwtw 1**)(2)1(2  … Equation 5

M. M.Hasan Password Security Via neural Networks

Available online @ iasj.net 2193

equation:

 And similarly, d is the desired output of the output node which is 1.

The weight adaptation between input and hidden layer, Equation 5 is used by updating

w1 using y2, the equation of δ will be:

 Where k is the overall nodes in the layer above node j, internal node threshold are

adapted in a similar manner by assuming they are connection weights on links from

auxiliary constant valued inputs.

 Convergence is sometimes faster if a momentum term is added and weight changes

are smoothed by:

Where 0< α < 1

 Note that the weights are updated after each pattern is presented and not after the

whole training set is presented. The reason why this is done is because the training set

is probably very large, so that the time taken to train becomes intolerable. This has not

been shown to be equivalent to minimizing the mean squared error, but is widely

adopted.

 The above algorithm is repeated until the neural network is learned. Figure (8)

shows the flowchart of the learning algorithm.

)2(*)21(*2 ydyy  … Equation 6


k

jkkj wyy **)11(*1  … Equation 7

)1(1)(1*0**)(1)1(1  twtwxtwtw ijijijijji  … Equation 8

Journal of Engineering Volume 14 march 2008 Number1

Available online @ iasj.net 2194

Fig (8) _ the learning process

Compute hidden

layer values (y1)

Input vector for next user

Initialize the

Weights

Compute actual

output (y2)

Error = difference

between actual and

desired output

Acceptable

Error ?

Adjust

hidden_output

weights (w2)

Adjust input_hidden

weights (w1)

Yes

Acceptable

for all users

Yes

No

Save the final Weights

No

M. M.Hasan Password Security Via neural Networks

Available online @ iasj.net 2195

Testing Algorithm:

 Let x0(0), x0(l), x0(2), up to x0(111) be the input vector features to the input

layer.

 Let y1(0), y1(1), y1(2) up to y1(223) be the input of the hidden layer, which is

the output of the input layer.

 Let y2 be the final output value.

 w1(i ,j) is the weights connection between input node i and hidden node j

 w2(i) is the weights connection between hidden node i and output node

 The system has to compute the hidden neurons which is:

 Using the sigmoid function, the hidden layer inputs can be computed from the

following equation:

 The temporary output of the hidden layer is computed from the following equation:

 Using the sigmoid function, the final output can be computed from the following

equation:

 If the output (y2) larger than the threshold value, then the user is allowed to access

to the system, otherwise the user is denied access to the system. Figure (9) shows the

flowchart of the testing algorithm.





111

0

)(0*),(1)(1
i

ixjiwjx

)1(

1
)(1

)(1 ixe
iy




… Equation 1

… Equation 2





223

1

)(1*),(22
i

iyjiwx … Equation 3

)1(

1
2

2xe
y


 … Equation 4

Journal of Engineering Volume 14 march 2008 Number1

Available online @ iasj.net 2196

Flowchart (9) _ testing process

EXPERIMENTAL RESULTS

 I applied two examples on the suggested system, the first example is acceptable one,

and the second example is rejected by the system, let us consider the user number 12 in

the system, when the system create an account for that user and the user enters the user

name and password for the first time, the system extracts these information from the

password, these information after multiplying the PT and ST information by 2 as

mentioned before is:

Compute hidden layer

values (y1)

Input vector for next user

Initialize the Weights

Compute actual output

(y2)

Y2> Threshold

No
Yes

Access Allowed Access Denied

collection

Password Value

 790, 680, 704, 786, 696, 652, 804, 704, 644, 978

PT information

304, 378, 254, 518, 420, 382, 388, 512, 418, 420

ST information

M. M.Hasan Password Security Via neural Networks

Available online @ iasj.net 2197

 So that, the system will store the weights of the neural network after learning using

the above information which will be used at login time.

ACCEPTABLE EXAMPLE

 Assume that a user has the following information registered in the system:

 The user number in the system was 12, so, at the login interface the user will type

his user name and when switches to the password entering area and starts typing the

first letter of the password which is letter 'c', the system starts to record two type of

information which is PT and ST information, as mentioned before, according to the

speed of that user that he decided using my proposed system, we get the following

time periods in milliseconds and already multiplied by 2.

 The user number will be used for both PT and ST information.

 The PTNN input vector features will be extracted from the above information as

well as the STNN input vector features, Figure (10) and figure (11) shows the final PT

and ST vectors that will be used as an input to both PTNN and STNN respectively.

User Name : beginner

Password : collection

706,748, 766, 680, 758, 698, 736,682,664, 980

PT information

442, 464, 398, 424, 396, 462, 448, 388, 368, 378

ST information

12

User Number

1 1011000010 1011101100 1011111110 1010101000 1011110110 1010111010 1011100000 1010101010 1010011000 1111010100 0000001100

PTNN input

Info1

Info2

Info3

Info4

Info5

Info6

Info7 Info9

Info10

User No.

