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ABSTRACT: 

Geotechnical engineering involves many different and complex materials and many different 

mechanisms of behaviour. The direct use of experience as a guide to the prediction and design is 

effective, provided these are understood. Geotechnical engineering is a relatively new science. Its 

successful application to prediction requires realistic assumptions to be made, and predictions 

must be tested against reality. Methods of prediction need then to be refined. An example of the 

importance of making realistic assumptions is examined in this paper. It includes the effects of 

soil properties on the ultimate capacity of axially loaded piles. 

Better analysis offers better prediction and better understanding. Both are only possible 

when reality is modelled. There are occasions when mechanisms are too complex for predictive 

analysis. Prediction must then be based directly on experience, applied with an understanding of 

the mechanisms involved. Moreover, methods of analysis may become too sophisticated for 

everyday use. However, pseudo-analysis, involving standardized methods based on 

oversimplified and unrealistic mechanisms of behaviour and material properties, is dangerous. 

The use of engineering experience as a guide to prediction and design may offer a more effective 

alternative, provided it is based on a realistic understanding of mechanisms and materials. 

 In this paper, a procedure is recommended to estimate the bearing capacity of axially 

loaded piles based on reliability calculations. The procedure is an extension of the point estimate 

method in which the expected values of the standard deviation of the capacity and demand 

functions are calculated. The probability of failure, the reliability, central factor of safety and 

reliability index are calculated as appropriate. The procedure is then applied to two cases where 

the pile in the first case is driven in sand while in the second, it is driven in clay. 

  

 

 مبدأ الاعتمادطريقة تصميم للركائز المحملة محوريا مبنية على أساس 
 

 :الخلاصة

لمباشر ٌعتبر الاستعمال ا. تتطلب الهندسة الجٌوتقنٌة العدٌد من المواد المعقدة و العدٌد من آلٌات السلوك
تعتبر الهندسة الجٌوتقنٌة علما حدٌثا . للخبرة كدلٌل فً التخمٌن و التصمٌم فعالا عند إدراك هذه المتطلبات
و هذه التخمٌنات ٌجب أن تختبر من , نسبٌا و ٌتطلب تطبٌقها بنجاح فً التخمٌن و صنع فرضٌات مقبولة
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فً هذا البحث أختبر مثال على . إلى تهذٌبو علٌه فان طرق التخمٌن فً حاجة . ناحٌة قبولها و اعتمادها
و هذا ٌتضمن تأثٌر خواص التربة على قابلٌة التحمل القصوى للركائز . أهمٌة وضع فرضٌات معقولة

 .المحملة محورٌا
و كلاهما ٌصبحان ممكنٌن عند التمثٌل بشكل , التحلٌل الجٌد ٌوفر تخمٌنا جٌدا و فهما جٌدا إن 

و عندها ٌجب أن ٌستند التخمٌن , دها الآلٌات معقدة لوضع تحلٌل تخمٌنًهناك حالات تصبح عن .معقول
فضلا عن ذلك قد تصبح طرق التحلٌل معقدة بالشكل , مباشرة على الخبرة مقترنا مع فهم الآلٌات المطلوبة

التحلٌل الساكن الذي ٌتطلب طرقا قٌاسٌة  إن, و على كل حال .الذي ٌجعلها صعبة الاستعمال بشكل ٌومً
ان استعمال . غٌر معقولة و مبسطة بشكل مفرط لتصرف المواد و خواصها ٌعتبر خطرا آلٌاتنٌة على مب

و  للآلٌاتالخبرة الهندسٌة كدلٌل للتخمٌن و التصمٌم قد ٌوفر بدٌلا فعالا عندما ٌكون مستندا إلى فهم معقول 
 .للمواد

لة محورٌا بناءا على حسابات مبدأ فً هذا البحث أقترح أسلوب لتخمٌن قابلٌة تحمل الركائز المحم 
هذا الأسلوب ٌعتبر امتدادا لطرٌقة تخمٌن النقطة التً من خلالها تحسب القٌم  إن. الاعتماد و المعقول

