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ABSTRACT 

    In this paper an attempt to provide a single degree of freedom lumped model for fluid 

structure interaction (FSI) dynamical analysis will be presented. The model can be used to 

clarify some important concept in the FSI dynamics such as the added mass, added stiffness, 

added damping, wave coupling ,influence mass coefficient and critical fluid depth . The 

numerical results of the model show that the natural frequency decrease with the increasing of 

many parameters related to the structure and the fluid .It is found that the interaction phenomena 

can become weak or strong depending on the  depth of the containing fluid .The damped and un 

damped free response are plotted in time domain and phase plane for different model parameters 

It is found that the vibration free response is still sinusoidal for weak FSI coupling ,however for 

strong coupling it behaves as modulated periodic response .To justify some of the theoretical 

aspects such as; the effects of the fluid density and the interact shape on the natural frequency an 

experiment was conducted .The results of the experiment shows a good agreement with the 

theory where the error is not exceeded 7%. 

 

Key words: FSI, mass influence coefficient , interact shape ,added mass ,added damping  

 

 نمىرج رو درجة حرية واحذة لتحليل الاهتساز للهيكل المتفاعل مع المائع

 
 محمىد رشيذ اسماعيل 

 هذسط 

ٌذستكل٘ت الِ   -   خاهؼت الٌِشٗي

 

 الخلاصة
 فٖ ُزا البحث هحاّلت لخْف٘ش هْدٗل رّ دسخَ حشَٗ ّاحذة للخحل٘ل الذٌٗاه٘كٖ للِ٘اكل الوخفاػلَ هغ الوْائغ

ة الوضافت ّالخخو٘ذ ءهثل الكخلَ الوضافت ّالدسا الخفاػلٖ  ذٌٗاه٘كالالٌوْرج لخْض٘ح هفاُ٘ن اساسَ٘ فٖ ُزا .ٗوكي اسخخذام  

لخذاخل الوْخٖ ّهؼاهل الكخلت الوؤثش ّػوق الوائغ الحشج .بٌ٘ج الٌخائح الؼذدٗت اى الخشدد الطب٘ؼٖ ٗخٌاقص بخاث٘ش الوضاف ّا

صٗادة بؼض الوؼاهلاث الخٖ حخص الِ٘كل ّالوائغ .كوا بٌ٘ج الٌخائح باى ظاُشة الخفاػل ٗوكي اى حكْى ضؼ٘فَ اّ قْٗت ّرلك 

الاسخدابت الحشٍ الوخوذة ّالغ٘ش هخوذة باسخخذام احذاث٘اث الضهي ّطشٗقت  هسخْٕ  اػخوادا ػلٔ ػوق الوائغ الحإّ .حن سسن

الطْس لؼذة هخغ٘شاث فبٌ٘ج الوخططاث اى اسخدابت الاُخضاص حبقٔ هْخَ٘ فٖ حالت الخفاػل الضؼ٘ف بٌ٘وا حكْى هي الٌْع 

حاث٘ش كثافت السائل ّالشكل الوخفاػل فقذ حن الذّسٕ الوخضوي فٖ حالت الخفاػل القْٕ .للخحقق هي بؼض الٌخائح الٌظشَٗ هثل 

.%7اخشاء حداسب ػول٘ت .بٌ٘ج الٌخائح الؼولَ٘ حطابق خ٘ذ هغ الٌظشٕ ح٘ث لن حخؼذٓ ًسبت الخطأ   

 

 :الِ٘اكل الوخفاػلت,هؼاهل حأث٘ش الكخلت ,الشكل الوخفاػل ,الكخلَ الوضافَ ,الخخو٘ذ الوضاف. الكلمات الرئيسية
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1. INTRODUCTION  

     The dynamics of fluid structure interaction (FSI)  has wide applications in many branches of 

engineering such as aerospace ,aerodynamics, ship motion, medical applications and other flow 

induced vibration problems. 

    In the FSI systems the couplings between, fluid and structure include many kinds. It is well 

known now as frictional coupling, Poisson coupling, junction coupling, Bourdon coupling, 

wave-.flow coupling and wave–wave coupling, etc ,Amabili,2000. 

