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ABSTRACT. 
 

        Vibration monitoring is one of the most important techniques which are used to 

detect the cracks or defects in rotating mechanical systems. To distinguish 

characteristics of the system response that may lead to the transverse crack in rotating 

shaft, local asymmetry crack model is used where crack simulated by increasing the 

flexibility of the shaft and transverse crack in the shaft is introduced. 

        The obtained results showed a decreasing in the resonance shaft speed with 

increasing the crack depth ratio. The feature is used for diagnostics the crack in the 

shaft by using the graphed results between the natural frequency and shaft speed. The 

method of detecting was applied for several crack depth ratios (uncracked, %10, %20 

and %30) in a clamped-free rotor. Also for investigating the effect of position of crack 

and effect of mass location, a crack and mass with different locations are introduced 

in the shaft. Although, the presence of a transverse shaft crack has also been shown to 

induce an unstable response for some shaft speeds and the behavior of the 2x 

harmonic component of the system response is effective target observation for a 

monitoring system. 

 :الخلاصو
اكتشاف الشقوق او العيوب في الانظمو الديناميكيو الدواره من خلال مراقبة الاىتزازات يعتبرر وو اىميرو كبيرره وقرد 
استخدمت في عممية التحميل ىوه نمووجين ىمرا نمرووج لشرق شرامل عمر  لرول العمرود والاخرنمرووج لشرق مروقعي 

فات اسرتجابة النظرام والتري تردلل عمر  وجرود شرق عر ري اي في مكان محدد من العمرود وولرك لضررح تحديرد صر
-Clamped)  في العمود وان ىوا التحميل لبق عم  نوعين من الاعمده الدواره من حيث الشرول الحدوديو ىمرا

Free )و(Simply-Supported)  مررن قلررر اتعمررود حيررث تررم ( %10 ,%0و%%30 ,20 (ولاعمرراق مختمفررو
بوجود الشق يكون النظام غير مسستقر عنرد سرر   ولك بينت النيائجك .ود الدوارتمثيل الشق بزياده في مرونة العم

  .دوارانيو معينو
 

KEYWORDS: Vibration, Rotor, Crack Detection, transverse crack, flexibility, 

resonance shaft speed.  
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INTRODUCTION: 
       This research deals with detection of crack in clamped-free and simply-supported rotors 

by using of the resonance shaft speed. The magnitude of the crack depth will be determined 

by measuring the natural frequency of the rotor. 

       A uniform transverse crack, located on clamped-free and simply-support rotors of a 

circular cross-section which will be used as the physical model of the system. The crack on 

the shaft is assumed to be open during the transverse vibration of the rotor. This assumption 

will permit the effect of closing and opening of the crack in the analysis to be ignored. 

      An uncracked shaft has constant stiffness and has a constant displacement under a fixed 

load regardless of the angle of rotation. In cracked shaft, the cracked portion of the cross-

section is not capable of supporting a tensile stress. Therefore, the displacement, as a function 

of the stiffness, is minimum when the crack is closed and maximum when the crack is open. 

This opening and closing behavior, which is referred to as "breathing", results in time 

dependent stiffness coefficients in the equation of motion of the system, which is difficult to 

work with. Obtaining solutions usually requires making broad simplifying assumption or 

some type of numerical approximation. 

      System in which the displacements and vibration amplitudes remain very small result in a 

crack that remains essentially open regardless, of the angle of rotation. This type of crack, 

which is essentially a local stiffness asymmetry, is referred to as a "gaping" crack. The 

analysis of systems containing a gaping crack is extremely useful since the response 

characteristics, on crack indicators, identified in the gaping crack analysis are also present in 

the analysis of systems containing a breathing crack. Furthermore, these indicators prove to 

be the most practical, in terms of implementation, in the detection of real cracks. Also, since 

the introduction of a crack into a rotating system, on the most basic level, results in a system 

with a stiffness asymmetry, the analysis of systems containing an asymmetry is fundamental 

to the study of the dynamics of cracked rotating systems. 

  

  The primary effect of the presence of a crack in a rotating shaft is  

clearly a local reduction in stiffness. This highly localized effect does not influence the 

stiffness of the regions of the rotor away from the cracked cross section. Regardless of the 

type of cracked model used for analysis, the effective overall stiffness of the rotor is no longer 

symmetric. The analysis of the response of a rotor with designed-in asymmetry is therefore 

part of the fundamental basis for the analysis of the dynamic of shaft containing a transverse 

crack. It is important to note that for rotating systems the terms "natural frequency" and 

"whirl-frequency" are synonymous. Also, the terms "critical speed" refers to a shaft speed for 

which one or more of the natural (whirl) frequencies of the system are equal to the shaft 

speed. Therefore, the maximum 2x harmonic response occurs at shaft speeds that are 

approximately one-half of a critical speed, i.e. 1/2 ncr.  

