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ABSTRACT:

In the present work, the step by step technique is used to predict the performance of the power
plant condenser. The procedure includes the calculation of pressure distribution, condensation
temperature, water inlet and outlet temperature, condensation load distribution and single phase
heat transfer sub-cooling. A quasi two dimensions model is applied, one in the tube water direction
and the other in the vapor direction. It is applied with different operating conditions of the
condenser such as operating pressure, air percentage mixed with steam, cooling water temperature
and fouling factor on tube side for summer and winter seasons.

The present model revealed that the fouling resistance has a great effect and plays the major part
of the decline in the condenser performance. This is because it decreases the overall heat transfer
coefficient and condensation rate. The performance of the condenser when the cooling water enters
at the lower pass is better than the upper pass, due to the balance in the distribution of the heat
transfer and the condensation rate between tube passes. The model is verified with field operating
conditions of Southern Baghdad thermal power station. It has revealed that there is a good
agreement between the field data and the present technique. The accuracy fell within (98) % and
(89) % for the cooling water temperature prediction for summer and winter respectively, while it
showed accuracy of (98) % and (99) % for the condensate exit temperature prediction for summer
and winter respectively.
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INTRODUCTION:
The condenser is a device in which the vapor is converted to liquid and latent heat is transferred

to coolant. A common type of condensers is indirect contact condensers in which vapor does not
mix with the cooling fluid, the shell and tube type is the common one and the most widely used.

(Jacob, 1959) introduced the mean heat transfer coefficient for a vertical column of (N)
horizontal tubes with the same temperature difference. The influence of the drag extended by the
vapor on the condensate film was considered by (Chen, 1961), and (Koh et al., 1961), from
numerical solution of the governing equations. (Chisholm et al., 1965), developed a numerical
method of evaluation heat and mass transfer coefficient and local heat fluxes in surface condensers.
(Patankar and Spalding, 1974), introduced a more practical approach by considering the tube nest
as porous medium allowing coarser computational grid to be used and hence economize on
computer requirements. (Fujii, 1983), treated condensation phenomenon in small simple tube banks
as a basic problem for research and development on turbine condensers.

(Zhang, 1994), proposed quasi-three dimension numerical model to predict performance of
large power plant condensers. The prediction was achieved by solving the governing mass,
momentum and air concentration by using semi implicit consistent control-volume for simulation
with different conditions in work of condenser. A test facility was constructed by (McNeil, 1999),
and used to generate data for filmwise and dropwise condensation from steam and steam-air
mixtures flowing downward across a bundle of tubes. Pressure drops in a dropwise bundle are not
noticeably different from a filmwise bundle.

(Karl and Hein, 1999) found that the non-condensable gas accumulates in the vapor phase
boundary layer and causes a high heat transfer resistance, especially with high pressures and low

water temperatures. (Seungmin, 2003), examined numerically the annular filmwise condensation
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of vapors in a vertical tube with non-condensable gases. (Liang et al., 2004), presents accurate
numerical solutions of the full two-dimensional governing equations for steady and unsteady
laminar/laminar internal condensing flow. (Tarrad and Kamal, 2004), studied the performance
prediction of Al-Daura steam power plant condensers, Fig. 1, in a quasi-two dimensional model. It
revealed that cooling water resistance represents the greatest one among the whole resistances.

In the present work a step by step technique was used for the performance prediction of an
existing power plant surface condenser. It provides a powerful tool for the performance assessment
of the condenser working under various operation conditions at which the different measures that

control the proper work of such equipments were investigated.

THEORETICAL TREATMENT MODEL.:
The overall heat transfer coefficient that refers to the outside tube area may be expressed as,
(Davidson,1987).:

U= (1)

ad®
0 "2 4R i 1

+
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The heat flux at the condenser tube surface is calculated from:
Q=U LMTD (2)
FORCED CONVECTION IN TUBES:
Numerous relations have been proposed for predicting turbulent flow in tubes. The most

popular correlation available for the prediction of the heat transfer coefficient is that of Petukhov
cited in (Cengel, 1998) in the form:

r
Ra;Pri|l—
N-u_:_ = ! l[s}a — (38.)
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Nui==mkﬂ
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0.11
— (e
( {l'-*[u'}
I =(1.82 log(Re,) — 1.642) 72 (3.b)

For the Reynolds and Prandtl number ranges:
10°<Re;<5x10° and  0.5<Pri<2000
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CONDENSATION HEAT TRANSFER COEFFICIENT:

The latent heat of condensation released as the vapor condenses must pass through a liquid
film resistance before it reaches the solid surface and must be transferred to the medium on the
other side.