   In general the dynamical behavior of structures interacts with fluid is very complicated and 

they are normally evaluated by numerical technique like finite element or finite difference 

methods .Many models are treated by using simulation methods based on experiments under 

wind tunnel .An exact analytical models are seldom available in the literature, however there 

existed many approximate models for analyzing some special problems under some assumptions 

. For example an idealized case of elastic structure in free lateral vibration and interacting with 

an enclosure fluid cavity where the fluid medium has been infinite was investigated by 

Aitkinson, et al.,2007 ,in their analysis,  the wall reflecting of the fluid pressure  waves was 

neglected. Daniel et al., 2007 constructed a model for analyzing vibration of cantilever beam 

interact with finite volume air cavity for using in vibration of health monitoring .The analysis of 

the coupled free vibration of distributed structure such as beams, plates and shells in interaction 

with a fluid-filled was performed by Gorman et al., 2001, which produced natural frequencies 

of the coupled system .The results were agreed well with the finite element analysis and 

experiment . Sarkar and Paidoussis, 2004, treated the dynamical behavior of pipes conveying 

fluid as another type of FSI syatems .It was  found that, the fluid adds additional forces on the 

structure such as axial and coriolis forces . An extended literature survey about the FSI can be 

found in a book published by Paidoussis, 1998. 

   In the present work an attempt to provide a lumped one degree of freedom model for treating 

the FSI dynamic will be presented. The present model treats the various fluid effects such as the 

added mass, added stiffness, added damping and the fluid pressure wave for compressible and 

incompressible fluids. Such a model may has the benefit of its simplicity for the approximate 

analysis of FSI as a first insight in this vital field.   

 

2. THEORITICAL CONSIDERATIONS 

  Consider a coupled fluid-structure 1-DOF mass-damping–stiffness (m-c-k) model shown in 

Fig.1, is  interacting with a enclosed fluid space of depth H. The coordinate of the mass is y and 

that of the fluid container is Y as shown in the figure .The containing fluid is considered inviscid 

(non viscous) which may be compressible or incompressible.  For small vibration the effect of 

vortex is neglected. 

The equation of motion of 1-DOF mass spring damper, taking into account the effect of the 

induced pressure force is; 

 

 

                                                             (1) 

 

 

Where s and d refer to the structure and the added parameters due the fluid effect, respectively. 

Eq.(1) can be written in the following form ; 
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Where,  

m= ms +md 

C=Cs+ Cd 

k=ks+ kd,                                                                                                                                     (3) 

 

are the total mass ,damping and stiffness, respectively .P is the pressure and A is the interacted 

area of the mass block . 

 

Now dividing Eq.(2) by m  giving; 

 

 

                                                                                                 (4)  

  

 

As shown in Fig. 1, the fluid boundary lies only under the mass block . The fluid domain is 

bounded above by the block mass and by perfectly absorbent walls on all other sides. The fluid 

is assumed to be inviscid and may be compressible or incompressible and can well described by 

Laplace's equation over the domain.  The boundary condition of the fluid-structure interface is 

described as a Neumann boundary condition by coupling the velocities across the interface 

Blevins, 2010. The sides and bottom containing the fluid represent a Dirichlet boundary at 

which the fluid potential is zero.  The fluid system can be characterized by the following 

Laplace's equations Paidoussis,1998. 
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Where  ϕ is potential flow function and S is the speed of sound .For one dimensional motion (in 

Y direction only) the potential function takes the following form;    
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Eq.(5b) can be solved by trying the following harmonic solution; 
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Separating the variable leads to the following general solution; 
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Where C1 and C2 are arbitrary constant depending on the boundary conditions and ω is the 

natural frequency. 

