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ABSTRACT 

The behavior of structural concrete beams is studied under short-term loading. A computer 

program developed originally by Oukaili to evaluate curvature is modified to evaluate the deflection 

for flexural structural concrete members. The program deals with actual stress-strain relationships 

of concrete and steel. The analysis is based on requirements of equilibrium and compatibility of 

strain in concrete and reinforcement. The proposed model is used in conjunction with the step by 

step analysis for small loading increments that allows the determination of the history of strain and 

stress in concrete with prestressing steel or non-prestressing reinforcement only or prestressing and 

non-prestressing reinforcement together. The evaluation of curvatures for the structural member 

involves iterations for computing the strains vectors at each analysis step. Newmark's numerical 

integration is used to evaluate the deflection of the member depending on the curvature values. The 

stress-strain model that was proposed by (Korpenko et al. 1986) is used and compared with 

experimental data and other analytical models for each of concrete and steel. The comparison 

showed good agreement between the model used and the experimental data. This relationship is 

used in SECTION program and presented in this study. The analytical results for load-deflection 

diagram are compared with available experimental data. The comparison has shown good 

agreement.  

 الهطول قصير الأمد للعتبات الخرسانية المسلحة العادية والمسبقة الجهد جزئيا ً و المسلحة
 بقضبان ألياف الزجاج 

 الخلاصة

حٍيث حين حييوٌش اشًياهق رحقخشحيق سيااعا لالععٍليً . الخشساًٍت ححج حأثٍش الأحوال قصيٍشة الأهيذ خباثفً هزا البحث دسسج سلوكٍت الع

ث إىّ البشًيياهق الوعخويذ ٌأ يي ز فيً اللخبيياس هخييييا. لغيش  حايياي قيٍن ال يييول لألخياا الخشسيياًت الًعياةٍت الوعش ييت ل ًحٌياا

إىّ طبٍعت الخحلٍل حعخوذ للى ششوط الحزاى و الخوافي  فيً الًفعيافث فيً الخشسياًت .الًفعال الفعلٍت فً الخشساًت و الحذٌذ-الج اد

ٌعخشى الٌوورج الوذسوس هع الخحلٍل الخيوي و رلك اإسخخذام الخحوٍل للى هشاحل صيغٍشة هويا ٌخيٍح إهياًٍيت دساسيت . وفً الخالٍح

الج اد فً الوعيع الخشسياًً وحذٌيذ الخايلٍح  الووجيودا سيواا كياى الحذٌيذ الوايخخذم هق ي ذ سيااعا ل رو حذٌيذ  ٍيش  حزاٌذ الًفعال و

للعٌصيش ( curvature)إىّ إسيلوي ححذٌيذ الخعيوس .هق  ذ سااعا ل فعط ا رو حذٌيذ قاين هق ي ذ سيااعا ل وقاين  ٍيش هق ي ذ سيااعا ل سيوٌت ل

 Newmarkحين إسيخخذام طشٌعيت . فيً كيل هشحليت ححوٍيل لعوودٌيتإٌقياد قٍويت الًفعيافث ا الًعاةً ٌخخوي لولٍاث حيشاسٌت هذف ا

حوج هعاسًيت  .لغش  الخياهل لعٍن الخعوس للوعاطع الوذسوست للى إهخذاد العخبت لغش  إٌقاد قٍن ال يول ليل ًعيت للى طول العخبت

ٍ  هي الخشساًت و ال-الٌخاةق الخاصت اعٍن الج اد ِِ ِِ حذٌذ هع اٍاًاث هخخبشٌت وًوارج ًظشٌيت لبياحنٍي ر يشٌيا وقيذ وجيذ الًفعال ليلِ

. وا شٌي ٌعيً حواف عا ل جٍيذا ل لييا الويادحٍي Korpenkoالًفعال و الوعخشح هي قبل الباحث -إىّ الأًوورج الواخخذم لخونٍل الج اد
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 للعخبياث ال ييول-اةق الٌظشٌت الخاصت اعٍن الحويلإىّ الٌخ. SECTION  program)  )رسخ خُذِم هزا الأًوورج فً البشًاهق الوعذم   

 . لعذ وجذ إى هٌاك حوافعا ل جٍذا ل اٍي الٌخاةق العولٍت و الٌظشٌت لعٍن ال يول. حوج هعاسًخ ا رٌخا ل هع ًخاةق هخخبشٌت هخوف شة  

