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ABSTRACT

The behavior of structural concrete beams is studied under short-term loading. A computer
program developed originally by Oukaili to evaluate curvature is modified to evaluate the deflection
for flexural structural concrete members. The program deals with actual stress-strain relationships
of concrete and steel. The analysis is based on requirements of equilibrium and compatibility of
strain in concrete and reinforcement. The proposed model is used in conjunction with the step by
step analysis for small loading increments that allows the determination of the history of strain and
stress in concrete with prestressing steel or non-prestressing reinforcement only or prestressing and
non-prestressing reinforcement together. The evaluation of curvatures for the structural member
involves iterations for computing the strains vectors at each analysis step. Newmark's numerical
integration is used to evaluate the deflection of the member depending on the curvature values. The
stress-strain model that was proposed by (Korpenko et al. 1986) is used and compared with
experimental data and other analytical models for each of concrete and steel. The comparison
showed good agreement between the model used and the experimental data. This relationship is
used in SECTION program and presented in this study. The analytical results for load-deflection
diagram are compared with available experimental data. The comparison has shown good
agreement.
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INTRODUCTION

Deflection is defined according to (ACI 116, 2000) as a movement of a point on a structure
or structural element, usually measured as a linear displacement or as succession of displacements
transverse to a reference line or axis. There are many empirical and analytical methods for
computing deflection of structural concrete members. In this paper an analytical method is modified
to compute the deflection of a structural concrete member based on the materials stress-strain
relationships, the curvature of the cross-section is determined according to these stress-strain
relationships, and then integration is made for the cross-section curvatures along the beam to
determine the deflection. It must be mentioned that this analytical method takes into consideration
the effect of tension stiffening after cracking of concrete. This analytical model is compared to the
available experimental data and hand calculations.

STRESS-STRAIN MODEL
Stress-strain model for concrete

In 1986, Korpenko published a descriptive relationship for o—¢& diagrams, which became
very famous because of its overcoming of major deficient problems as shown in Fig. (1).

compression

H'-Fq

tension -
&,

L 3

Figure (1) Stress-strain diagram for concrete in compression and tension (Korpenko et al., 1986)

It is taken that o, be the stress, g the relative strain, E; the initial modulus of elasticity, ¢
referring to concrete in compression, and ct to concrete in tension.

Instead of usingo, ande
relationship indicated below:

it is easier to use the level of each one according to the

c !
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G.=|2e| ;5= (1)

6-0 gAC
where: &, =concrete stress level, g =concrete strain level, &, =ultimate compressive strength of

concrete, £, =the concrete strain corresponding to g, .
At the beginning of o —& diagram, a linear portion can be recognized which extends up to the

stresso,, and the strain & 5 e el . Which
O.C
. & .
is equal to —- The stress in concrete can be expressed as:
gC
o, =¢ Ev, (2)
v, is concrete elastic modulus factor that expresses the ratio of elastic strains to the total strains.
v, =1 if  Jo|<l|o. (3)
AN ~2 ~ A )2 ~
eV, -V, ) € n v,—V 2e,.0,
ch 1+ ZCA( 0 ~) c —v, 2Vc— Ac( 0 ~c) e, — 20~c,el
VC — O Ve (1 ~Ocel ) 1- Ocel .
if |0'C|> O, 4)
~ 2 )
+ elcac el eanc el = |= 0
1 O-c el )

By solving the second degree formula, two roots are obtained from the formula; the larger root is
taken forv, .