و تحسب احتمالٌة الفشل و الاعتماد و معامل . المتوقعة للانحراف المعٌاري لقابلٌة التحمل و دوال الحاجة
ثم طبق الأسلوب على حالتٌن حٌث فً الأولى . و المعقول حسب الحاجةالأمان المركزي و مؤشر الاعتماد 

 .الركٌزة مساقة فً رمل و فً الثانٌة الركٌزة مساقة فً طٌن
 

 

INTRODUCTION 

The trend in civil engineering today, more than ever before, is toward providing economical 

designs at specified levels of safety. Often these objectives necessitate a prediction of the 

performance of a system for which there exists little or no previous experience. Current design 

procedures, which are generally learned only after many trial-and-error iterations, lacking 

precedence, often fall short of expectations in new or non conventional situations. In addition, 

there is an increasing awareness that the raw data, on which problem solutions are based, 

themselves exhibit significant variability. It is the aim of reliability methods of design to 

demonstrate how concepts of probability analysis may be used to supplement the geotechnical 

engineer’s judgment in such matters. 

        Quite often, deterministic approaches are employed in the analysis and design of engineering 

structures. These approaches are characterized by the use of specified minimum factors of safety 

or specified minimum material properties. Deterministic approaches do not rigorously account for 

uncertainties in engineering analysis and design. In order to address uncertainty, probability 

theory has been widely accepted and used in engineering design in which some statistical 

knowledge of random variables such as their mean values and standard deviations is used to 

introduce them into applications (Kaymaz et al., 1998). Probabilistic methods, especially, 

reliability analysis, have frequently been used in structural engineering (e.g. Grigoriu, 1983; 

Afolayan, 1998) as well as in geotechnical and geoenvironmental engineering (e.g. Christian et 

al., 1994; Rowe and Fraser, 1995; Gui et al., 2000). Reliability calculations provide a means of 

evaluating the combined effects of uncertainties, and a means of distinguishing between 

conditions where uncertainties are particularly high or low (Duncan, 2000). Moreover, reliability 

analysis provides a framework for establishing appropriate factors of safety and other design 

targets and leads to a better appreciation of the relative importance of uncertainties in different 

parameters (Christian and Baecher, 2001). 
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The interaction between theory and practice is complex. To predict real behaviour, 

realistic assumptions for material properties must be made, based on the geological origins of 

materials, on their intrinsic nature and on their behaviour observed in the laboratory and in the 

field. Realistic assumptions for boundary conditions must also be made. Theory must be 

examined regularly to see whether or not it meets these requirements, and it must be refined when 

it does not. Terzaghi ,Peck and Mesri (1996) recognized the need to link theory and practice, and 

to test one against the other, nearly 60 years ago. Theory is much more coherent now. Perhaps old 

habits should be recovered. Often, if problems are understood, simple methods of analysis will 

provide adequate solutions. 

The primary value of realistic analysis is to aid understanding of problems. If they are 

understood they can usually be solved. Understanding provides a framework within which 

uncertainties which cannot be avoided can be defined and managed. The ability to make exact 

deterministic theoretical predictions, even by the most advanced methods, is uncertain. There are 

many areas where analysis may help to explain a problem, but not solve it in a predictive way. 

Then the direct use of field experience is necessary, and this is proper and safe provided the 

mechanisms governing behaviour are understood. Recognition of when this approach is 

appropriate needs to be improved. A theoretical framework provides the language with which 

experience can be digested, learned from and made generally available, but reality must be 

incorporated if success is to be achieved. Such an approach often makes things more complicated 

than they need be, and so introduces the risk of unnecessary errors. Doubtless these can be 

eliminated by quality assurance, but quality assurance applied to unrealistic and therefore 

irrelevant calculations merely eliminates the possibility of being right by accident. 

There is an alternative: practical guidance carefully linked to both geology and type of 

construction, with warnings as to where uncertainties lie. This offers a much more effective 

approach to everyday problems. Probably the most important question facing the profession, and 

the one of greatest economic significance, is in what form should effective guidance in 

geotechnical engineering be given to non-specialist engineers? It controls how effectively the 

considerable expertise of geotechnical engineers is used, (Vaughan, 1994). 