NUSSELT EQUATION FOR A LAMINAR FILM:

The following relation for the heat transfer coefficient can be obtained from, (Kreith and

Boehm, 1999) by the following expression:

1/4
h — 0 925 IOC (pc _IOV) hfg g k03 (4)
" ' Lo He (rcs _Tw)

With slight modification, the Nusselt analysis of laminar falling-film condensation over a flat

plate can be adapted to film condensation isothermal horizontal cylinder. Doing so yields the

following relation for the mean heat transfer coefficient as, (Thome, 2004):

V4
hew =0.728[p° pe = p ) g k‘f] (5)
do He (Tcs _Tw)

Many investigators have made significant improvements to the original Nusselt theory to include

the following effects to the condensation process:
Effect of Condensate Film Sub-cooling:

It has been shown that the cooling of the liquid below the saturation temperature during the
condensation process can be accounted by using modified latent heat of condensation defined by
(Petukhov, 1998) and (Collier, 1972) as:

hiy =hg +0.68Cp, (T —T,,) (6)

EFFECT OF VAPOR VELOCITY:

When the vapor surrounding a horizontal tube is moving at a high velocity, the analysis of
filmwise condensation is affected by the surface shear and the vapor separation and its influence
upon the condensate flow, (Thome, 2004). In practice, shear stress will be increased and the film is
thinned, due to momentum transferred to the condensing vapor.

(Shekriladze and Gomelauri, 1966) analyzed the case of downward vapor flow over an
isolated tube. They obtained an expression for which the vapors shear dominated conditions:

h, =0.9 Re¥? (z—] (7.a)

0o
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Reqp = Pe Uy Gy (7.b)
He
When gravity and vapor shear dominated conditions, the expression will be as:
h, :O.64[1+(1+1.69 F)l/z]”2 Rek? (z—j (8.3)
(0]
# hy dy g

_ 8.b
Ui kc (Tcs _TW) ( )

(Rose, 1984) resolved the (Shekrladze and Gomelauri, 1966) problem and obtained an
improved equation (without taking the effect of separation and circumferential pressure gradient for

condensate) as:

h, =

12
0.9+0.728 F o2 [kc] ©)

L+34aF2  Ef* T\,

(0]

(Fujii and Kurata, 1972) modified eg. (9) to include a (generally small) correction for the

fact that asymptotic shear stress expression has been used, thus:

] _09(1+G)”° +0.728 F¥? Re’ [k_CJ 10:)
. .
(1+3.44F¥2 4 F)* d,
. 12
_ M hg (Pv ﬂvj (10.b)
(Tcs _Tw)kc Pec He

(Fujii, 1981) proposed the following experimental equations for the mean heat transfer

coefficient for downward flow vapor as:

h —a F® Rel? [k_] (1)
dO

a=096 b=0.2 0.03<F<600

a=0.7 b=0.25 F>600

(Berman and Tumanov, 1962) proposed from vertical down flow experimental data,

corrective to Nusselt equation to take into account the effect of vapor shear as:

118
he =hey [1+ 0.0095 (Re iy, ) /Nuow j (12.a)
. . . h,
This equation is restricted for <15
hen
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and
h~y d
Nugy = Cﬁ 0 (12.b)
c
u_d
Remix:pmlx 2 (12.0)
Hmix

EFFECT OF INUNDATION IN TUBE BANKS:

The average heat transfer coefficient at the lower tube rows is smaller than that experienced
from the above tube rows, (Marto, 1988).

(Fuks, 1957) and (Kutateladze et al. ,1979) derived a non-dimensional equation which

accounted for the predominant physical mechanism as:

-S

en | L (13)

(Fuks, 1957) showed that the index S=0.07, other authors as (Wilson, 1972) used S=0.16,
(Grant and Osment, 1968) used S=0.223 and (Short and Brown, 1951) used S=0.25.