~ ~ & O, — 0 5-0_6-c el A (o
O-C=_C1£c=_c’ ncz’\ = Sl ’VC= <
A n O.—0, -~ A
O, &, € cel 1_o-c,el &, Ec

where: v, =v_ value when o, =6, (at the top of stress-strain diagram).

v, factor which depends on stress level in the material (concrete in this case).

v,=1 if g<1

0

v,=2.05v, if g >1

e,., €, are factors which express the type of the concrete.

e, =1.72 -1.829. it £ <1
e, =1.957, -0.138 it £ >1
€y = 1- €1c

From the conditions of Eq. (4) that is €,, < 2
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~0.002 ; 0.,,=0 ;£.,=0, o.=¢.v. /v

c.el 1€cel c c’c c

&

Stress-strain model for steel

. Is written to be the stress, ¢, the relative strain (elongation), E. the initial modulus of

elasticity for steel, and S to refer to the steel.
When mild steel enters the stiffness region, it is advised to use the bilinear diagram that is of

two branches, one ends at the point of yield region (with coordinatese, = &, ,o, =& ), and the

o

other begins from the end of the first branch to reach the point of coordinates o, =0, |,

g, =€, ,which corresponds to the ultimate strength or failure limit as shown in Fig. (2).
Mild steel can be represented by the following equations:

o, =¢&,Ev, (5)
v, =1 if o, <o
(6)
v 2[1+ easlVy =7.) ESZ]—V [21/ —~ e,(v, = 0.) [ 283,05 ]]
S (-5, f AN (N | R |
if |0'S| =0 (7)

By solving the second degree formula, two roots are obtained from the formula; the larger
root is taken forv, . Thus:

_ (Vo _l;s)2 (ﬂs(c)2 _l)+(vs(c) _‘95)2 <2
(77s(c)2 _775(0))(1_")5)2

1s

o O, n—0O (o)
o-s(c) ~ 120'y , gs(c) =0.05+ s(c) s ns(c) = S’EC)—AS s Vs(c) = s
Es O s—0 Esgs(c)

O; =05y 6-5_6-5 el ~ o, -~ s 6'3 ~ O'*s
775= - Slao-sz *’s= * $V0= ’\,VS= * )

A 1-& O s € s Esgs Esé' s

Os— 0y — O
. &

g, = E—+,1y, A, =Yyield plateau length = (0.008-0.015) according to steel type.

S
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Figure (2) Stress-strain diagram of mild and high strength steel (Korpenko et al., 1986)

For high strength steel the same equations (5, 6, 7) are used but

v, _03)2 (7702.2 -1+ (v, _03)2 <2

€ =
2 ~ N2
(M5, —M,)(L=V,)
o o ~ 1-
£y = 20240002, vy, =202 g =G, Pa
0.2 2= E 0.2 027
s s€02 =By -0y,
.6
Vs = ~ 1 Osel =ﬂel *Op2 Vo=1
ESgS
O, — 0,4 5-5_5-5 el ~ o, -~ &€
ns = = S1’0-3:0'\__5’ S=€"_S’
Os—0 l-o0 s s
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Stress-strain model for FRP
The stress-strain diagram for FRP is assumed linearly elastic until failure stage as shown in

(Fig. 3).
o.f A

o.fu ..............................

&

»
»

¢c"fu

Figure (3) Stress-strain diagram for FRP

Comparison of the stress-strain relationships of the materials

The proposed stress-strain model is compared to other models by using available
experimental data for concrete (LSC, NSC, HSC) and for steel with its types mild; high strength;

and high strength for prestressing as shown in Figures from (4) to (12).

—&— Korpenko et al. —— Experiment ~ —e— Hognestad —&— Korpenko etal. —— Experiment  —#— Hognestad
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o o N QY % v 0 > 6 M 2 0
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Figure (4) Stress-strain for low strength concrete LSC:
(@) (Wang et al., 1978), (b) (Tasnimi, 2004)
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Figure (5) Stress-strain for normal strength concrete NSC:

(@) (Wang et al., 1978), (b)

(Slate et al., 1986)
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Figure (6) Stress-strain for high strength concrete HSC: (a) (Slate et al., 1986), (b) (Tasnimi, 2004)
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Figure (7) Stress-strain diagram for mild steel
(Goto et al., 1998)
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Figure (9) Stress-strain for mild steel
(Tompos and Frosh, 2002)