 

Phoon (2004) presented an overview of the evolution in structural and geotechnical design 

practice over the past half a decade or so in relation to how uncertainties are dealt with. The key 

elements of reliability-based design (RBD) were briefly discussed and the availability of statistics 

to provide empirical support for the development of simplified RBD equations is highlighted. 

Several important implementation issues were presented with reference to an EPRI study for 

reliability-based design of transmission line structure foundations (Phoon et al., 1995). 

 

PROBABILISTIC PRELIMINARIES 

The probability of the success of a structure is called its reliability, R, Symbolizing the 

probability of failure as p(f), we have the important expression: 

     

   R + p(f) = 1                                              (1) 
 

Moments  

Consider a system of discrete parallel (vertical) forces, P(1), P(2), …, P(N), acting on a rigid  

beam at the respective distances x(1), x(2), …, x(N), as in Fig. 1(a). From statics, we have that 

the magnitude of the equilibrant, M, is: 
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Suppose now that the discrete forces P(i) in Fig. (1a) represent the frequencies of the occurrence 

of the N outcomes x(1), x(2), …, x(N ). As the distribution is exhaustive, the magnitude of the 

equilibrant must be unity, M = 1. Hence, Eq. (3b) becomes: 

 

        

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N

i

iPixxxE
1

)()(                                             (3b) 

      The expected value (mean) provides the locus of the central tendency of the distribution of a 

random variable. To characterize other attributes of the distribution, recourse is had to higher 

moments. Again, returning to statics, a measure of the dispersion of the distribution of the force 

system about the centroidal axis, at x = E[x] in Fig.1(b), is given by the moment of inertia (the 

second central moment), 

 

                   dxxpxxyI
bx
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)(

)(                                                                      (4) 

 

The equivalent measure of the scatter (variability) of the distribution of a random variable is 

called its variance, denoted as v[x] and defined as: 
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ixall
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dxxpxxxvContinuous                                              (5b) 

 

In terms of the expectation, these can be written as: 

 

      2
)( xxExv                                                                                                    (6) 

 

which, after expansion, leads to a form more amenable to computations: 

 

              22
)( xExExv                                                                                          (7) 

 

 

This expression is the equivalent of the parallel-axis theorem for the moment of inertia. 
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As an example, let us find the expected value and the variance of the exponential distribution: 

 

p(x) = a.exp(-a x),   x > 0    a is a constant. 

 

 

 

 
 

Figure (1): Equilibrant for discrete and continuous distributions, (Harr, 2002). 

 

 

 

It is first required to show that p(x) is a valid probability distribution: 
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The expected value is: 
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Continuing, 
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whence, using Eq. (7), 
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It is seen that the variance has the units of the square of those of the random variable. A more 

meaningful measure of dispersion of a random variable (x) is the positive square root of its 

variance (compare with radius of gyration of mechanics) called the standard deviation, [x], 
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           xvx                                                                                                    (8) 

 

From the results of the previous example, it is seen that the standard deviation of the exponential 

distribution is [x] = 1/a. 

 An extremely useful relative measure of the scatter of a random variable (x) is its 

coefficient of variation V(x), usually expressed as a percentage: 

 

             
 
 

(%)100x
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x
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                                                                               (9) 

 

It should be emphasized that a straight line fit can be assumed. The reasonableness of this 

assumption is provided by the correlation coefficient, defined as: 
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where  [x], and  [y] are the respective standard deviations and cov[x, y] is their covariance 

which is defined as: 
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With analogy to statics, the covariance corresponds to the product of inertia, (Harr, 2002). 

 

Point Estimate Method — Several Random Variables 
Rosenblueth (1975) generalized the methodology for any number of correlated variables. For 

example, for a function of three random variables say, y = y[x (1), x (2), x (3)], where (i,  j) is the 

correlation coefficient between variables x(i) and x( j), 
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where [xi] is the standard deviation of x (i). 

The sign of (i,  j) is determined by the multiplication rule of i and j; that is, if the sign of 

i = (–), and of j = (+), then (i)( j) = (–)(+) = (–). 

 

Equation (12a) has 2
3
 = 8 terms, all permutations of the three + s and – s. In general, for 

M variables there are 2
M

 terms and M(M – 1)/2 correlation coefficients, the number of 

combinations of M objects taken two at a time. The coefficient on the right-hand side of Eqs. 