The velocity at the bottom is zero; hence the first boundary condition is; 
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Substituting Eq.(8) into Eq.(7) ,Gives;C1=0 

Hence Eq.(7) is reduced to;  

 

tieY
S
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 )cos(2                                                                                                                    (9)  

                                                                                        

 Now the fluid pressure, P  excreted at the bottom surface of the mass block can be evaluated as 

follows, Atikinson and Marique, 2007, 
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     Combining of Eqs. (4,9) and (10) giving; 
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The solution of Eq.(11) can be written as;  
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Eq.(12) can be used to plot the free vibration response due to a given initial conditions in the 

time domain.  

At Y= H, the fluid velocity yV  and the lateral velocity of the mass are equal, hence the second 

boundary condition is ; 
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Substituting Eq.(13) into Eq.(12), gives the frequency equation of free vibration of the FSI  as 

follows;                           
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As stated above Eq.(3) the parameters m, C and k combine the structure parameters and the 

added ones due to the fluid interaction .The added parameters may be evaluated as the following  

 

A-The added mass; 
   The added mass represents the fluid mass displayed by the block as it vibrates (Archimedes 

principle ).It can be calculated from the following equation Paidoussis, 1998 ; 

Id ACm                                                                                                                                   (15) 
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Where CI denoted  the added mass influence coefficient which depends on the geometry of the 

body interacts with the fluid and can be found from tables presented by Blevins, 2010  . 

For example CI=1 and 1. 86 for circular and square cross sections , respectively. 

 

B-The Added Damping  

    The damping mechanism is complex phenomenon which depends on many factor associated 

to the fluid and structure parameters such as viscosity, types of fluid ,the lift and drag forces , 

boundary conditions ,structure mass and stiffness ,fluid hammering, etc. However for still and 

non-viscous fluid with rigid bounded structure as it is the presented case, it is assumed that the 

predominate damping effect is due to the fluid hammering .This phenomena can be   resulted 

from the influence of  the shock resulting from  the pressure wave as it strike the block due to 

vibration motion .The additional pressure induced by the surface area of the block can be 

evaluated according to Joukowsky equation as; 

 
dt

dy
SPh                                                                                                                                  (16) 

  

Due to this pressure the force excreted  on the block is ; 

 

F=Ph A 

                                                                                                                                                    (17) 

This force will create an additional damping force given by;   

F= Cd
dt

dy
                                                                                                                                   (18) 

 

Combining, Eqs. (16) ,(17)and (18) ,the added damping , Cd can be evaluated as; 

 

SACd                                                                                                                                     (19) 

 

C-The Added Stiffness 

 The added stiffness depend on the compressibility of the fluid and the geometry of its container 

In other words on the bulk modulus of the enclosed fluid .However for the present model since 

the fluid is not perfectly enclosed and can be easily escaped ,the effect of the added stiffness is 

so small and can be neglected . 

 

Finally , considering the above effects the free time response Eq.(12) and the  frequency 

equation  Eq.(14) will take the following forms ;  
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  Eq. (21) has two terms; the first is characterized by the structure stiffness ,damping and mass 

and the second term is characterized by the fluid container .The FSI natural frequency is a 
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contributing of the two effects. An inspection of   the second term  it can be seen that this term 

can  take two extreme values , which are; zero and infinity .When this term becomes  zero this 

means that the FSI coupling effect due  to the fluid is weak ,however, when it becomes infinity 

the FSI effect becomes strong . Hence one gets; 

 

For weak FSI ;
S

H
tan =0, which gives , ω=Sπ/H 

For strong FSI;
S

H
tan =∞, which gives ,ω=Sπ/2H                                                                  (22) 

 

Keeping in mind that only one root of the tangent function is taken since the model is 1-DOF. 

For a certain fluid, the speed of sound S is constant, so that Eq. (22) indicates that the depth H is 

the only parameter which define  the weakness or strengthens effects of the fluid on the natural 

frequency .In other words  there are certain critical values of H at which the FSI coupling 

becomes maximum or minimum. This conditions are also observed by other FSI models for 

example the model given by Daniel et al., 2007 . 