Effect of Non-condensable Gasses:

Since only the vapor is condensed, the concentration of the non-condensable gas at the
interface is higher than its value in the far ambient. This, in turn, decreases the partial pressure of
the vapor at the interface below its ambient value. The resulting depression of the interface
temperature generally reduces the condensation heat transfer rate below that which would result for
pure vapor alone under the same conditions, (Owen and Lee, 1983).

(Rose, 1980) used procedure, which relies on a heat mass transfer analogy to obtain solutions
for the corresponding mass transfer problem. The coefficient of mass transfer is evaluated from
(Rose, 1980) in the form:

Sh—a, Re® [] 3 E (14.2)
a, =0.82 b, 0.6 Re.. >350
a, 0.5 b, =0.7 Re. <350
P, —P
=" ""s (14.b)
I:)mix

4753



Numberl Volume 16 march 2010 Journal of Engineering

E, =—2 (14.c)
I:)mix
The partial pressure of vapor is evaluated by:

P =

—Mmix —1+0.622 (15.a)
I:)v T hw
E, = M (15.b)
m, +m,
By taking
Q=m,h; (16)
(Rose, 1980) showed that:
D(w,—w
=hl p . —|—= "= | gh 17
Q fg Pmix do [ Wcs ) ( )
And the heat transfer rate in eq. (16) may also be expressed as:
2 D, (T, -T
= hi Pl ¥ _—% ISh 18
Q fg Py do ( TV j ( )

And the final expression for the heat transfer coefficient of the non-condensable gas, air, in the

condenser has the form:

2/3 -
_ D 0.5 —bs 1. [ep + 5/3 1
h, = g g, Remix Ez: - 'sz'x JIH|: L] h fa (19}

v T,

COMPUTATIONAL PROCEDURE:

The present work includes the prediction of the performance of the surface condenser used in the
Southern Baghdad thermal power station. The object is to study the rating of an existing condenser
and predict the total condensation load, condensation rate, pressure and temperature distribution on
the steam side. The condenser is divided into a number of horizontal tube slices, rows, receive the
steam and condensate from the above tube row. The first tube row is assumed to receive the steam
directly from the exhaust turbine duct at its condition including mass flow rate, pressure and
temperature. The condensation rate, vapor pressure, vapor temperature and overall heat transfer
coefficient were calculated for each row.

The solution for the condenser rating was conducted a row by row, the exit condition from a
tube row is assumed to be the entering condition to the next row and so on until the exit from the

last tube slice. These calculations were based on an assumed arbitrary mass flow rate distribution
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for the bays along the heat exchanger. An iterative procedure was followed to establish the rate of
condensation for each bay depending on its ability for condensation which is a function of the tube
side condition and position. A computer program is built to establish the performance of power
plant condenser incorporating all different variables involved in the performance prediction.
Detailed computer program structure and solution marching procedure for the suggested model is
presented by (Majeed, 2007).

CASE STUDY:

The case study considered for verification of the present model is the condenser design and
operating conditions of the unit number (1) of the Southern Baghdad thermal station. The
geometrical design characteristics of this condenser are shown in Table 1 and the condenser tubes
layout is shown in Fig. 2. For the present work the following cases will be considered:

e Case (1):- The data of this case is shown in Table 2 and is taken in summer.

e Case (2):- The data of this case is shown in Table 2 and is taken in winter.

e Case (3):- all data of this case are the same as case (1) except mass flow rate of air which
is as (m,=0.0092) kg/s as obtained from the field data of the manufacturer company.

e Case (4):- all data of this case are the same as case (1) except that the temperature of
vapor inlet to condenser which is as (316.2) K corresponding to saturation pressure of
(8644) Pa in summer season.

e Case (5):- all data of this case are the same as case (1) except the temperature of water
inlet to condenser which is as (290.2) K.

e Case (6):- all data of this case are the same as case (1) except the fouling resistance and
roughness as (R; =0.00032) m?.K/W and (¢=0.000036) m respectively as deduced from
literatures.

e Case (7):- all data of this case are the same as case (1) except the water inlet to upper
pass first.