 

KEYWORDS: Beam, Reinforced concrete, Prestressed concrete, GFRP, Deflection, 

Curvature, Stress-Strain, Korpenko, Newmark 

INTRODUCTION  

Deflection is defined according to (ACI 116, 2000) as a movement of a point on a structure 

or structural element, usually measured as a linear displacement or as succession of displacements 

transverse to a reference line or axis. There are many empirical and analytical methods for 

computing deflection of structural concrete members. In this paper an analytical method is modified 

to compute the deflection of a structural concrete member based on the materials stress-strain 

relationships, the curvature of the cross-section is determined according to these stress-strain 

relationships, and then integration is made for the cross-section curvatures along the beam to 

determine the deflection. It must be mentioned that this analytical method takes into consideration 

the effect of tension stiffening after cracking of concrete. This analytical model is compared to the 

available experimental data and hand calculations. 

 

STRESS-STRAIN MODEL 

Stress-strain model for concrete 

In 1986, Korpenko published a descriptive relationship for    diagrams, which became 

very famous because of its overcoming of major deficient problems as shown in Fig. (1). 

 
Figure (1) Stress-strain diagram for concrete in compression and tension (Korpenko et al., 1986) 

 

It is taken that c  be the stress, c the relative strain, cE  the initial modulus of elasticity, c  

referring to concrete in compression, and ct  to concrete in tension. 

Instead of using c  and c  , it is easier to use the level of each one according to the 

relationship indicated below: 
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 where:  c~ =concrete stress level, c
~ =concrete strain level, c̂  =ultimate compressive strength of 

concrete, c̂ =the concrete strain corresponding to c̂ . 

At the beginning of    diagram, a linear portion can be recognized which extends up to the 

stress elc ,  and the strain elc ,   or even until their levels elc ,
~ which is equal to 

c

elc





ˆ

,
and elc ,

~ which 

is equal to 
c

elc





ˆ

,
.The stress in concrete can be expressed as: 

cccc E                                                                                                                                        (2) 

c is concrete elastic modulus factor that expresses the ratio of elastic strains to the total strains. 

 1c                                                                                                           if       c,elc σσ             (3) 
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By solving the second degree formula, two roots are obtained from the formula; the larger root is 

taken for c . 
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where: cc  ˆ   value when cc  ˆ  (at the top of stress-strain diagram).                                                                                                                           

o factor which depends on stress level in the material (concrete in this case). 

 o =1                                    if        1~ c                                                                                                                                                            

 o =2.05 c̂                           if        1~ c                                                                                             

ce1 , ce2 are factors which express the type of the concrete. 

ce1 =1.72 -1.82 c̂                  if        1~ c                                                                                            

ce1 =1.95 c̂ -0.138                 if        1~ c                                                                                          

cc ee 12 1                                                                                                                                      

 From the conditions of Eq. (4) that is ce1 2  
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002.0ˆ c    ;  0~
, elc    ; 0~

, elc   ,  cccc  ~/~~   

Stress-strain model for steel 

s  is written to be  the stress, s the relative strain (elongation), sE  the initial modulus of 

elasticity for steel, and s  to refer to the steel. 

When mild steel enters the stiffness region, it is advised to use the bilinear diagram that is of 

two branches, one ends at the point of yield region (with coordinates
ss  ˆ  ,

ss  ˆ  ), and the 

other begins from the end of the first branch to reach the point of coordinates 
*

ss    , 
*

ss   ,which corresponds to the ultimate strength or failure limit as shown in Fig. (2).  

Mild steel can be represented by the following equations: 

ssss E                                                                                                                                         (5)   

1s                                                                                                      if          elss ,                                                                                                                                          
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         By solving the second degree formula, two roots are obtained from the formula; the larger 
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Figure (2) Stress-strain diagram of mild and high strength steel (Korpenko et al., 1986) 

For high strength steel the same equations (5, 6, 7) are used but  
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Stress-strain model for FRP 

The stress-strain diagram for FRP is assumed linearly elastic until failure stage as shown in 

(Fig. 3). 
 
