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ABSTRACT

In the present paper . the derivation of stiffness matrix for a general two dimensional curved
glement in global coordinates system is presented, The derivation depends on the assumption that
eny curved in-plane element can be approximated by a specified curve in polar coordinates. The
polar curve assumed in this polar depends on some variables that enable it to represent any two
dimensional curved element. The derivation process accompanied by complex integrals which are
evaluated by using (Gaussian Quadrature) method of numerical imegration. One numerical
cxample is presented to verify the accuracy and efficiency of the derived stiffness matrix. The

verification contains a comparison with the results of the exact solution. Very good agreement is
abtained etween the results of the derived stifthess matrix and the results of the exact model.
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INTRODUCTION

In the past. the curve beam or arch represemts one of the few structural systems which make it
possible to cover lar e spans. The earliest inhabitants developed the arch as an important element of
their architecture as expressed by remaining bridges, aqueducts and large public buildings. To day.
the same importance is presented especially in bridee coasteuction. Typical forms of curved beams
are: circular arches, cantjlever-curved beams, elliptical arches, cubic. square arches and catenars
curved beams. Most of early modern curved beams have semicircular shapes, Now. curved beams
or arched structurcs are constructed in different shapes and from variable materials as brick. steel,
reinforced concrete, ferrocement and timber. The main aim of the curved beam is to enhance the
load camryving capacity, which may come from stiffening beavior due to membrane action. A
literature survey indicates thal a substantial amount of works that deal with the analysis of arches by
using circular curved finite element. Just(1982) presented the exact (6+*6) stiffness matrix for a
circularly curved beam subjected to loading in its own plane. This matiix was derived from the
governing differenlial equations and from the finite element procedure. The strain energy
contributed axial and Mexural actions were considered, Akhtar(1987) expressed the stiffness matrix
of a single circular member of uniform cross-section. He also obtained the fixed end actions due to
concentrated load acting at any point on the memhber making any angle with radial direction at this
point. The effect of shear deformations was neglected. Litewka and Rakowski(1998) derived the
exact stiffness matrix for a curved beam element with constanl curvature(circular curved element ).
The plane two node six-degree-of-freedom element was considered. Hadi(2002) developed a
circular curved beam element stiffness matrix. He included the effect of shear deformations. The
derived matrix is used in the nonlinear analysis of reinforced concrete circular arches. It is clear
from the preceding review that there is no formulation of a4 more general stiffness matrix for a
curved element including circular and non-circular curved elements. The objective of the present
paper is Lo derive a more general stiffness matrix that deals with circular and non-circular curved
elements by using the principle of the strain energy. In addition, the derived stiffness matrix is in
global coordinates system and can be applied on any curved element without any transformation.

- Derivation of Stiffness Matrix For a General Curved Beam Element:

Before the derivation of stiffness matrix, a general equation for any curved in-plane element must
be found. In this paper, a general equation in polar coordinates is suggested to represent any plane
eurved element. The suggested equation is:

r=acosnid (I:I'

Which represents a family of (flower-shaped) curves or roses depending on the value of (#) equally
spaced petals of rac.us (a ard = 0). So, if one takes the first quadrant of eq.(1) , any plane curved
element can be fitted by choosing a specified values Tor (#) and (e ) depends on span length and a
number of known (x- y) coordinates for the curve. For (#=1), the curve represents a circle as
shown in Fig.1 and for (n=2) represents a rose of {(2a) equally spaced petals if (w) is even
(m=248,..) and of (n) equally spaced petals if (n) is odd (#=357,....). As (»]) reaches high
values, the above eq.(1) represent a straight beam, So, the chosen polar curve represents an infinite
number of curves varies from a circle (w=1) and the degree of curvature will decrease with the
increment of () until it will reach to a straight element (m=w=) or large values. The above
cxplanation can be seen in Fig.1.
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Fig.1: The Graph of r=acosng

The derivation of the stiffness matrix depends on the principle of the strain energy. The model
forces and displacements of a curved element are shown in Fig.2. The internal forces can be
expressed in terms of the nodal forces at node (i) by using the static equilibrium equations. The
global coordinates system is considered [or the directions of the nodal forces and displacements.
Hence, by using the suggested polar equation, the following internal forces can be obtained
P=Pioos-3+ Qpsin B (2}
Where ( 2) is the inclination angle of the tangent to the polar curve at a point having coordinates
([ r.@ ) which can be expressed as

dy %ﬂ _ nsinnd sind - cos nf cos @ ' (3)
iy d%ﬂ Fowin mi? cos 8 ¥ cos il sind?