 

3. EXPERIMENTAL INVESTIGATION  

   To justify some of the theoretical concepts an experiment was carried out .The main aim of the 

experiment is to investigate the effects of fluid and the interact shape on the natural frequency 

To maintain a same mass weight with different interact shapes. three plastic shapes was prepared 

and attached by using the arrangement shown in Fig.2. The dimensions and the corresponding 

mass influence coefficient of these  samples are given in  Table.1. 

The test rig consists of the apparatus and the measuring instruments as shown in Fig.4.The 

apparatus consists of mass-spring system (k=2500N/m ,m=0.28 kg), as well as the fluid 

container (D=0.1 m, H=0.23 m) .These parameters are chosen to insure that the system is at the 

strong coupling regions. The measuring instruments are the accelerometer, charge amplifier and 

oscilloscope .In this test, water and kerosene (ρ =780 kg/m
3
) are used as working fluids .For 

each fluid the three samples were used .The vibration  signal was picked up by the accelerometer 

and amplified by the charge amplifier and fed to the scope .The natural frequency was recorded 

from the scope as shown in Fig.4 .  

 

4. RESULTS AND DISCUSSIONS  

   Exanimating of Eqs .(19) and (20)  indicate that, the dynamical behavior of the present FSI 

model  is  affected by two main groups of parameters .The first are associated to the structure 

which are ms , k A, CI and C. The seconds are associated to the containing fluid  which are ρ, S, 

and H .The effects of ms , k  and  C  can be  clearly understood  from considering the elementary 

analysis of a damped single degree of freedom oscillator The goal  of the present investigation is 

to focus on the additional FSI parameters . 

  Figs.5,6, and 7,  display the effects of the interacted area of the block mass ,fluid density and 

the influence mass coefficient on the natural frequency . In plotting these figures the following 

model parameters are chosen; ms=0.25 kg (round cross section)  ,C=20 Ns/m , k=500 N/m and 

H=0.25 m. With these data the vacuum natural frequency (i.e. without fluid) can simply be 

calculated as ω= 44.72 r/s . 

  In Fig.5, the area of the block mass is varied from 0.05x10
-5

 to 2.05x10
-5

 m
2
 .As it is clear from 

this figure that ; increasing the area tends to reduce the natural frequencies .This behavior is 

logical since increasing the area produces resistance against the mass motion . 
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Fig.6 shows the effect of the influence coefficient which depends on the geometry of the block 

mass area .The minimum value of this coefficient is associated to the circular shape .The 

coefficient value increases as the shape become more complicated Blevins.2010.Examining of  

Fig.6 indicates that increasing of the influence coefficient reduce the natural frequency, also 

This can be attributed to the increasing of the total mass  which decreases the natural frequency .  

 In Fig.7, the effect of the fluid density is investigated for rang values from 1 to 1000 kg/m
3
 

Again the natural frequencies decrease with the increasing of the fluid density. 

 The un damped (C=0) natural response of the same model with the additional parameter data   

ρ=1000,H=0.25 , A=0.4x10
-4

 with rectangular shape , is plotted in Figs. 8, a and b in time 

domain and phase plane ,respectively .As it can be seen from these figures that the response is 

clean sinusoidal . To identify the response of the  model near and at  the strong zone of FSI 

coupling , the depth  is assigned a new value  which are (H=0.7 and 0.8 m) .The results are 

plotted in Figs.9  and 10 for (2x10
-7

m,0) initial displacement and velocity .In general these 

figures tell that the response is still sinusoidal  but with variable amplitude this means that the 

response is a result of the modulation of two wave frequencies  .These two frequencies are the 

acoustic wave frequency and the system natural frequency. The effect of this modulation 

becomes  more clearly visible when the depth reach critical value (0.8 m) as it is shown in Fig. 

10,a and b in both time and phase plane response . 

 The effect of damping is investigated in Figs.11 .The damping ratio of the model is assigned 

ζ=0.1 value (ζ=C/2mω) .The under damping response at the strong zone is plotted in time 

domain and phase plane. The spiral trajectory of the phase plane indicates that the system is 

stable and the oscillation will be diminished after about ten periods.  