 

In summery, the introduction of a gaping crack model into an existing system model 

has been shown to be a very effective method of obtaining reasonably accurate results from 

analysis, yet it avoids the inherent complexities of cracked shaft analysis due to breathing 

behavior. A discrete representation of the system allows the additional flexibility due to the 

crack to be placed arbitrarily along the axis of the shaft of the system. The 2x harmonic 

component of the system response is clearly the most practically implemented indicator for a 

monitoring and detection system.  

 
LOCAL MODEL OF CRACKED ROTATING SHAFT  
 

      The presence of transverse crack in a rotating shaft introduces highly localized flexibility. 

The additional flexibility that resulting from presence of crack must be determined and 

incorporated this flexibility into a discrete representation of the system. To achieve this 

localizing effect a transfer matrix method was used. The following are the  general data table 

(1.1) for rotor in local model which was used for crack detection. 
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Table (1.1) rotor data, local model 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 shows the three lumped stiffness elements; [F1], [Fcrack] and [F2], and the three 

lumped inertia elements; [ms1], [ms2] and [P] for a cracked system.    

 

 

 

 

 

                                  (a) 

 

                                     

 

 

 

                        [F1]    [Fcrack]    [F2]      [p]                            

                                          (b)               

 

Figure (1.1) Local Model 

 

       In this section we will use the Extended Transfer Matrix Method as by A.S. Lee and I. 

Green (1994) and by E.C. Pestel and F.A. Leckie. (1963) for free response analysis.  

 

 

Local Flexibility Matrix of Cracked Circular Cross- Section Shaft. 
 

      A crack on an elastic shaft introduces a local flexibility that affects the dynamic response 

of the system and its stability. To establish the local flexibility matrix of the cracked shaft 

under general loading, a shaft with a transverse crack is considered as shown in figure 1.2a. 

The crack has a uniform depth a long -y-axis and the shaft loaded with an axial forces P1 , 

transverse shear load P2 & P3 , bending moment P4 & p5 and torsion moment p6 

Length 0.5m 

Diameter 0.1m 

Density 7850 kg/m
3
 

Modules of elasticity (E) 200E9 N/m
2
 

Crack depth (a) Uncracked, 0.1D, 0.2D, 0.3D, 

Poisson ratio (υ) 0.3 

Shaft speed (n) 125 Hz 

y 

x 

n z 
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(a) Shaft Containing Crack 

 

 
(b) Cross-Section Crack 

Figure 1.2:  cross-section of the cracked shaft at the location of the crack. 

 

         

The additional displacement ui along the direction of loading pi and U the strain energy due to 

the crack are related by Castigliano's theorem as follow  

 

                                                                                      

                                                                                                       (1.7) 

 

 

where U has the form:-  

                                        

 

U =                                                                                                (1.8)  

 

 

 

therefore                 

                                    

 ui =                                                                                               (1.9)                          

 

          

       Where Pi is the generalized force associated with ui and J(α) is the strain energy density 

function according to Nikpour and Diamarogones (1988) given by :  

 

 

J(α) =                                                                                                         dy dx    (1.10)  

 

    

 

where:-                         for plane strain 
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E: Young's Modulus  

υ: Poisson's ratio   

Kni: crack stress intensity factor for mode n due to the type of applied load i.   

         

        In general the stress intensity factor (SIF) Kni (n=1,11,111) can not be taken as the same 

formats as the counterparts of isotropic material with the same geometry and loading. The 

SIFs, Kni for a unit width strip of depth α is obtained as follow:-  

               

  

Kni =                                                                                             (1.11)                     

 

 where:-  

 σi: stress due to the load Pi 

                                 

             : the correction function  

                      

  h: total length for the strip                       

     

  the local flexibility matrix [Cij] per unit width has the components  

 

 

                                                                                                     (1.12) 

 

  

after integration equation 4.12 along the crack edge length from b to  (-b) becomes :-  

  

                                         

                                                                                                     (1.13) 

 

 

Substitution of equation (4.10) into (4.12) yields: 

  

 

                                                                                                                          

 

                                                                                                    (1.14) 

 

       Based on equations (4.11) the components of interest in the local flexibility matrix CiJ 

become:  

 

011c    ,       012 c        ,      03223  cc  

 

 

 

    (1.15) 

                                                                                          

 

 

    (1.16) 
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Where: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

    

 

 

  In dimensionless form. 