Figure (10) Stress-strain for mild steel
(Kenel et al., 2005)
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Figure (11) Stress-strain for HSS with prestressing  Figure (12) Stress-strain for HSS with
(California Prestressing Manual, 2005) prestressing (Canfield, 2005)
MODEL ASSUMPTIONS

The proposed model for calculating the deflection depends on the following assumptions:
e Strain in the concrete and reinforcement is proportional to the distance from the neutral axis
(plane cross sections remaining plane after bending).

e Concrete behavior in compression and in tension and steel behavior are assumed to follow

Korpenko's model Fig. (1) and Fig. (2).

Shear and torsion stresses are ignored.
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The tensile behavior of the FRP reinforcement is linearly elastic until failure stage. (Fig. 3).
All stresses in concrete and steel are related to secant modulus of elasticity.

Perfect bond exists between concrete, steel reinforcement and FRP bars.
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e Concrete is divided into a group of small cells with its number related to the required
accuracy. Beside that, the longitudinal steel and FRP bars in the section are divided into a
group of elements, with their numbers equal to the numbers of steel and FRP elements. Thus
the structural element acts as a system of linear elements exposed to compression and axial
tension.

e The beam is considered as simply supported with symmetrical shape along the vertical
centerline of the beam. This includes the type of loading and the beam cross section.

e Newmark’s numerical procedure is used to determine the deflection from the section
curvatures along the beam.

e In the case of fully or partially prestressed concrete members, the positive value of
deflection indicates downward displacement, and the negative sign indicates that the
displacement is upward (i. e. camber).

e The component of the prestress along the beam axis is assumed constant, but the distance
from the prestressing center of gravity to the global axis is taken according to the
prestressing steel position in each section.

MOMENT-CURVATURE MODEL

A partially prestressed concrete member is taken as a case study for determining the
moment-curvature relation of structural concrete members. The concrete is distinguished by the
subscript (c), prestressed steel by (ps), non-prestressed steel by (s), and (f) for FRP.

The space that is occupied by the section is assigned by the symbol Q. In this space, there

are areas occupied by concrete, prestressed steel, nonprestressed steel, and FRP which are
symbolized as A, , A i, A;, and A, respectively, as shown in (Fig. 13).
Q=A+A,+A+A (8)

The external force, which is either normal force (prestressing force) or applied load, leads to
change the general form of the element causing strain distribution at individual sections.
The strain energy per unit length is determined by the following formula:

1
UO==[(ce+7y)da 9)
25
where

o « g =normal strain and stress, respectively; y ¢ z =shear strain and stress, respectively.

The equation that relates the stress to strain is as follows:

o=Ee¢ (10)
where E = secant modulus of elasticity of the material, which takes into account the initial stresses

and strains, and its calculation is based on o — & diagrams for the materials as shown in Figs. (14)
and (15).
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Figure (13) Cross-section of the structural element

E. X,yeA,

g B XYEA, (11)
E, . X,y €A,
E.=E,, X,yeA,

Eq. (10) is substituted in Eqg. (9). Shear stress and strain which appear in Eq. (9) are neglected
(assumption No. 5).

a. 1

o

|rl‘
L

(a) (b)
Figure (14) Variation of secant modulus of elasticity, (a) for mild steel, (b) for high strength steel
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Figure (15) Variation of secant modulus of elasticity for concrete

So Eq. (9) takes the following form:

U “):% [eEeda (12)
Q

Because a linear strain distribution across the cross-section is assumed, so the third order
vector will simulate the strain increment as in Eg. (13):

e=A'Z (13)

in which ﬂ:(go,Kx,Ky)T : Z=(1,y,x)T, A = axial strain vector, &, = axial strain, K, = curvature of
the member longitudinal axis in OYZ plane, K = curvature of the member longitudinal axis in

OXZ plane, X, y= the distance from the center of gravity of concrete, prestressed, non-
prestressed steel, and FRP in the cross-section, to the selected reference coordinates.