(12c), in general, is (1/2)
M

, (Harr, 2002). 

 

RELIABILITY ANALYSIS 

Capacity–Demand  

The adequacy of a proposed design in geotechnical engineering is generally determined by 

comparing the estimated resistance of the system to that of the imposed loading. The resistance is 

the capacity C (or strength) and the loading is the induced demand D imposed on the structure. 

In the present procedure, because of its greater generality, we shall use a capacity– demand 

concept. Some common examples are the bearing capacity of a soil and the column loads, 

allowable and computed maximum stresses, traffic capacity and anticipated traffic flow on a 

highway, culvert sizes and the quantity of water to be accommodated, and structural capacity and 

earthquake loads.  

Conventionally, the designer forms the well-known factor of safety as the ratio of the 

single-valued nominal values of capacity C and demand D (Ellingwood et al., 1980), depicted in 

Fig. 2(a), 

                  
D

C
FS                                                                               (13) 

 

For example, if the allowable load is 400 tons per square meter and the maximum 

calculated load is 250 tons per square meter, the conventional factor of safety would be 1.6. The 

design is considered satisfactory if the calculated factor of safety is greater than a prescribed 

minimum value learned from experience with such designs. Thus, in concept, in the above 

example, if a factor of safety of 1.6 was considered intolerable, the system would be redesigned 

to decrease the maximum induced load. 

In general, the demand function will be the resultant of the many uncertain components of 

the system under consideration (vehicle loadings, wind loadings, earthquake accelerations, 

location of the water table, temperatures, quantities of flow, runoff, and stress history, to name 

only a few). Similarly, the capacity function will depend on the variability of material parameters, 

testing errors, construction procedures and inspection supervision, ambient conditions, and so on. 

A schematic representation of the capacity and demand functions as probability 

distributions is shown in Fig. 2(b). If the maximum demand (Dmax) exceeds the minimum 

capacity (Cmin), the distributions overlap (shown shaded), and there is a nonzero probability of 

failure. 

The difference between the capacity and demand functions is called the safety margin (S); that is, 
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            S = C – D                                                                          (14) 

 

Obviously, the safety margin is itself a random variable, as shown in Fig. 2(c). Failure is 

associated with that portion of its probability distribution wherein it becomes negative (shown 

shaded); that is, that portion wherein S = C – D ≤0. As the shaded area is the probability of failure 

p(f ), we have: 

  

              00)()(  SPDCPfp                             (15) 

 

 

Reliability Index 

The number of standard deviations that the mean value of the safety margin is beyond S = 0, Fig. 

2(c), is called the reliability index, ; that is, 

          
 S

S


                                                                        (16a) 

 

The reliability index is seen to be the reciprocal of the coefficient of variation of the safety 

margin, or 

 

       
 SV

1
                                                                                                (16b) 

Application to their definitions, produces the following identities (a, b, and c are constants), 

(Ditlevesen, 1981): 

          ycExbEacybxaE                                                 (17a) 

      

            yxbcyvcxvbcybxav ,cov.2
22                         (17b) 

 

          yxyx  .,cov                                                                          (17c) 

 

                 ....2
22

yxcbyvcxvbcybxav                (17d) 

 

From Eq. (17a), we have: 

 

                                                                (18) 

 

 Equation (17c) produces: 

 

       DCDCS  ..
222  

 

Hence, 

D-CE[D]-E[C]E[S] 
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It is seen that  is a maximum for a perfect positive correlation and a minimum for a 

perfect negative correlation. It can be shown that the sum of difference of two normal variates is 

also a normal variate (Haugen, 1968). Hence, if it is assumed that the capacity and demand 

functions are normal variates, it follows that: 

             
2

1
)( fp                                                                        (20) 

where [] is standard normal probability as given in standard normal probability tables. 

 
 

 

Figure (2): (a) Conventional factor of safety, (b) capacity–demand model, (c) safety margin, 

(Harr, 2002). 

 

RECOMMENDED PROCEDURE 

The following points represent the desirable attributes of a reliability-based design procedure 

(Harr, 2002): 

 It should account for the pertinent capacity and demand factors, their components, and 

their interactions.  