                                   ,                                        

                                                                                                                                           

 

                                                                                                                    (1.20) 

                                  , 

                                     

 

 

     

 For each crack depth ratio (0%-50%) of the shaft diameter the flexibilities are numerically 

evaluated, with a program coded in Maple version 7.  

       These integral expressions are a function of a/D and plotted in figure (1.3). 
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   Here, the torsion and axial loading is ignored to avoid the coupling therefore the final 

flexibility at the location of crack which is represented a field matrix may be written as:  

  

 

 

 

                         

                                                                                                                             (1.21) 

 

 

 

 

 

 

 
TRANSFER MATRIX  
         

        Transfer matrix (point matrix and field matrix) relate the state vectors at the ends of the 

shaft. The state vector at any station may be defined in xyz coordinate system as: 

  

   {S} = {ux    θy    My    -Vx      -uy      θx      Mx      Vy }
T
                                  (1.22) 

 

As mentioned before.  

 u: displacement (m) 

 θ: angle (rad) 

 V:  shear force (N)  

 M: moment (N.m) 

          

  The filed matrix Fi which has the form shown in equation (3.13) is related the state vector at 

the left         to the state vector at right             as following:  

Dimensionless flexibility   

C
ra

ck
 d
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 r
at
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C44 

C22  

C45 , C54 
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Figure (1.3): Dimensionless Crack Flexibility 

C33  



N.H. H                                                                                       Crack Detection in a Rotor Dynamic 

J.K.Z                                                                                          System by Vibration Monitoring                           

 

 6115 

    R

ii

l

i SFS 1
 l

iS

    l

i

R

i SPS 

 l

iS
 R

iS

    l

i

R

i SUS 

R

y

y

y

x

u

u







































0

0

0

0





































8887868584838281

7877767574737271

6867666564636261

5857565554535251

4847464544434241

3837363534333231

2827262524232221

1817161514131211

UUUUUUUU

UUUUUUUU

UUUUUUUU

UUUUUUUU

UUUUUUUU

UUUUUUUU

UUUUUUUU

UUUUUUUU

dampedy

x

x

y

V

M

V

M







































0

0

0

0

 R

iS

 

                                                                                              (1.23) 

 

while the state vector at the left of the station         is  related to the state at the right lumped 

mass       b y the point matrix [Pi]  

                                                                                                                                                                                                                          

                                                                                                      (1.24)                                                  

 

 OVERALL TRANSFER MATRIX 
     

            The overall transfer matrix is found according to:  

 

                   [U] = [P] [shaft2] [Fcrack] [shaft1]                                (1.25)  

 

where:  

         

[U]: Overall transfer matrix  

[P]: Point matrix of the attached mass  

[Fcrack]: Crack flexibility matrix  

[shaft1] = [Ms1] [F1]         

[shaft2] = [Ms2] [F2] 

Ms1, Ms2: Point matrix of part one and two   

of the shaft respectively [left and right of the crack]                              

 F1, F2 = Field matrix of the two parts of the shaft.     

      The state vector at the left side       is related to the state vector  

at the right          by the following relation  

 

                                                                                                    (1.26)       

 

       This equation can be solved for different boundary conditions at the left and right ends. 

UNDAMPED FREE RESPONSE 
clamped – free rotor 

In this case the boundary conditions are no displacement or tilt at the support end and no 

sheer or moment at the free end.  Applying these conditions to the overall transfer matrix 

given in equation (4.26) leads to the following:  

 

 

 

 

 

          =                                                                                         
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Where:                

 

 

[F3]= 
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               =[F4]                                                                              (1.28)            

 

 

 

 

Where: 

 

 

[F4] =  

 

 

 
RESULTS: 
           By solving the eigenvalue problem of equation (1.27) four complex conjugate pairs of 

eigenvalues results and from which obtains the mode shape for a given eigenvalue which is 

the displacement and till portion of the state vector at the free end of the shaft.    

      From equation (1.28), the shear and moment portion of the state vector at the clamped is 

given by:  

 

 

 

            = [F4]
-1

                                                                           (1.29) 
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Substitution this expression for {My      -Vx      Mx     Vy} Clamped into equation (4.27) results in:    

 

 

        

 

 

           

 

       Change of natural frequency versus depth of crack ratio also graphed for clamped-free 

rotor as shown in figure (1.4). This graph shows how crack may be predicated by frequency 

change. 