RESULTS AND DISCUSSION:

Figure 3 shows the scheme of the longitudinal tube bundle arrangement for bay by bay
condenser design. In all cases of performance prediction, Petukhov eqg. (3) is used to calculate heat
transfer coefficient inside tube, Fujii and Kurata eq. (10) to calculate condensate heat transfer

coefficient and Rose eq. (19) to calculate air heat transfer coefficient.
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Heat Load (Q):

As shown in Figures 4 and 5, the trend of the curves of heat transfer is the same for upper pass

in case (1) and case (2), but the magnitude of reduction in heat transfer between rows is different
according to pressure drop. For example, in case (1), the difference between rows in upper pass is
(1163-1745) W and (2663-5003) W. For the lower pass, the trend of these curves is the same, but
the magnitude of reduction between the first row in lower pass and the vent is different according to
pressure drop. The extreme drop in curves for lower passes in the rows number (8) and (9). This is
because that the number of tubes in these rows which are (19) and (20) are less than that of the
other rows. This makes the quantity of cooling water less than in other rows, which explains the
heat transfer decrease. As the pressure of vapor decreases towards the vent, the heat transfer rate of
the tube rows and bays decreases. This can be explained by the decrease of temperature difference
between vapor and cooling water which causes a decrease in heat transfer transmitted.

The variation of the condenser load with bay number for case (2) is shown in Fig. 6. The
greatest heat transfer occurs in bay (11) for upper pass and bay (1) in lower pass because it has the
lowest cooling water temperature, as compared with other bays, which leads to high temperature
difference between vapor and cooling water and, hence, an increase in the heat transfer. The heat
transfer rate in the lower pass is greater than that in the upper pass because of the coolest water
temperature inlets to lower pass, except in three last bays in case (1) and four bays in case (2) since
the temperature of cooling water is approximately equal, while the temperature of vapor in upper
pass is greater than that in the lower pass.

As shown in Fig. 7, the trend of the curves of case (7) is opposite to those of case (1), because
the cooling water enters the condenser at the upper pass which means high temperature difference
between vapor and cooling water. This explains why the heat transfer rate in upper pass is higher
than that in lower pass. On the other hand, the total heat transfer rate of case (7) is less than that in
case (1) in all bays because the heat transfer rate in lower pass is lower than that in case (1). This

can be explained by the small temperature difference between vapor and cooling water.

OVERALL HEAT TRANSFER COEFFICIENT (U):
As shown in Figures 8, 9, and 10, the trend of curves is the same for all cases. Although the

heat transfer rate in the upper pass is less than in lower pass, but the overall heat transfer coefficient
in upper pass is higher than that in the lower pass. That is for a specified surface area, the heat flux,
UATn, for the upper pass is lower than that of the lower pass due to the decrease in temperature
difference between vapor and cooling water. For case (7), the overall heat transfer coefficient, as

shown in Fig. 11, increases from first bay to the last in upper and lower passes which is different
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from other cases. This is because the increase in heat transfer is more pronounced than the increase
in temperature difference between vapor and cooling water. For example, the difference in overall
heat transfer coefficient between bays for upper and lower passes of case (1) is (11.1-17.3) W/m*.K
and for case (7) is (7.2-12.8) W/m*.K.

The Rose correlation showed the highest overall heat transfer coefficient, whereas the
(Shekriladze and Gomelauri, 1966) one expressed the lowest value, with a maximum
corresponding deviation is about (5) %. The rest of correlations revealed a discrepancy in the range
(2-5) % when compared to the minimum value given by the former correlation.

The results of the present work revealed that the cooling water resistance comprises the
major part of the total resistance, it is within (50-65) %. The condensation resistance is ranged
between (15-20) % which is followed by the fouling resistance with a percentage of (9-15) %. The
mixture resistance showed the lower value among the various resistance types with a value fell
within (0.01) %.

CONDENSATION RATE AND OTHER VARIABLES:

Condensation Rate (mc): For case (1) and for upper pass, the greatest condensation rate

occurs in bay (11), as shown in Fig. 12, because it has the lowest cooling water inlet to the bay
compared with other bays. This leads to high temperature difference between vapor and cooling
water which increases heat transfer rate. The trend of curves shows the reduction from inlet to tube
bundle towards the last row in upper pass. This reduction is because of pressure drop through the

rows. For example, the difference in upper pass is in the range of (0.0005-0.0016) kg/s.

