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ABSTRACT.

Vibration monitoring is one of the most important techniques which are used to
detect the cracks or defects in rotating mechanical systems. To distinguish
characteristics of the system response that may lead to the transverse crack in rotating
shaft, local asymmetry crack model is used where crack simulated by increasing the
flexibility of the shaft and transverse crack in the shaft is introduced.

The obtained results showed a decreasing in the resonance shaft speed with
increasing the crack depth ratio. The feature is used for diagnostics the crack in the
shaft by using the graphed results between the natural frequency and shaft speed. The
method of detecting was applied for several crack depth ratios (uncracked, %10, %20
and %30) in a clamped-free rotor. Also for investigating the effect of position of crack
and effect of mass location, a crack and mass with different locations are introduced
in the shaft. Although, the presence of a transverse shaft crack has also been shown to
induce an unstable response for some shaft speeds and the behavior of the 2x
harmonic component of the system response is effective target observation for a
monitoring system.
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INTRODUCTION:

This research deals with detection of crack in clamped-free and simply-supported rotors
by using of the resonance shaft speed. The magnitude of the crack depth will be determined
by measuring the natural frequency of the rotor.

A uniform transverse crack, located on clamped-free and simply-support rotors of a
circular cross-section which will be used as the physical model of the system. The crack on
the shaft is assumed to be open during the transverse vibration of the rotor. This assumption
will permit the effect of closing and opening of the crack in the analysis to be ignored.

An uncracked shaft has constant stiffness and has a constant displacement under a fixed
load regardless of the angle of rotation. In cracked shaft, the cracked portion of the cross-
section is not capable of supporting a tensile stress. Therefore, the displacement, as a function
of the stiffness, is minimum when the crack is closed and maximum when the crack is open.
This opening and closing behavior, which is referred to as "breathing”, results in time
dependent stiffness coefficients in the equation of motion of the system, which is difficult to
work with. Obtaining solutions usually requires making broad simplifying assumption or
some type of numerical approximation.

System in which the displacements and vibration amplitudes remain very small result in a
crack that remains essentially open regardless, of the angle of rotation. This type of crack,
which is essentially a local stiffness asymmetry, is referred to as a "gaping" crack. The
analysis of systems containing a gaping crack is extremely useful since the response
characteristics, on crack indicators, identified in the gaping crack analysis are also present in
the analysis of systems containing a breathing crack. Furthermore, these indicators prove to
be the most practical, in terms of implementation, in the detection of real cracks. Also, since
the introduction of a crack into a rotating system, on the most basic level, results in a system
with a stiffness asymmetry, the analysis of systems containing an asymmetry is fundamental
to the study of the dynamics of cracked rotating systems.

The primary effect of the presence of a crack in a rotating shaft is

clearly a local reduction in stiffness. This highly localized effect does not influence the
stiffness of the regions of the rotor away from the cracked cross section. Regardless of the
type of cracked model used for analysis, the effective overall stiffness of the rotor is no longer
symmetric. The analysis of the response of a rotor with designed-in asymmetry is therefore
part of the fundamental basis for the analysis of the dynamic of shaft containing a transverse
crack. It is important to note that for rotating systems the terms "natural frequency" and
"whirl-frequency" are synonymous. Also, the terms "critical speed" refers to a shaft speed for
which one or more of the natural (whirl) frequencies of the system are equal to the shaft
speed. Therefore, the maximum 2x harmonic response occurs at shaft speeds that are
approximately one-half of a critical speed, i.e. 1/2 n,,.

In summery, the introduction of a gaping crack model into an existing system model
has been shown to be a very effective method of obtaining reasonably accurate results from
analysis, yet it avoids the inherent complexities of cracked shaft analysis due to breathing
behavior. A discrete representation of the system allows the additional flexibility due to the
crack to be placed arbitrarily along the axis of the shaft of the system. The 2x harmonic
component of the system response is clearly the most practically implemented indicator for a
monitoring and detection system.

LOCAL MODEL OF CRACKED ROTATING SHAFT

The presence of transverse crack in a rotating shaft introduces highly localized flexibility.
The additional flexibility that resulting from presence of crack must be determined and
incorporated this flexibility into a discrete representation of the system. To achieve this
localizing effect a transfer matrix method was used. The following are the general data table
(1.1) for rotor in local model which was used for crack detection.
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Table (1.1) rotor data, local model

Length 0.5m

Diameter 0.1m

Density 7850 kg/m®

Modules of elasticity (E) 200E9 N/m?