By the assumption that a plane cross section before bending remains plane after bending, the
strain at any point can be expressed by the following relationship:

e=¢,+K, y+K x (14)
Considering Eq. (13), then Eq. (12) becomes as:
u“’:ijfzﬁzu do (15)
25
A matrix C is defined as:
C=[ZEZ"do (16)
o

C= stiffness matrix relative to the selected reference coordinates.

To identify the loads related to the resultant axial strains, partial differentiation of the strain
energy equation is taken as:
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() () G
ﬁau =N=C, 4 ,01; =M,=C, 4, ﬁdti =M =C,4 (17)
6‘0 X y
where

N = Longitudinal force; M, =bending moment in OYZ plane; M, = bending moment in OXZ

plane; C, = general axial stiffness vector; C,= general flexural stiffness vector in OYZ plane;
C, = general flexural stiffness vector in OXZ plane.

The general axial stiffness vector C, is determined by the following equation:

cl=( [Eda,[Eyda, | Exdg] 18)

Cz=(jEde,jEy2dQ,jExde] (19)

Q Q Q

C3=UExdg [Exyda, jEdeg] 0)
Q Q Q

The direct integration of stiffness vectors elementsC,,C,, and C; is unknown (not explicit)

theoretically because the secant modulus of elasticity depends on the value of the resulted strains,
and the strain gradient which is not equal to zero. Accordingly, numerical methods should be used.
Therefore, the cross section is covered by a mesh mostly with perpendicular lines. Average value of
the stress (strain) is taken in each cell. So the infinite summation of the elements of section stiffness
matrix is substituted by a finite summation, that its maximum value is equal to the number of
developed mesh cells.

Based on this, the matrix elements take the following form:

k m o __ n o__ i
Cllzg Eci Aci +§ Esi Asi +§ Epsi Apsi + ; Efi Afi (21)

k m _ j o n __

C12=C21=§ Eci Aci Yei +§ Esi Asi ysi+§ Epsi Apsi Yosi + g Efi Afi Y4 (22)
kK m no__ i

C13=C31=§ Ea A X +§ Eq A Xsi+§ Epsi Apsi Xpsi T Z; Eq As Xy (23)
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k m _ n __ i
szzg Eci Aci yZCi +§ Esi Asi y25i+§ Epsi Apsi yzpsi + § Efi Afi yfi2 (24)
k m __ n __ i
C23=C32=§ Eai Ad Xa Yo +§ Eq Ai Xg Vi +§ Epsi Apsi Xpsi Ypsit Zl Es A X5 Y (25)
k m __ n __ i
Ca=X Egq Ay X2+ Eg Ay X2+ E g A XZpsi + 2 E g Ag XPi (26)
i=1 i=1 i=1 i=1
where:

C,,= axial stiffness, which depends on the loading level and the geometrical properties of the cross
section, C,, =axial-flexural stiffness, which reflects the reciprocal influence of the longitudinal

force with the bending moment in the direction of Y-axis, and it depends on the geometrical
properties of the cross section, on the resultant stress-strain developments and on the location and

direction of selected coordinates axes, C,,=axial-flexural stiffness, which reflects the reciprocal
influence of the longitudinal force with bending moment in the direction of X axis, C,, =flexural
stiffness in the direction of Y axis, C,,=the stiffness, which reflects the reciprocal influence of

bending in the direction of the axes X and Y, and depends on the geometrical properties of the
section, on the strain level and on the location of selected coordinates, C,, =flexural stiffness in the

direction of X-axis, k =number of effective cells (strips) in concrete, A, =cross-sectional area of

the concrete stripi, X,y =the distance from the center of gravity of the concrete strip ito the
selected coordinates, m=the number of non-prestressed longitudinal steel bars in the cross section,
A, = the cross-sectional area of non-prestressed longitudinal steel bari, Xg;,Y; =the distance

from the center of gravity of non-prtestressed longitudinal steel bar 1 to the selected coordinates; n
=number of prestressed longitudinal steel bars in the cross-section; A ; =the cross-sectional area of

prestressed steel bari ; x .y, =the distance from the center of gravity of prestressed longitudinal
steel bar ito the selected coordinates, A= the cross-sectional area of the FRP bar, x;,y; = the

distance from the center of gravity of longitudinal FRP bar i to the selected coordinates, j=number
of longitudinal FRP bars in the concrete cross-section.