Vapor Pressure (Py,): The pressure drop in upper pass for all cases is greater than that of the
lower pass. This is because the steam sustains the greatest velocity in the upper pass, whereas a
sharp decrease in the steam velocity occurs in the lower pass. Fig. 13 shows extreme slope for
pressure drop between bays. This can be explained by the large difference in steam velocity
between bays. For example, in case (1), the predicted pressure drop for the upper pass was between
(8.7-6.8) Pa and for the lower pass was between (1.5-.8) Pa, while in case (2) the pressure drop for
the upper pass was between (12.8-8.8) Pa and for the lower pass was between (1.5-0.4) Pa.

Inlet Temperature of Cooling Water (T;)

As shown in Fig. 14, the rise in cooling water is different from case to another due to the
operating conditions considered. These are temperature difference between vapor and cooling water
or mass flow rate of vapor or fouling resistance. The rise in case (3) is approximately equal to that
in case (1), due to the little effect of the presence of air mass flow rate. For example, the rises in
inlet cooling water in cases (1,2,3,4,5 and 6 ) are (11.4,16.6,11.4,10.1,14.2 and 12.7) °C. The results
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have also revealed that the rise of cooling water temperature in case (7) was ( 11.7) °C. This value
was less than that of case (1) owing to its high decrease in temperature difference between vapor
and cooling water.

COMPARISON WITH FIELD DATA:

The present model performance predictions was compared with the field data obtained from
Southern Baghdad thermal power plant. It is suggested to consider the outlet cooling water
temperature and condensate exit temperature as a measure for the accuracy of prediction. Table 3
shows the predicted and measured temperature of the above two variables. It is obvious that there is
a good agreement between the field data and the present work, with accuracy fell within (98) % and
(89) % for the cooling water temperature prediction for summer and winter, while the accuracy fell
within (98) % and (99) % for the condensate temperature prediction for summer and winter.

CONCLUSIONS:

The performance of power plant condensers is difficult and complicated art to be checked by
single parameter, therefore a quasi two dimensional computer program has been built to depict the
performance of this type of condensers. The principle findings of this investigation are listed
below:-

- The procedure based on the step bay step method across tube bank of the condensers provides a

powerful technique for the performance prediction of the condenser.

- The program is used to study different operating conditions, to analyze them and other parameters

that affect the performance of Southern Baghdad power plant. From this study the followings are

noticed:-

i. Best performance in winter owing to the large temperature difference between vapor and
cooling water and the rise in the level of the river water which decreases the deposit inlet to the
condenser tubes.

ii. Heat transfer, condensation rate, and overall heat transfer coefficient decrease towards the vent,
because of vapor pressure drop. Heat transfer and condensation rate for the pass of condenser
where river water enters first are higher than the other pass, while the overall heat transfer
coefficient is lower. The increase of the heat transfer rate is mainly due to the increase in
temperature difference between vapor and cooling water.

iii.  The fouling resistance has an important effect on the condenser and plays a major part of
decline of the condenser performance. This is due to the increase in the fouling resistance, leads
to a decrease in the overall heat transfer coefficient and condensation rate.

iv. The performance of the condenser when the cooling water enters the condenser at the lower
pass is better than that when it enters the condenser at the upper pass. This is because of the
balance in the distribution of the heat transfer and condensation rate between passes.
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NOMENCLATURE:

an : Constant defined in egs. (11) & (14.a)

by : Constant defined in egs. (11) & (14.a)

cp: Specific heat (kJ/kg. K)

d : Tube diameter (m)

D : Molecular diffusion Coefficient (m%/s)

D,: Coefficient of vapor diffusion in gas (kg/(s.m.Pa))
Ey : Pressure ratio (air to mixture)

Ew : Mass ratio (air to mixture)

F : Parameter defined by eq.(8.b)

g : Gravitational acceleration (m/s%)

h : Heat transfer coefficient (W/m? K)

hsy : Latent heat of vaporization (J/kg)

h*fg: Modified latent heat of vaporization (J/kg)
k : Thermal conductivity (W/m.K)