      

      

      

      

      

   

 

   

      

      

      

      

      

      

      

      

Figure (3) Stress-strain diagram for FRP  

Comparison of the stress-strain relationships of the materials 

The proposed stress-strain model is compared to other models by using available 

experimental data for concrete (LSC, NSC, HSC) and for steel with its types mild; high strength; 

and high strength for prestressing as shown in Figures from (4) to (12). 
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Figure (4) Stress-strain for low strength concrete LSC:  

(a) (Wang et al., 1978), (b) (Tasnimi, 2004) 
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(a)                                                                        (b) 

Figure (5) Stress-strain for normal strength concrete NSC:  

(a) (Wang et al., 1978), (b) (Slate et al., 1986) 
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(a)                                                                           (b) 

Figure (6) Stress-strain for high strength concrete HSC: (a) (Slate et al., 1986), (b) (Tasnimi, 2004) 
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Figure (7) Stress-strain diagram for mild steel            Figure (8) Stress-strain diagram for mild 

(Goto et al., 1998 )                                                 steel (Cho et al., 2004) 
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       Figure (9) Stress-strain for mild steel                         Figure (10) Stress-strain for mild steel   

                (Tompos and Frosh, 2002)                                             (Kenel et al., 2005) 
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Figure (11) Stress-strain for HSS with prestressing     Figure (12) Stress-strain for HSS with 

(California Prestressing Manual, 2005)                         prestressing (Canfield, 2005) 

 

MODEL ASSUMPTIONS 

The proposed model for calculating the deflection depends on the following assumptions: 

 Strain in the concrete and reinforcement is proportional to the distance from the neutral axis 

(plane cross sections remaining plane after bending).  

 Concrete behavior in compression and in tension and steel behavior are assumed to follow 

Korpenko's model Fig. (1) and Fig. (2). 

 The tensile behavior of the FRP reinforcement is linearly elastic until failure stage. (Fig. 3). 

  All stresses in concrete and steel are related to secant modulus of elasticity. 

 Shear and torsion stresses are ignored. 

 Perfect bond exists between concrete, steel reinforcement and FRP bars. 
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 Concrete is divided into a group of small cells with its number related to the required 

accuracy. Beside that, the longitudinal steel and FRP bars in the section are divided into a 

group of elements, with their numbers equal to the numbers of steel and FRP elements. Thus 

the structural element acts as a system of linear elements exposed to compression and axial 

tension. 

 The beam is considered as simply supported with symmetrical shape along the vertical 

centerline of the beam. This includes the type of loading and the beam cross section. 

 Newmark’s numerical procedure is used to determine the deflection from the section 

curvatures along the beam. 

 In the case of fully or partially prestressed concrete members, the positive value of 

deflection indicates downward displacement, and the negative sign indicates that the 

displacement is upward (i. e. camber). 

 The component of the prestress along the beam axis is assumed constant, but the distance 

from the prestressing center of gravity to the global axis is taken according to the 

prestressing steel position in each section. 

 

MOMENT-CURVATURE MODEL 

A partially prestressed concrete member is taken as a case study for determining the 

moment-curvature relation of structural concrete members. The concrete is distinguished by the 

subscript (c), prestressed steel by (ps), non-prestressed steel by (s), and (f) for FRP. 

The space that is occupied by the section is assigned by the symbol  . In this space, there 

are areas occupied by concrete, prestressed steel, nonprestressed steel, and FRP which are 

symbolized as cA ,
psA , As , and

fA  respectively, as shown in (Fig. 13). 

fspsc AAAA                                                                                                                       (8) 

The external force, which is either normal force (prestressing force) or applied load, leads to 

change the general form of the element causing strain distribution at individual sections. 

The strain energy per unit length is determined by the following formula: 

 


 dU 
2

1)(                                                                                                                        (9)  

where   

  ا =normal strain and stress, respectively;   ا    =shear strain and stress, respectively.  
The equation that relates the stress to strain is as follows: 

 E                                                                                                                                              (10) 

 where E = secant modulus of elasticity of the material, which takes into account the initial stresses 

and strains, and its calculation is based on     diagrams for the materials as shown in Figs. (14) 

and (15). 
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Figure (13) Cross-section of the structural element 
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Eq. (10) is substituted in Eq. (9). Shear stress and strain which appear in Eq. (9) are neglected 

(assumption No. 5). 