The secant modulus of elasticity E can be expressed as:
E=Ev (27)
where
E =the initial modulus of elasticity for the material (concrete, steel, or fiber);

v = elastic strain factor and it expresses the ratios between the elastic strains to total strains (as
given before).

The system (17) can be rewritten in another form to become:
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{FHcwI{4} (28)
where {F } = loads vector; [C(4)] =stiffness matrix of the section; {4} = strains vector.

The nonlinear system (28) is considered for determining the curvature of any cross-section
in the concrete structural members. The elements of Eq. (28) change with changing the location of
coordinates axis, it means that the axes rotate by an angle with certain value or at the time of
moving the axes parallel to the existing axes (Fig. 13).

5. Evaluation of Strain Vector at Different Loading Cycles:

The solution of the nonlinear system (Eg. (28)) with the third order, which is specified to
determine the curvature of any cross-section in the structural concrete members, depends on the
iterative methods of numerical analysis. There are several numerical methods for converting the
nonlinear Eq. (28) to linear. One of these methods is called the direct iterative technique (Cook,
1981), with its iteration diagram for solving Eq. (28), takes the following form as shown in Fig.
(16).

A

-

Figure (16) Iterative technique for solving the nonlinear equation (Crook, 1981)

In this method, full load is applied once at the first iteration and then a new stiffness matrix
has to be formed in each iteration. Then the full system of Eq. (28) is solved in each iteration to
evaluate the strain vector{4}. Initially, a value of {i}={4,} is assumed, then an improved

approximation is obtained as:

A= c™ (4.4)*F
1 = (29)

0

=123,y

where 4, ,, A, = axial strains vector in previous and current iteration cycles at one loading level,
respectively.

To solve Eqg. (29), a correction to the stiffness matrix should be done at each iteration cycle
with fixing the vector of external applied loads.
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NEWMARK NUMERICAL INTEGRATION
In the case of a symmetrical simply supported beam, the following Eqgs. (30) can be used by

considering the following symbols: g@referring to the curvature M/El, ¢ referring to the
equivalent concentrated load (or curvature in the real beam), slope,referring to the shear (or

average slope in the real beam between the points i and i+1, A referring to deflection, subscript i
referring to section number, c referring to section number in the center of the beam, and Ax refers
to segment length which is equal to the distance between two concentrated loads.

For a simply supported beam, there are no known values of ¢ and slope in both ends;
therefore these values can be substituted by zero.

Ay = jZzlz(slope(j))Ax (30)

where 1=1,2,3,....c—1

c-1_ _
slope;, = §2¢(k) + ¢, /2, where slope;, is dimensionless
— AX . )
Py = ?(¢ kT8 +6 (k+1)) for straight line curvature (M /EI ).

bu = %(¢ «t10@ ( +0 (k+1)) for 2" degree parabolic curvature (M /EI ),

Since the beam is symmetric the values of deflection for other half of the beam is determined
according to the following formula:

A pHl = An—p

where p=1,...c-1, n=number of sections along the beam.