ddy

tan i =

In which x=rcosé,y=rsind,r=acosnd
M=0;({rcox8—ry cosfly )= Pifrsind —ra sinflz |+ M; ) (4)
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Fig.2: The curved Element Considered In This Study
(a)Orientation of The Element (b) Foree und Displacement Systems on
The Element

The strain energy used here can be expressed as
0, 1 & :
U=— | M2s+—— [ Pls B
2ET a ZAE g
i i

Where  (ds =m.,'[rcama 72+ wlsinng)* do) is the length of the curve segment in polar coordinates

used to find the strain energy along the curve , Anton ct al (2002).
By substituling expressions (2) and (4) into the equation of the strain energy (5) one can get

1 [E:zfﬂ )-204 Pyfag )-20 M (a3 )+ Pi* (ag )4 2P My (as )+ M (ag )+

i [ate ; ©
A (R (a7 )+ FiQifag )+ 0i" (a9 )) 4

Where
&, ' i (

ap - _ll[[na'm:inﬂ!l’sfnnﬂjz Inlqmﬂgrm"'ﬁmﬂi+"ﬂzf‘wﬂfz J'[‘l]f‘""'"wz +"1fﬁ""mi JJ i &)
#

. S
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Integrations of eqs.(7 to 13) is complicated, so, it can be found by using Gaussian-Quadrature
method of numerical integration (see Appendix —A). It is found that three Gaussian points give
close results to the exact solution for the example presented in this paper. The stiffness coefficients
corresponding to the degrees of freedom shown in Fig.2(h) can be ohtained by using Castigliano’s
second theorem Boresi and Schmidt (2003}, which states that the deflection caused by an external
farce is equal fo the partial derivative of the strain eneray (7 ) with respect to that force.

The partial derivatives of the strain energy () with respeet to (P} (@) and { M;) respectively
are:

%ﬁﬁ.} [Py req )+ 0p0ca )+ Myes )] ' : : (%)
j{i = 1;, [Pirca )i @ireq )+ Mifes)] (1
ﬁ:‘ 'I;-;Iﬁrf.’rj"'@fﬁ-‘sl"--"fifff,i] (18)
Where

Zal |
] =2ag )+ Tfﬂ?}

'
Cy = %fﬂgj—ﬂaz}

e3 =2(as) ! ' (19)
2af :

eg =2(a1 )+ (ag )

5 =—2(az)

g =2far)

The stiffness coefficient ( &) can be defined as the force of type (i) which required to cause a unit
displacement of type ( j ) with all other types of displacements equal to zero. Therefore, equations

(16), (17) and (18) will be used to fined the stiffness matrix of the element.

2.1 Axial Stiffness
Consider the element shown in Fig.3 which is subiected to a unit axial displacement. The stiffness
coefficients corresponding to that displacement can be obtained by setting expressions (16),017) and
(18) equal to 1,0 and D respectively, hence

Pifey )+ Qp(ea )+ Mifcs )=2El (20)
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Fig.3: Curved Element Subjected to a Unit Axial Displacement

Solving eqs. (20, (21} and (22) simultancously yields

Py = 1E]
r"]
2EF
7
L A 1
T PR b bt
Ay ]
Where
- 0503
" f?_flf
Ay =[c| +e3 8 —ifc‘] +ogl] ji|,,3'| =_._,,_1_
€5
{" — —
ey = )
From equilibrium requirements
—2ET
e e
A
—XE]
= i _—_Z
Q_; ~0 A1 1
Mj=0iL—(FiL1+Mj)
2ET ey +o5Z
== -[I:L—rfq — 22y
Ay | =

= Lateral Stiffness

(11

(22)

(23)
(24)

(25)

(26)

(27)

(28)

Proceeding as in the previous section, stiffness coefficients due to a unit lateral displacement at a
node (i) (Fig.d) can be found by making expressions (16).(17)and (18) equal to 0,1 and 0

respectively, hence
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(20
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(31

Piteg )+ Qyiez 1+ Myfez)=0
Mica = Qireg b+ Mifes ) =204
Pitez )+ Qi fes )+ Mifegi=10