 
                                      (a)                                                                   (b) 

Figure (14) Variation of secant modulus of elasticity, (a) for mild steel, (b) for high strength steel 
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Figure (15) Variation of secant modulus of elasticity for concrete 

So Eq. (9) takes the following form: 




 dEU 
2

1)(                                                                                                                               (12)   

Because a linear strain distribution across the cross-section is assumed, so the third order 

vector will simulate the strain increment as in Eq. (13): 

Z
T                                                                                                                                             (13)  

in which  T
yxo KK ,, ,  TxyZ ,,1 ,  = axial strain vector, o = axial strain, xK = curvature of 

the member longitudinal axis in OYZ plane, yK = curvature of the member longitudinal axis in 

OXZ plane, x , y = the distance from the center of gravity of concrete, prestressed, non- 

prestressed steel, and FRP in the cross-section, to the selected reference coordinates. 

By the assumption that a plane cross section before bending remains plane after bending, the 

strain at any point can be expressed by the following relationship: 

xKyK yxo                                                                                                                              (14) 

     Considering Eq. (13), then Eq. (12) becomes as:  




 dZEZU
TT 

2

1)(                                                                                                                  (15)                                                           

 A matrix C is defined as: 




 dZEZC
T

                                                                                                                               (16) 

C= stiffness matrix relative to the selected reference coordinates. 

         To identify the loads related to the resultant axial strains, partial differentiation of the strain 

energy equation is taken as:  
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                                                                (17) 

where 

N  = Longitudinal force; Mx  =bending moment in OYZ plane; M y = bending moment in OXZ 

plane; C1   = general axial stiffness vector; C2 = general flexural stiffness vector in OYZ plane; 

C3 = general flexural stiffness vector in  OXZ plane. 

          The general axial stiffness vector C1  is determined by the following equation: 









   

  

 dxEdyEdEC ,,1                                                                                                 (18)   

            

          The flexural stiffness vectors  C2   and C3  are limited by Eq. (19) and Eq. (20). 









   

  

 dyxEdyEdyEC ,,
2

2                                                                                             (19) 









   

  

 dxEdyxEdxEC
2

3 ,,                                                                                             (20) 

          The direct integration of stiffness vectors elements 1C , 2C , and 3C  is unknown (not explicit) 

theoretically because the secant modulus of elasticity depends on the value of the resulted strains, 

and the strain gradient which is not equal to zero. Accordingly, numerical methods should be used. 

Therefore, the cross section is covered by a mesh mostly with perpendicular lines. Average value of 

the stress (strain) is taken in each cell. So the infinite summation of the elements of section stiffness 

matrix is substituted by a finite summation, that its maximum value is equal to the number of 

developed mesh cells. 

Based on this, the matrix elements take the following form: 

  
  


j

i
fifi

k

i

m

i

n

i
psipsisisicici AEAEAEAEC

11 1 1
11                                                                        (21) 

  
  


n

i
fififi

k

i

m

i

j

i
psipsipsisisisicicici yAEyAEyAEyAECC

11 1 1
2112                                            (22) 

  
  


j

i
fififi

k

i

m

i

n

i
psipsipsisisisicicici xAExAExAExAECC

11 1 1
3113                                           (23) 
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   
  


j

i
fififi

k

i

m

i

n

i

psipsipsisisisicicici yAEyAEyAEyAEC
1

2

1 1 1

222

22                                             (24) 

  
 


j

i
fifififi

n

i
psipsipsipsi

k

i

m

i
sisisisicicicici yxAEyxAEyxAEyxAECC

111 1
3223                  (25)                                      

  
  


j

i

fififi

k

i

m

i

n

i

psipsipsisisisicicici xAExAExAExAEC
1

2

1 1 1

222

33                                            (26)                               

where: 

11C = axial stiffness, which depends on the loading level and the geometrical properties of the cross 

section, 12C  =axial-flexural stiffness, which reflects the reciprocal influence of the longitudinal 

force with the bending moment in the direction of Y-axis, and it depends on the geometrical 

properties of the cross section, on the resultant stress-strain developments and on the location and 

direction of selected coordinates axes, 13C =axial-flexural stiffness, which reflects the reciprocal 

influence of the longitudinal force with bending moment in the direction of X axis, 22C =flexural 

stiffness in the direction of Y axis,  23C =the stiffness, which reflects the reciprocal influence of 

bending in the direction of the axes X and Y, and depends on the geometrical properties of the 

section, on the strain level and on the location of selected coordinates, 33C =flexural stiffness in the 

direction of X-axis, k =number of effective cells (strips) in concrete, ciA =cross-sectional area of 

the concrete strip i , cici yx , =the distance from the center of gravity of the concrete strip i to the 

selected coordinates, m=the number of non-prestressed longitudinal steel bars in the cross section, 

siA = the cross-sectional area of non-prestressed longitudinal steel bar i , sisi yx ,  =the distance 

from the center of gravity of non-prtestressed longitudinal steel bar i to the selected coordinates; n 