APPLICATIONS AND RESULTS
Ordinary reinforced concrete beams
Beam SB1-2 is tested by Thandamoorthy (1999). This beam had 150*300 mm section, 3m

span length, the ultimate compressive strength for concrete (fc' =41.58MPa). The beam is
reinforced with 3d12 bars in tension with an effective depth of 261 mm and 2d8bars in
compression with depth of 37 mm and with E_equal to 200000 MPa .The beam has been loaded in

two points. Loading points have been located at 500 mm on either side of midspan. Moment-
curvature and load-deflection diagrams of this beam are shown in Figs. (17 and 18).
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Figure (17) Theoretical moment-curvature diagram Figure (18) Load-deflection diagram
for Thandamoorthy beam (Thandamoorthy, 1999)

GBL1 control beam is tested by Alsayed, et al., (2002). The typical beam is 150*200 mm in
cross-section. It is reinforced with three @10mm steel bars for tension with an effective depth of
152 mm and one ® 6 mm for compression with depth of 46 mm and with E_equal to 200000 MPa .

The beam is simply supported over a span of 2050 mm and loaded by two concentrated loads, each
placed at 100 mm from the beam centerline. The ultimate compressive strength for concrete is

(fc' =35.5MPa). Moment-curvature and load-deflection diagrams of this beam are shown in
Figs. (19 and 20).

20 Exp. —&—Theo. —e— ACI318 (2008)

18

£ 14 £
S g £ 5
S 8 200 - 925 200] 925
c 6 3010 2 20 1
S 4 = <& 10 2050
5 150 . e >
O I . . . . il T T T
0 001 002 003 004 005 C o A = H
Curvature :1/m Midspan deflection :mm
Figure (19) Theoretical moment-curvature diagram Figure (20) Load-deflection diagram
for Alsayed et al. beam (Alsayed et al., 2002)

Partially prestressed concrete beam
Beam SSP2 was tested by Harajli and Naaman (1985). The beam has 2743.2 mm span

length. The ultimate compressive strength for concrete is ( fc' = 36.55MPa ).It was subjected to
two-point loading. The cross-section was 114.3*228.6 mm in dimensions. It was with ordinary
tensile reinforcement of area 96.774 mm? with an effective depth of 203.2 mm and a tensile

prestressing strand of area 54.839 mm? with an effective depth of 158.75 mm. Moment-curvature
and load-deflection diagrams of this beam are shown in Figs. (21 and 22).
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Figure (21) Theoretical moment-curvature diagram Figure (22) Load-deflection diagram
for Harajli and Naaman beam (Harajli and Naaman, 1985)

The beam (beam I111-2) was tested by Oukaili (1991). The cross-section was 210*305 mm. The
beam was reinforced in tension with steel of area 907 mm? with an effective depth of 275 mm and
prestressing strand of area 420.27 mmZat a depth of 235 mm. It is also reinforced in compression

with steel area of 157 mm?and prestressing strand area of 96. 535 mmZat a depth of 30 mm. The
ultimate compressive strength for concrete is ( fC' = 39.4 MPa ).Moment-curvature and load-
deflection diagrams of this beam are shown in Figs (23 and 24).
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160 200
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l—>| v 3000 K
0 -+ T T T T 0 & : :
0 0005 001 0015 002 0025 . 1 o -
Curvature :1/m Midspan deflection:mm
Figure (23) Theoretical moment-curvature diagram Figure (24) Load-deflection diagram

for Oukaily beam (Oukaily, 1991)
Beams Reinforced with GFRP
Benmokrane et al. (1996) built a series of 3300 mm long doubly reinforced concrete beams.
Series 1 is taken for comparison. The beam tested had two @ 19.1 mm GFRP bars in tension and
two @ 6 mm GFRP bars in compression. The beam section was 200*300 mm. It had a clear span of
3000 mm and was loaded by two concentrated loads each at 500 mm from midspan. The ultimate
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compressive strength for concrete was (fc' =43 MPa). Moment-curvature and load deflection

diagrams of this beam are shown in Figs (25 and 26).
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Figure (25) Theoretical moment-curvature diagram
for Benmokrane et al. beam

Figure (26) Load-deflection diagram

(Benmokrane et al., 1996)