    The experimental and the corresponding theoretical results of the tested samples are collected 

in Table 2.In general the results show the decreasing in the natural frequencies due to the effects 

of the fluid and the interacting shape as it compared with the vacuum (without fluid) natural 

frequency .This confirm the theoretical conclusion that ;as the interact area becomes more 

sharply edge (from circular to squarer shape) the natural frequency decrease .Such a behavior 

can be attributed to the effect of drag force which increases as the profile sharpness increases 

.Moreover ,that; the natural frequency takes lower values  as the fluid density increases (ρ 

water=1000 kg/m
3
, ρ kerosene=780kg/m

3
)  . From comparing the experimental and theoretical the 

results show good agreements where the maximum error is not exceed the 7% .Also that the 

experimental results in general is lower than the corresponding theoretical .This may be due to 

the effect of the several  sources of  damping (friction ,drag ,internal , etc.) which are very 

difficult to be taking into account  .  

  

5. CONCLUTIONS 

    A lumped single degree of freedom analysis for FSI dynamics is treated in this work .It is 

found that; despite of its simplicity , it  can serve a good model for  investigating several main 

aspects of the FSI .The natural frequency was investigated .It is found that increasing the 

interacting area and the fluid density will reduce the natural frequency .Also, that the natural 

frequency can be increased as the shape of the interact area become irregular or complex .The 

free damped and un damped response are plotted in time domain and phase plain , It is 

concluded that the response in general is sinusoidal  but it highly affected by the depth of the 

containing fluid .At certain critical fluid depths the FSI coupling become weak so that the  

response takes a pure sinusoidal form  .However at other depth values the FSI coupling become 

strong leading to a modulated sinusoidal  form  . 
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Some aspects of the FSI was investigated experimentally such as the effects of fluid density and 

the shape of the interacting area .Comparing the results show good agreements where the 

maximum error is not more than 7% . 

The model can be regarded as a useful tool for engineers for the crude estimating  of the 

fundamental natural frequency and response  of FSI systems .  
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7. NOMENCLATURE  

Ω= natural frequency, rad/s
 
 

ζ = damping ratio 

A= interact area , m
2
 

C:=total damping , Ns/m 

Cs=structure damping , Ns/m 

Cd= added damping ,Ns/m 

CI =mass influence coefficient  

K=total stiffness ,N/m 

ks= structure stiffness,N/m 

kd= added stiffness , N/m 

m = total mass ,kg 
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md= added mass ,kg 

ms= structure mass ,kg  

H= fluid depth ,m  

S =speed of sound ,m/s 

 

 
Figure 1. Schematic diagram of the idealized coupled FSI system. 

 

 
 

Figure 2.The tested samples. 

 

 
Figure 3. The mass-interacting shape arrangement. 
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Figure 4.The test rig. 
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Figure 5. Effect of interacting area on the natural frequency. 

 
 

Figure 6. Effect of fluid density on the natural frequency. 
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Figure7. Effect of mass influence coefficient on the natural frequency. 
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(a)                                                                     (b) 

Figure 8. Natural response at weak interaction zone, 

(a) in phase plane (b) in time domain . 
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Figure 9. Natural response close to strong interaction zone, 

(a) in phase plane (b) in time domain . 
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Figure 10. Natural response at strong interaction zone, 

(a) in phase plane (b) in time domain. 
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Figure 11.Damping response at ζ=0.1, 

(a) in phase plane (b) in time domain. 

 

Table 1. The tested samples dimensions and influence coefficients. 
 

Sample no. Shape Radius or side 

length(m) 

Area CI 

1 Circle 0.082 πa2 1 

2 Polygon 0.032 2(1+√2)a2 1.23 

3 Squarer 0.073 a2 1.86 

      

Table 2.Experimental and theoretical natural frequencies (Hz). 
 

Interacting 

Shape 

Vacuum (without 

fluid) 

Kerosene Water 

Theo. Exp. Theo. Exp. Theo. Exp. 

Circle 

11.2540 10.5 

7.0337 6.5 6.4975 6 

Polygon 6.5523 6 6.0155 5.5 

Square 5.6975 5.2 5.1801 4.8 

 