=number of prestressed longitudinal steel bars in the cross-section; psiA  =the cross-sectional area of 

prestressed steel bar i  ; psipsi yx ,  =the distance from the center of gravity of prestressed longitudinal 

steel bar i to the selected coordinates, fiA = the cross-sectional area of the FRP bar, fifi yx , = the 

distance from the center of gravity of longitudinal FRP bar i  to the selected coordinates, j=number 

of longitudinal FRP bars in the concrete cross-section. 

The secant modulus of elasticity E  can be expressed as: 

EE                                                                                                                                              (27)  

where 

E =the initial modulus of elasticity for the material (concrete, steel, or fiber);  

 = elastic strain factor and it expresses the ratios between the elastic strains to total strains (as 

given before). 

 The system (17) can be rewritten in another form to become:  
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      *)(CF                                                                                                                              (28)  

 

where  F  = loads vector;  )(C   =stiffness matrix of the section;    = strains vector. 

The nonlinear system (28) is considered for determining the curvature of any cross-section 

in the concrete structural members. The elements of Eq. (28) change with changing the location of 

coordinates axis, it means that the axes rotate by an angle with certain value or at the time of 

moving the axes parallel to the existing axes (Fig. 13). 

5. Evaluation of Strain Vector at Different Loading Cycles: 

The solution of the nonlinear system (Eq. (28)) with the third order, which is specified to 

determine the curvature of any cross-section in the structural concrete members, depends on the 

iterative methods of numerical analysis. There are several numerical methods for converting the 

nonlinear Eq. (28) to linear. One of these methods is called the direct iterative technique (Cook, 

1981), with its iteration diagram for solving Eq. (28), takes the following form as shown in Fig. 

(16). 

 

 
Figure (16) Iterative technique for solving the nonlinear equation (Cook, 1981) 

 

In this method, full load is applied once at the first iteration and then a new stiffness matrix 

has to be formed in each iteration. Then the full system of Eq. (28) is solved in each iteration to 

evaluate the strain vector  . Initially, a value of    
o     is assumed, then an improved 

approximation is obtained as: 
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                                                                                                                 (29)  

where 1i , i  = axial strains vector in previous and current iteration cycles at one loading level, 

respectively. 

To solve Eq. (29), a correction to the stiffness matrix should be done at each iteration cycle 

with fixing the vector of external applied loads.  
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NEWMARK NUMERICAL INTEGRATION 

In the case of a symmetrical simply supported beam, the following Eqs. (30) can be used by 

considering the following symbols:  referring to the curvature EIM / ,   referring to the 

equivalent concentrated load (or curvature in the real beam), )( islope referring to the shear (or 

average slope in the real beam between the points i  and 1i ,  referring to deflection, subscript i  

referring to section number, c referring to section number in the center of the beam, and x refers 

to segment length which is equal to the distance between two concentrated loads. 

For a simply supported beam, there are no known values of   and slope in both ends; 

therefore these values can be substituted by zero. 





i

j
ji xslope

2
)()( )(                                                                                                                      (30)  

where i =1,2,3,…, 1c  

)( jslope = 





1

2
)()( 2/

c

k
ck  , where )( jslope  is dimensionless 

 
)1((k))1()(   4

6
 


 kkk

x
   for straight line curvature ( EIM / ). 

 
1)k((k))1()(   10

12
 


  kk

x
 for 2

nd
 degree parabolic curvature ( EIM / ). 

Since the beam is symmetric the values of deflection for other half of the beam is determined 

according to the following formula: 

pnp   1  

where p =1,…c-1,  n = number of sections along the beam. 