 It should produce outputs that can be related to the expected performance during the 

design life 

 of the system under consideration. 
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 It should employ as input into formulations quantities, parameters, or material 

characterizations that can be ascertained within the present state of the art. 

 It should not disregard indices currently considered to be pertinent, such as factor of 

safety or   reliability index. It should serve to supplement this knowledge and reduce 

uncertainty. 

 Ideally, mathematical computations should be reduced to a minimum. 

 

All of the above can be accommodated by an extension of the point estimate method. The 

recommended procedure is as follows, where it is here applicable to the problem of bearing 

capacity of axially loaded piles: 

 Using the point estimate method, or an equally valid probabilistic formulation, the 

expected values and standard deviations of the capacity and demand functions: E [C], E 

[D],  [C],        [D] are obtained. 

 Calculating the expected value and standard deviation of the safety margin, E [S],  [S]. 

 Fitting a beta distribution (and normal distribution, as a check) to the safety margin, using 

appropriate upper and lower bounds. If unknown, take them as E [S] ± 3 [S]. 

 Obtaining the probability of failure, p ( f ) = P [S  0], the reliability, central factor of 

safety, and reliability index, as appropriate. 

 

Application to Axially Loaded Piles 

I. Piles in Sand 

The ultimate bearing capacity Q of a pile in a dry sand (cohesion, c = 0) is given by the following 

equation (Tomlinson, 1993): 

    

         sb QQQ   

where: Qb = base resistance. 

             Qs = shaft resistance 

          

         NqAQ vbbb ..   

 

         '
.).tan(. vs AsKsQ   

          

where:     Ab =  area of the pile base, 

               As = the surface area of the pile,  

               v’ = effective overburden pressure along the pile, 

              vb   = effective overburden pressure at the pile base, 

               Ks = a factor depending on the pile type and the relative density of the soil, 

                = the coefficient of friction between the pile and the soil (= 3/4 for concrete piles),      

              Nq = bearing capacity factor.                    
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Example: If a 12 m length concrete pile having a square cross-section (0.285 x 0.285 m) is to be 

driven in a sandy soil with the following parameters: 

 

 

 Parameter, 

x 

Expected Value Standard Deviation x (+) x (-) 

Unit weight, 

(kN/m
3
) 

18 2 20 16 

Angle of friction, 

(
o
) 

35 5 40 30 

Cohesion, c 

(kN/m
2
) 

0 - - - 

 

The correlation coefficient (, c) = -0.5: 

a. Estimate the expected value and the standard deviation of the bearing capacity. 

b. If a central factor of safety (CFS) of 4 is required, and it is assumed that the coefficient of 

variation V(D) = 50%, estimate the probability of failure. 

 

Solution: 

(a) Forming the required values of Nq as the bearing capacity factors are functions of only 

(Terzaghi, Peck and Mesri, 1996):. 

 
Nq (+) = 64.20           and              Nq (-) = 18.40 

Since c = 0, the bearing capacity Q becomes Q(



The respective values of Q(c, ) are calculated in (kN): 

Q (i, j) (kN) Q
2
 (i, j) 

Q (+ +) = 2087.94 4359493.44 

Q () = 964.30 929874.49 

Q () = 1670.36 2790102.53 

Q () = 771.44 595119.67 

and  
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         p (+ +) = p (
8

1
)1(

2

1
2

    

         p (+ ) = p (
8

3
)1(

2

1
2

    

From equation (3b): 

              )()( ijpijQQQE        = 1345.42 kN 

 

            )()(
22

ijpijQQE             = 2014318.02 

 

and from equation (7), we have: 

 

               22
)( QEQEQV              = 204163.04 

 

and equation (8) gives: 

 

           04.204163)(  xVQ    = 451.84 

             

Equation (9) requires: 

       
 
 

100x
xE

x
QV


      100

42.1345

84.451
x     = 33.6% 

 

(b) For a CFS = 4: 

4

42.1345

4


Q
D     = 30.57 

As V (D) = 50% 

 

  )(*)( DVDED     = 30.5 * 0.5 = 15.28 

 