Again, by salving the above three equations simultaneously. the following expressions can be

obtained

-2El| ¢ & 1o
o 2Ef | ca+0cafy (12)
Az £
TET o
Qp=— (33)
Az s
- ;
=26 (34)
42
.
3

Fig.4: Curved Element Subjected to a Unit Lateral Displacement

Where
c3c
{ C] - )
il €2 s 1
A3 = [fd +egdy ——fcg +e3d2 J'] e s
] o3
fog———
|
Also, due to equilibrium requirements
1ET | ca 40342
i g I 35
I [ €1 ] (=)
-2 ES

A2
Mi=0iL-(Fily+M;)

1ET cr ezl
= _._|:L_(zz e .,.:._};_I _;:|
A2 |

= Rotaticzial Stiffness
Stiffness coefficients corresponding to a unit rotational displacement at a node (i) (Fig.5) can be

found by setting expressions (16),(17)and (18) equal to 0,0 and | respectively, hence

(37)

Fifep JeQpfca )+ Mifc3 )=10 (38)
Pifea ) +Qiicqg )+ Mjfes)=0 (39
(10)

Pifesy )+ Qp(cg )+ Mifeg h=2Ef
Solving eqs.(38),(39), and (40) simultancously, one can get
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Fig.5: Curved Element Subjected to a Unit Rotational Displacement
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From equilibrium requirements, the following expressions can be obtained

_2E c3Z3+e3 44

o As[ €] ] (@34)
=2 Ef

R R 45

‘E_; A3 £3 ( ]

Mj=0QiL-(FiLl +M;)
_E[ESL-(l_[fEJ ﬂ)‘-l J]
A3 €

All other stiffness coefficients can be found from symmetry and equilibrium requirements. The
coefficients of the {646 ) stiffness matrix in the global coordinates system according to the degrees
of freedom shown in Fig.2 (b) is as lollows:

(46)

2ET
= "1-?
K11 i (47)
; TEr

i 48
Ky A £1 (48)
33] =—2ff[ﬂ'3 -I-r.‘szl-l {49}

Ap o6

Ko =22 (50)
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The above coefTicients can be written in a matrix form as follows

K11

Ky £Anx SV
[x] K31 Kap Kaz

Kq1 Kq2 Fy3 Ky

Ks1 Ksz Ksz Ksq Kss

| K51 Ker Hgz Keq Kgs Koo
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- Mumerical Example

To verify the validil; and efficiency of the derived matrix, a cantilever-curved beam shown in Fig.6
s analyzed by using the derived stiffncss matrix, The curved beam is analyzed previously by
Just(1982) by using an exact circularly curved beam element derived by him. In this element. the
strain energy contributed by axial and flexural actions was considered. Three subtended angles ( »)
of the curved cantilever were investigaled. The beam was analyzed by using a single curved
element and also by approximating it into a various numbers of equal straight segments. In the
present study, the end displacements of point (8 ), (e g,vg) are found by using the derived stiffness
matrix for the three values of (). The results are listed in Table (1) . Through the comparison of
the two solutions. it is found that the results obtained by using the derived stiffness matrix is close

to the exact solution obtained by Just(1982).

In the above figure, the unknowns (ry,rz,8),#2) can easily found from the geometry of the curved

| 61162
=12.5m

Derivation of Stiffness Matrix for
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Fig.6: Curved Cantilever of The Numerical Example
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Table (1): Comparison of Results of The Numerical Example
End Number of Straight Elements r
Deflections ¥ Just (1982) Exact Present
{mm) I 2 3 Just Analysis
. (1982)
vg | 94,28 138.13 152.11 157.08 | 156.908
“B %0° 94.28 97.67 | 9937 | 100.00 | 100.448
gl | 50.00 55.08 60.55 61.42 60.975
WE @ | 2887 25.88 25.22 25.00 24.58
Vgl 5.63 593 9.03 9.06 9.174
s | W [ 231 1.92 1.83 1.79 1.805
3174
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- CONCLUSIONS