 

APPLICATIONS AND RESULTS 

Ordinary reinforced concrete beams 

Beam SB1-2 is tested by Thandamoorthy (1999). This beam had 150*300 mm section, 3m 

span length, the ultimate compressive strength for concrete ( MPafc 58.41
'
 ). The beam is 

reinforced with 123  bars in tension with an effective depth of 261 mm and 82 bars in 

compression with depth of 37 mm and with 
s

E equal to 200000 MPa .The beam has been loaded in 

two points. Loading points have been located at 500 mm on either side of midspan. Moment-

curvature and load-deflection diagrams of this beam are shown in Figs. (17 and 18). 
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Figure (17) Theoretical moment-curvature diagram             Figure (18) Load-deflection diagram             

                  for Thandamoorthy beam                                           (Thandamoorthy, 1999) 

GB1 control beam is tested by Alsayed, et al., (2002). The typical beam is 150*200 mm in 

cross-section. It is reinforced with three 10 mm steel bars for tension with an effective depth of 

152 mm and one 6 mm for compression with depth of 46 mm and with 
s

E equal to 200000 MPa . 

The beam is simply supported over a span of 2050 mm and loaded by two concentrated loads, each 

placed at 100 mm from the beam centerline. The ultimate compressive strength for concrete is 

( MPafc 5.35
'
 ).  Moment-curvature and load-deflection diagrams of this beam are shown in 

Figs. (19 and 20).                         
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Figure (19) Theoretical moment-curvature diagram            Figure (20) Load-deflection diagram                

                   for Alsayed et al. beam                                           (Alsayed et al., 2002)  

 

Partially prestressed concrete beam 

Beam SSP2 was tested by Harajli and Naaman (1985). The beam has 2743.2 mm span 

length. The ultimate compressive strength for concrete is ( MPafc 55.36
'
 ).It was subjected to 

two-point loading. The cross-section was 114.3*228.6 mm in dimensions. It was with ordinary 

tensile reinforcement of area 96.774 
2mm  with an effective depth of 203.2 mm and a tensile 

prestressing strand of area 54.839
2mm  with an effective depth of 158.75 mm. Moment-curvature 

and load-deflection diagrams of this beam are shown in Figs. (21 and 22). 



Journal of Engineering Volume 16 march 2010      Number1  
 

 

 

 

4647 

 

0

5

10

15

20

25

0 0.01 0.02 0.03 0.04 0.05

curvature :1/m

M
o

m
e
n

t 
:k

N
.m

2774.96 mm

2839.54 mm

3.114

6.228

 

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30

Midpan deflection :mm
A

p
p

lie
d

 lo
ad

 P
: 

kN

Exp. Theo. PCI Design Handbook (2004)

2.2743

4.9144.914 4.914

2/P 2/P

 
Figure (21) Theoretical moment-curvature diagram             Figure (22) Load-deflection diagram               

             for Harajli and Naaman beam                                            (Harajli and Naaman, 1985)                                             

The beam (beam III-2) was tested by Oukaili (1991). The cross-section was 210*305 mm. The 

beam was reinforced in tension with steel of area 907 
2mm  with an effective depth of 275 mm and 

prestressing strand of area 420.27
2mm at a depth of 235 mm. It is also reinforced in compression 

with steel area of 157 
2mm and prestressing strand area of 96. 535

2mm at a depth of 30 mm. The 

ultimate compressive strength for concrete is ( MPafc 4.39
'
 ).Moment-curvature and load-

deflection diagrams of this beam are shown in Figs (23 and 24). 
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Figure (23) Theoretical moment-curvature diagram          Figure (24) Load-deflection diagram                

                        for Oukaily beam                                                         (Oukaily, 1991) 

Beams Reinforced with GFRP 

Benmokrane et al. (1996) built a series of 3300 mm long doubly reinforced concrete beams. 

Series 1 is taken for comparison.  The beam tested had two  19.1 mm GFRP bars in tension and 

two  6 mm GFRP bars in compression. The beam section was 200*300 mm. It had a clear span of 

3000 mm and was loaded by two concentrated loads each at 500 mm from midspan. The ultimate 
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compressive strength for concrete was ( MPafc 43
'
 ). Moment-curvature and load deflection 

diagrams of this beam are shown in Figs (25 and 26). 
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Figure (25) Theoretical moment-curvature diagram          Figure (26) Load-deflection diagram                

                for Benmokrane et al. beam                                        (Benmokrane et al., 1996)  