Forming the characteristics of the safety margin with  (Q, D) = 
4

3
  , we have: 

  DQSE      = 1345.42 – 30.57  = 1314.85 kN 

 

From equation (19), we have: 

)28.15)(84.451)(75.0(2)28.15()84.451(

85.1314

22 


49.40

85.1314
    = 2.98 

If S is to be taken as normal: 

From equation (20): 

)(
2

1
)( fp  

 

since : 
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then:   











2
exp.)2(

1

2

1
)(

2

2

1





      = 0.49 

The probability of failure )( fp = 0.01 

 

II. Piles in Clay 

The ultimate bearing capacity Q of a pile in a saturated clay ( = 0) is given by the following 

equation (Tomlinson, 1993): 

    

         sb QQQ   

where: Qb = base resistance. 

             Qs = shaft resistance 

         Since = 0, the bearing capacity factors, Nq = 1 and N

         bb ANcCuQ ..  

          

         CuLPQs ...  

where:     P =  perimeter of the pile, 

               L = length of the pile,  

               Cu = undrained cohesion, 

              Nc = bearing capacity factor, 

               = a factor depending on the undrained shear strength of the pile.      

 

Example: If the same concrete pile of the previous example is to be driven in saturated clay 

having the following parameters: 

 

Parameter, x Expected Value Standard Deviation x (+) x (-) 

Unit weight, 

(kN/m
3
) 

20 2 22 18 

Angle of friction, 

(
o
) 

0 - - - 

Cohesion, c 

(kN/m
2
) 

60 20 80 40 

 

The correlation coefficient (, c) = -0.5: 

c. Estimate the expected value and the standard deviation of the bearing capacity. 

d. If a central factor of safety (CFS) of 4 is required, and it is assumed that the coefficient of 

variation (VD) = 50%, estimate the probability of failure. 
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Solution: 

(a) The required values of the bearing capacity factor Nc are constant since ( 

 

    is calculated following Tomlinson method. 

    Since 0, the bearing capacity Q becomes Q(c, 



The respective values of Q(c, ) are calculated in (kN): 

Q (i, j) (kN) Q
2
 (i, j) 

Q (+ +) = 631.43 376296.36 

Q () = 454.76 206806.65 

Q () = 613.43 376296.36 

Q () = 454.76 206806.65 

and  

         p (+ +) = p (
8

1
)1(

2

1
2

    

         p (+ ) = p (
8

3
)1(

2

1
2

    

From equation (3b): 

              )()( ijPijQQQE        = 379.06 kN 

 

            )()(
22

ijPijQQE             = 291551.50 

 

and from equation (7), we have:  

 

               22
)( QEQEQV              = 147865.0 

 

and equation (8) gives: 

 

           0.147865)(  xVQ    = 384.53 

             

Equation (9) requires: 

       
 
 

100x
xE

x
QV


      100

06.379

53.384
x     = 101.44% 

 

(b) For a CFS = 4: 

4

06.379

4


Q
D     = 94.76 

As V (D) = 50% 

 

  )(*)( DVDED     = 94.76 * 0.5 = 47.38 

 



Journal of Engineering Volume 16 march 2010      Number1  
 

 

 4476 

Forming the characteristics of the safety margin with  (Q, D) = 
4

3
  , we have: 

  DQSE      = 1379.06 – 94.76  = 284.3 kN 

 

From equation (19), we have: 

)38.47)(53.384)(75.0(2)38.47()53.384(

3.284

22 


39.250

3.284
    = 1.13 

If S is to be taken as normal: 

 

From probability tables, )(  = 0.370762

From equation (20): 

)(
2

1
)( fp  

The probability of failure )( fp = 0.129 

 

CONCLUSIONS 

A procedure is recommended to estimate the bearing capacity of axially loaded piles based on 

reliability calculations. The procedure is an extension of the point estimate method in which the 

expected values of the standard deviation of the capacity and demand functions are calculated. 

The probability of failure, the reliability, central factor of safety and reliability index are 

calculated as appropriate. The procedure is then applied to two cases where the pile in the first 

case is driven in sand while in the second, it is driven in clay.  

It was found that the proposed procedure is simple and can be extended to other 

applications in geotechnical engineering. 
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