Bias Info4 Info8

Info9

Journal of Engineering Volume 14 march 2008 Number1

Available online @ iasj.net 2198

Fig (10) _ the input vector information for PTNN

Fig (11) _ the input vector information for STNN

 By applying each input vector to the corresponding neural network, i.e. by giving

the PT vector features to the PTNN and ST vector feature to the STNN, we will

obtain two different outputs each one from a network, these two outputs are:

 As noted above, the user is authenticated user, so this user is allowed to enter to the

system.

REJECTED EXAMPLE

 I applied the system on the same previous user:

 The user number in the system was 12, so, the information that extracted from the

user password at typing time is:

Info1

Info2

Info3

Info4

Info5

Info6

Info7 Info9

Info10

User No.

1 0110111010 0111010000 0110001110 0110101000 0110001100 0111001110 0111000000 0110000100 0101110000 0101111010 0000001100

STNN input

Bias Info4 Info8

Info9

PTNN output : 0.897 which is > 0.7

STNN output : 0.799 which is > 0.7

User Name : beginner

Password : collection

918,988, 834, 922, 812, 942, 898,864,890,968

PT information

788, 846, 738, 372, 358, 298, 324, 896, 842, 880

ST information

M. M.Hasan Password Security Via neural Networks

Available online @ iasj.net 2199

 As you noticed, the PT and ST information is quiet different from the original user

information, that is mean, the user is not authenticated that steals the password and

tries to log into the system, let him do what he came for.

 The PTNN input vector features will be extracted from the above information as

well as the STNN input vector features. Figure (12) and figure (13) shows the final PT

and ST vectors that will be used as an input to both PTNN and STNN respectively

Fig (12) _ the input vector information for PTNN

Fig (13) _ the input vector information for STNN

 By applying each input vector to the corresponding neural network, i.e. by giving

the PT vector features to the PTNN and ST vector feature to the STNN, we will

obtain two different outputs each one from a network, these two outputs are:

Info1

Info2

Info3

Info4

Info5

Info6

Info7 Info9

Info10

User No.

12

User Number

1 1110010110 1111011100 1101000010 1110011010 1100101100 1110101110 1110000010 1101100000 1101111010 1111001000 0000001100

PTNN input

1 1100010100 1101001110 1011100010 0101110100 0101100110 0100101010 0101000100 1110000000 1101001010 1101110000 0000001100

STNN input

Info1

Info2

Info3

Info4

Info5

Info6

Info7 Info9

Info10

User No.

Bias Info4 Info8

Info9

Bias Info4 Info8

Info9

PTNN output : 0.531 which is <= 0.7

STNN output : 0.242 which is <= 0.7

Journal of Engineering Volume 14 march 2008 Number1

Available online @ iasj.net 2200

 As noted above, the user is not authenticated user, so this user can not login into

the system, which is the aim of this paper.

CONCLUSIONS

 In this system, I built a strong enough security method for password because all the

newer systems use the password as the live key for their users and the system is aware

more than the user for the password security and provision new techniques for

protection, this is a powerful method for protection, that uses the password value as

well as the information extracted from the password itself which called PT and ST, if

the pentrators can guess the password in some how, he can not guess the PT and ST

information and I can say that it is impossible to guess these information, so, when

the password is protected, the system is protected.

 By using the Neural Network for password security, it has the main significant

property which is the acceptable of input within a specific range of error, because the

extracted information from the user's password at login time is not the same in each

time the user logs in to the system and can not be so, there is a different in PT and ST

because the time measured in milliseconds, so the neural network fits our demand in

this case and it accepts the extracted user information at login time with a suitable

error.

REFERENCES

-Werner Kinnebrock, “Neural Networks, Fundamentals, Applications,

Examples”, Technical University Rheinland-Pfalz, 2nd Revised Edition, 1995

- Kung S. Y., “Digital Neural Network”, New Jersey, 1993

- Simon Haykin, “Neural Networks, A comprehensive Foundation”, McMaster

University, Hamilton, Ontario, Canada, 1994

- Richard P. Lippman, "An Introduction to Computing with Neural Nets", IEEE

ASSP magazine, 1987

- Jacek M. Zurada, “Introduction to Artificial Neural Systems”, 1996

- John R. Smith, “Feature Extraction for Neural Network”, March 6, 1996,

Internet Paper

- Wolfgang Banzhaf, Riccardo Poli, Marc Schoenauer and Terence C. Fogarty,

"Lecture Notes in Computer Security", First European Workshop, Euro 99, Paris,

France, April 1998.

- Henk C. A. Van Tilborg, "An Introduction to Cryptology", Kluwer Academic

Publishers, 1988

- B. Schneier, "Applied Cryptography: Protocols, Algorithms, and Source Code",

Second Edition, John Wiley & Sons Inc, 1997.

- Alan G. Konheim, "Cryptography: A Primer", John & Wily, 1992.