Beam F3 tested by Pecce et al., (1998) has 500*185 mm in cross section, reinforced with
seven @ 12.7 mm GFRP bars in tension at a depth of 145 mm and two @ 12.7 mm GFRP bars in
compression at a depth of 40 mm. The clear span of the beam is 3400 mm, and it is loaded by two
concentrated loads at 1200 mm from the simple supports. The ultimate compressive strength for

concrete is ( f, =30MPa).The theoretical moment-curvature and load-deflection diagrams are

shown in Figs. (27 and 28).
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Figure (27) Theoretical moment-curvature diagram
for Pecce et al. beam
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CONCLUSIONS
The following conclusions can be stated:

The analytical stress-strain model used in the SECTION program which was developed by
Korpenko et al., (1986) gave very good agreement in comparison with the experimental data
and other analytical models for each of concrete, mild steel, high strength steel, and
prestressing steel.

SECTION program presented in this study has shown to be capable of predicting the full
history for the structural concrete beams under short-term loading.

The SECTION program has the ability of dealing with structural beams with different
values of partial prestressing ratio (PPR).

The SECTION program has shown to be capable of predicting the deflection state for each
of ordinary reinforced concrete, partially prestressed concrete, and bar fiber reinforced
concrete beams.

In the pre-crack stages, there is very good agreement between the theoretical results and the
experimental data of deflection for all the three types of beams used.

In the loading stages corresponding to 20% of the failure load, the average discrepancy of
the analytical deflections values with respect to experimental values reached 18.3% for
ordinary reinforced concrete, 4.9% for partially prestressed concrete beams, and 24.92 % for
beams reinforced with fiber bars. One problem that seems to be common to all deflection
prediction methods is that of predicting the cracking moment. This is primarily due to the
difficulty in accurately predicting the modulus of rupture f, (standards tend to require the
use of relatively low conservative values).

In the loading stages corresponding to 50% from the failure load, the average discrepancy of
the analytical deflections values with respect to experimental values reached 6.83% for
ordinary reinforced concrete, 27.4% for partially prestressed concrete beams, and 8.73% for
beams reinforced with fiber bars.

In the loading stages corresponding to 70% of the failure load, the average discrepancy of
the analytical deflections values with respect to experimental values reached 8.63% for
ordinary reinforced concrete, 30.75% for partially prestressed concrete beams, and 7.45%
for beams reinforced with fiber bars.

NOTATIONS:

e
e

1c’ez
1s’ez

The following symbols are used in this paper:

. =Factors expressing the type of the concrete.
. = Factors expressing the type of the steel.

E = secant modulus of elasticity of the material.
E. = Modulus of elasticity of concrete.

E.= Modulus of elasticity of reinforcing steel.

fc' =Ultimate compressive strength of concrete.

HSC =High Strength Concrete.
HSS = High Strength Steel.
K = Curvature.

K, =Curvature about x-axis.
K, = Curvature about y-axis.

LSC =Low Strength Concrete.
M, =Bending moment in OXZ level.
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M, =Bending moment in OYZ level.

N =Normal force.

NSC =Normal Strength Concrete.

U =Strain energy.

A =Deflection.

& =Strain.

& =Strain corresponding too, .

£, =Concrete strain level.

éc =The concrete strain corresponding to & .
&, =Strain corresponding too, .

€, =Strain corresponding to o , .
&, =FRP ultimate strain.

&, =Strain in steel.

v =Concrete elastic modulus factor that expresses the ratio of elastic strains to the total strains.
, =Factor depending on stress level in the material.

v, = Steel elastic modulus factor that express the ratio of elastic strains to the total strains.

o =Stress.
o, =Concrete compressive stress.

|4

G, =Concrete ultimate compressive strength.
o, =Concrete stress level.

o, =Elastic concrete stress.

o, = The level of elastic concrete stress.

o, =FRP ultimate stress.

o, =Stress in steel.

o, = Steel stress level.

o, ., = Elastic steel stress.

o, = The level of elastic steel stress.

Q = Space occupied by the section.
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