    

 

                                                 

 

 

 

 

 

                                                              

       

 

 

                                                                

 

 

 

 

 

 

 

For each frequency magnitude, given by the four pairs of eigenvalue equation (4.30) 

forms a liner dependent system of equations. Solving this eigenvalue problem results 

in the corresponding mode shape or the vector {ux  θy   uy  θx}
T
.  

       

        The eigenvalues and eigenvectors, or mode shapes, are determined whirl 

direction to each frequency, and the true natural frequency are plotted versus shaft 

speed.  

 

       Figure (1.4) shows the whirl frequency as a function of shaft speed for crack 

depths ranging from (0%-30%) of the shaft diameter. The “x” symbols along 

horizontal axis indicate shaft speeds for which one or more of the eigenvalues has a 

positive real part, i.e., shaft speeds for which the response is unstable. Two references 

lines indicating critical speeds and "2x resonance" shaft speed are also include in each 

figure. 

Figure (1.4): frequency change of clamped-free 

rotor for, local model with depth of crack  

(1.30)  
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Figure:  (1.4a), uncracked 

(b)  10 % 

Crack 

Figure:  (1.4b), %10 

Crack 

 

(C)  20 % 

Crack 

Figure:  (1.4c), %20 

Crack 
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      From this analysis, shaft speeds at which the 2x resonance is maximum can be predicated for 

various crack depths. Table (1.2) gives the predicated 2x resonance shaft speeds based on the local 

asymmetry crack model. The decrease in the 2x resonance shaft speeds indicates the decrease in the 

natural frequency of the system resulting from the flexibility increased by the presence of the crack. 

This free response analysis of the system containing the local asymmetry crack model indicates that a 

decrease in natural frequency, which may be observed in primary and secondary critical speeds, is a 

characteristic of the system response that can be directly attributed to the presence of a transverse 

crack. Also, these results plotted as can be shown in figure (1.5).  

                                       

Table (1.2): Resonance Shaft Speeds for Clamped-Free rotor, Local Asymmetry Crack 

Model 

 

 

 

 

 

 

 

 

 

 

                                                     

 

                                                                  

                                                      

 

 

 

 

 

 

          

 

 

 

% Crack 

depth  

Resonance Shaft Speed Hz  

uncracked 86 

10 81.5 

20 78.9 

30 73.7 

Figure (4.10-a-b-c-d) Local Asymmetry Model Free 

Response at Various Crack Values for Clamped-Free 

Rotor 

 

 

Figure:  (1.4d), 
%30 Crack 

Figure (1.5) Resonance Shaft Speed versus Crack Depth for 

Clamped-Free Rotor, Local Model   
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The results obtained from current research for clamped-free rotor, local model compared with 

the results of the research presented by Sekhar, A. S., (2004) as shown in table below. 

 

Table (1.3) comparison of resonance shaft speed between current research     and Sekhar 

research 

 

%Crack depth Current research Research of Sekhr, 

A. S (2004) 

%error 

uncracked 86 86 0 

10 81.5 78.2 0.033 

20 78.9 70 0.089 

30 73.7 54.3 0.1189 

 

     This comparison shows adequate agreement between these results 

 
CONCLUSIONS 
 

     Crack monitoring was discussed for a clamped – free rotor and simply-supported rotor. It 

was observed that as crack introduced into the rotor, a drop in the natural frequencies 

occurred. Therefore, the major observation and conclusion can be summarized as follow: 

 

 The behavior of the 2x harmonic component of the system response is effective target 

observation for a monitoring system where include an increase in magnitude for 

increasing crack depth as well as a decrease in the shaft speed at which the 2x 

harmonic component of the system response is maximum as in figures (1.4 and 1.7).              

 The presence of a transverse shaft crack has also been shown to induce an unstable 

response for some shaft speeds as in figure  

 The detection of the changes in the magnitude of the 2x harmonic component of the 

system response becomes much more difficult for shaft speed which is greater than 

2x resonance speeds. 

 The Transfer matrix method offered a successfully procedure to represented rotating 

system model and can be used to detect the crack which significantly reduces the 

flexibility of the rotor. 

 It is possible to detect crack in rotor using measurements of change in the natural 

frequency without need for any analysis as in figures (1.4and 1.6).    
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