L : Length of tube (m)

LMTD : Logarithmic mean temperature difference (K)
m : Mass flow rate (kg/s)

n : Number of certain row

Nu: Nusselt number

P : Pressure (Pa)

Pr : Prandtl number
Q : Heat flux (W/m?)
R : Gas constant (J/kg.K)

Ry : Fouling resistance (m? K/W)
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Re : Reynolds number

S : Index in eq. (13)

Sc : Schmidt number

Sh : Sherwood number

T : Temperature ("C)

u : Fluid velocity (m/s)

U : Overall heat transfer coefficient (W/m? K)

w : Mass fraction

Greek Symbols:

p : Density (kg/m®)

M : Viscosity (Pa.s)

B : Mass transfer coefficient (kg/s.mz)
v : Kinetic viscosity (m%/s)

IT : Parameter defined by eq. (14.b)

I' : parameter defined by eq. (3.b)

Subscript Symbols:
a: Air
¢ : Condensate

cs : Vapor/Condensate interface
i : Coolant inside tube
ib : Inside tube bulk
iw : Inside tube wall
mix: Mixture
0 : Outside or outlet
TP : Two phase
v : Vapor
veo : Vapor at free stream
w : Tube wall

oo : Free stream
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Table (1.a): Geometrical Design Characteristics Data for the Test Condenser.

Input data Value
Internal diameter of tube (m) 0.0197358
external diameter of tube (m) 0.022225
Tube pitch (m) 0.02778125
Number of bays 11
Length of bay (m) 0.72736
Width of tube sheet (m) 1.228
Number of tube passes 2
Number of tubes for all condenser 2430
Number of rows for all condenser 57
Number of rows before the vent 34
Tube numbers for upper pass of condenser 1201
Tube numbers for lower pass of condenser 1229
Row numbers for upper pass of condenser 27
Row numbers for lower pass condenser 30

Table (1.b): Number of Tubes for Each Row in the Condenser.

Number of row Number of tubes
From(1-27) odd rows 44
From(1-27) even rows 45
28-29-30 42
31-33 35
32-34 36
35 19
36 20
37-38-39 38
40-42 44
41-43-44....... -57 45
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Table (2): Shell Side and Water Side Input Data for Case (1) and Case (2).

Input data Case(1) Case(2)
Total mass flow rate of vapor (kg/s) 15.0926 17.26852
Mass flow rate of air (kg/s) ~ 0.00472 0.00472
Air mass percentage % 0.0313 0.0273
Inlet vapor temperature to condenser (K) 319.69 314.861
Air vent capacity (kg/s) 0.0275 0.0275
Total mass flow rate of water (kg/s) 791.34376 | 791.34376
Inlet water temperature to condenser (K) 296.2 283.2
Thermal conductivity of tube (W/m.K) 300 300
Tube side fouling resistance (m”.K/W) ~ 0.0004 0.00032
Roughness of tube (m) 0.000061 0.000036
Pressure of water inlet to condenser (bar) 3.5 3.5

All data labeled by (*) are assumed values.

Table (3): Comparison Between Field Data and Present Work.

Data Field data Present work
Case(1) | Case(2) | Case(1) | Case(2)
Temperature of condensate at outlet from 3195 3138 318.6 3136
condenser (K)
Temperature of cooling water at outlet from 3072 297 2 3076 299 8
condenser (K)
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Figure (1): Arrangement of Tube Bundle in Al-Daura Thermal Power

Station Condenser, (Tarrad and Kamal, 2004).
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Figure (4.a):Heat Transfer Rate vs. Row Number for Upper Pass, Case (1).
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Figure (4.b):Heat Transfer Rate vs. Row Number for Upper Pass, Case (2).
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Figure (5.a):Heat Transfer Rate vs. Row Number for Lower Pass, Case (1).
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Figure (12): Condensation Rate Vs. Row Number of Case (1), Upper Pass.
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Figure (13.a): Pressure of Vapor vs. Row Number of Case (1) for Upper Pass.
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Figure (13.b): Pressure of Vapor vs. Row Number of Case (1) for Lower Pass.
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Figure (14.a): Water Inlet Temperature of Various Cases vs. Bay Number
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