The derived stiffness malrix is found to be efficient for the analysis of eurved beams as shown by
the comparison of results obtained from the present analysis and the exact solution. It is found that
the difference between the present and the exact analyses is not more than (1.7%). The derived
stiffness matrix car be used for a wide range of curved elements starting from circular curved
elements to straight clements. In addition. the global coordinates system is considered in the
derivation of stiffness matrix, su, il can be used without any transformation. This will offer an
economical time and fewer caleulations solution than the derivations presented by different
researchers.
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- NOTATIONS

The following symbols are used in this paper

A : cross-sectional area of the element

E : modulus of elasticity

f :the moment of inerlia about the major axis

K i scoefficients of stiffness matrix [£]

L : the horizontal projection length of the curved element on x —axis (span length)
£1 : the vertical projection length of the curved element on y—axis

M :internal moment at a point with { r,# ) coordinates on the curved element

P : internal axial force at a point with (.8 ) coordinates on the curved element
¢ : internal shear force at a point with (r,@ ) coordinates on the curved element
uj i j:horizontal displacements at the node (1) and { f) respectively

vj.¥ o vertical displacements at the node (i) and { /) respectively
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| Appendix-A (Numerieal Integration)

One of the most formulas which is used for numerical integration is(Gaussian Quadrature)

!

formula . To estimate the valuc of the integration ( [f(@}#8) according to (Gaussian
&

Quadrature) formula, the interval of the integration will be changed from l6..2, ]m[— I.l]l:u;-,- a

suitable transformation of variable. Let the new variable (& ), where — 1=« <1, be defined by

78—
o 28 —(a+h) (A-1)
b=a
Also define a new function f{w) so that
(b—a)a+{b+a)

Fla)= f(8)=f{ S T -) (A-2)

‘Then, imcgration of F{a)between the integration limit [— ].I] can be found as tollows
| M
[Fa)de =y w,Fi,) (A-3)
1 =]

Where nis the number of Gaussian points. So, according to eq.{A-3) and by the subistitutions
s {a+5}+ﬁ{b—a]a o {b;a] i

e b-a) < da+b)+(b-
[j{ﬂ)dﬂ:f_zfl Y et ]4—1_ Lo

L =l ta

) (A-4)

a
Where ( w, ) is the weight factor and (&, ) is the corresponding base point.

Example:
Tl
Find A~ _[{msﬂ'}" dd

a) Exact solution

xil
= [l(cusﬂ}j sing + E(li!? +lﬁil1 24)
4 42 1
x4

=10.04447

b) Approximate solution

Using three Gussian points, the corresponding base point and weight factors are:
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a8 = 1.174

a, =+0.77459  w, =0.5355555 4, =482

a, =0 77459

Hence,

2

il

A=0.0445

w, = 0.5555555 ¢, =D.874

A= [(cos@)' do = bl L‘;’_} W, (cosd), 1*} = 0,3927[0.88888(0.021466) + 0.55555(11.16969)]

[t can be seen that the two solutions are very close to each other.

Table (A-1): The values of the apprapriate base points and the corresponding weight factars for

Roots( o, ) [

n=123....0 pomnts formula

1 ir
| #(er)de =3 w, F e, )
_1| i=l

Weight factars (w,)

1057735 02601 89626 |

-0.57735 02691 89626

| 000000000 0000oo0ao0o
1.00000000003000000000

Twao- point Farmula

0.00000000000000000

H).T7459 66692 41483

-0.77459 66692 41483

0.88EEEREEREEERRARELRE
0.35555555555555555555

['hree- point Formula

0.53555555555355555555

H0.33998 10435 B4hs6

-0, 33998 10435 B4856

—0.86113 63115 54053

-0.86113 63115 94053
0.00000000000000000

+0.55846 93101 05683

-0.53846 93101 05683
HLB0617 98459 38664

-0.90617 98459 38664

| 0.65214 51548 62546

| 0.65214 51348 62546
0.34785 48451 37454

Four- point Formula

0.34785 48451 37454
0.56588 BERBES BEBEY
0.47862 86704 99366

0.47862 86704 99366
0.23692 68850 56189
0.23692 68850 56189

Five- point Formula

+0.23861 91860 83197
-0.23861.91860 83197

+0.66120 93864 66256

-0.66120 93864 66256

+0.93746 95142 03152
-0.93246 95142 03152

0.46791 39345 72691
0.46791 319345 72691
0.36076 15730 48139
(036076 1573048139
0.17132 44923 79170
T0.17132 44923 79170

Six- point Formula
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