Beam F3 tested by Pecce et al., (1998) has 500*185 mm in cross section, reinforced with 

seven  12.7 mm GFRP bars in tension at a depth of 145 mm and two  12.7 mm GFRP bars in 

compression at a depth of 40 mm. The clear span of the beam is 3400 mm, and it is loaded by two 

concentrated loads at 1200 mm from the simple supports. The ultimate compressive strength for 

concrete is ( MPafc 30
'
 ).The theoretical moment-curvature and load-deflection diagrams are 

shown in Figs. (27 and 28). 
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Figure (27) Theoretical moment-curvature diagram        Figure (28) Load-deflection diagram                

                     for Pecce et al. beam                                                     (Pecce et al., 1998) 
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CONCLUSIONS 

The following conclusions can be stated: 

 The analytical stress-strain model used in the SECTION program which was developed by 

Korpenko et al., (1986) gave very good agreement in comparison with the experimental data 

and other analytical models for each of concrete, mild steel, high strength steel, and 

prestressing steel.  

 SECTION program presented in this study has shown to be capable of predicting the full 

history for the structural concrete beams under short-term loading.  

 The SECTION program has the ability of dealing with structural beams with different 

values of partial prestressing ratio (PPR). 

 The SECTION program has shown to be capable of predicting the deflection state for each 

of ordinary reinforced concrete, partially prestressed concrete, and bar fiber reinforced 

concrete beams.  

 In the pre-crack stages, there is very good agreement between the theoretical results and the 

experimental data of deflection for all the three types of beams used.  

 In the loading stages corresponding to 20% of the failure load, the average discrepancy of 

the analytical deflections values with respect to experimental values reached 18.3% for 

ordinary reinforced concrete, 4.9% for partially prestressed concrete beams, and 24.92 % for 

beams reinforced with fiber bars. One problem that seems to be common to all deflection 

prediction methods is that of predicting the cracking moment. This is primarily due to the 

difficulty in accurately predicting the modulus of rupture rf  (standards tend to require the 

use of relatively low conservative values).  

 In the loading stages corresponding to 50% from the failure load, the average discrepancy of 

the analytical deflections values with respect to experimental values reached 6.83% for 

ordinary reinforced concrete, 27.4% for partially prestressed concrete beams, and 8.73% for 

beams reinforced with fiber bars. 

 In the loading stages corresponding to 70% of the failure load, the average discrepancy of 

the analytical deflections values with respect to experimental values reached 8.63% for 

ordinary reinforced concrete, 30.75% for partially prestressed concrete beams, and 7.45% 

for beams reinforced with fiber bars. 

 
NOTATIONS: 

 The following symbols are used in this paper: 

ce1 , ce2  =Factors expressing the type of the concrete. 

se1 , se2 = Factors expressing the type of the steel. 

E = secant modulus of elasticity of the material. 

cE = Modulus of elasticity of concrete. 

sE =  Modulus of elasticity of reinforcing steel. 
'

cf =Ultimate compressive strength of concrete. 

HSC =High Strength Concrete. 

HSS = High Strength Steel. 

K  = Curvature. 

xK  =Curvature about x-axis. 

yK  = Curvature about y-axis. 

LSC =Low Strength Concrete. 

xM  =Bending moment in OXZ level. 
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yM =Bending moment in OYZ level. 

N =Normal force.  

NSC =Normal Strength Concrete. 

U =Strain energy. 

  =Deflection. 

  =Strain. 

c =Strain corresponding to c . 

c
~ =Concrete strain level. 

c̂ =The concrete strain corresponding to c̂ . 

elc , =Strain corresponding to elc , . 

elc ,

~ =Strain corresponding to elc ,
~ . 

fu  =FRP ultimate strain. 

s  =Strain in steel. 

c =Concrete elastic modulus factor that expresses the ratio of elastic strains to the total strains.  

o   =Factor depending on stress level in the material. 

s  = Steel elastic modulus factor that express the ratio of elastic strains to the total strains.   

   =Stress.    

c  =Concrete compressive stress.  

c̂  =Concrete ultimate compressive strength. 

c~  =Concrete stress level. 

elc ,  =Elastic concrete stress. 

elc ,
~ = The level of elastic concrete stress.  

fu  =FRP ultimate stress. 

s =Stress in steel. 

s~ = Steel stress level. 

els , = Elastic steel stress. 

els ,
~ = The level of elastic steel stress. 

   = Space occupied by the section. 
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