Crack depth (a) Uncracked, 0.1D, 0.2D, 0.3D,
Poisson ratio (v) 0.3

Shaft speed (n) 125 Hz

Figure 1.1 shows the three lumped stiffness elements; [F1], [Ferack] and [F2], and the three
lumped inertia elements; [ms;], [ms,] and [P] for a cracked system.
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Figure (1.1) Local Model

In this section we will use the Extended Transfer Matrix Method as by A.S. Lee and .
Green (1994) and by E.C. Pestel and F.A. Leckie. (1963) for free response analysis.

Local Flexibility Matrix of Cracked Circular Cross- Section Shaft.

A crack on an elastic shaft introduces a local flexibility that affects the dynamic response
of the system and its stability. To establish the local flexibility matrix of the cracked shaft
under general loading, a shaft with a transverse crack is considered as shown in figure 1.2a.
The crack has a uniform depth a long -y-axis and the shaft loaded with an axial forces Py,
transverse shear load P, & Ps , bending moment P, & ps and torsion moment pe
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v

(a) Shaft Containing Crack

(b) Cross-Section Crack
Figure 1.2: cross-section of the cracked shaft at the location of the crack.

The additional displacement u; along the direction of loading p; and U the strain energy due to
the crack are related by Castigliano's theorem as follow

ouU
u, = : (1.7)
OoPl
where U has the form:-
U= JJ(a)da (1.8)
0
therefore
s= O f (1.9)
= j J(a)da
oPI

Where P; is the generalized force associated with u; and J(a) is the strain energy density
function according to Nikpour and Diamarogones (1988) given by :

- E{@K.QZ@K.HJZQH z”d "

i=1

2

1—
where:- E' = for plane strain
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E: Young's Modulus
v: Poisson's ratio
K.i: crack stress intensity factor for mode n due to the type of applied load i.
In general the stress intensity factor (SIF) K, (n=1,11,111) can not be taken as the same

formats as the counterparts of isotropic material with the same geometry and loading. The
SIFs, K, for a unit width strip of depth a is obtained as follow:-

Ki= o;v7moF, (%) (1.12)

where:-
o;i: stress due to the load P;

o . .
= (F.jhe correction function

h: total length for the strip

the local flexibility matrix [C;] per unit width has the components

2
c, =2
PP,

j J(a)da (112)
0

after integration equation 4.12 along the crack edge length from b to (-b) becomes :-
2
Cy=
oP.0P;

Substitution of equation (4.10) into (4.12) yields:

[ [3(a)dyax (1.13)

1-v?
E

[(26: KI,)? + (ZG: KIi)? + 1+ v)(i KIII,)?]dydx
- - (1.14)

a
-bo

82 b
CiJ = J.
oP,0P,

Based on equations (4.11) the components of interest in the local flexibility matrix Cj
become:

cll1=0 , cl2=0 , c23=c32=0

ba Y
40-VvHHRRY LI R (Y X (1.15)
== mr 1w R R AR AR

¥ ijd [1) (1.16)
R R
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(1.17)

5 (ZJ _ W[msz 4 2.02(%) +0.37(1—sin /1)3} Jcos 4

32P
o, = g
In dimensionless form. >
7ER 7ER
sz = C22 m C33 = Cg3 m
7ER?® J  (1.20)
C55 = Uss 2 7ER?
1-v Cus =Cys 1-v2
7ER?®
Cu=Cyy T 2

For each crack_depth ratio (0%-50%) of the shaft diameter the flexibilities are numerically
evaluated, with a program coded in Maple version 7.
These integral expressions are a function of a/D and plotted in figure (1.3).
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Figure (1.3): Dimensionless Crack Flexibility

Here, the torsion and axial loading is ignored to avoid the coupling therefore the final
flexibility at the location of crack which is represented a field matrix may be written as:

10 0 -c, 00 O 0

c1¢, O O0O0O®cC O

0 0 1 0 00 O 0 (1.21)
[Ferack] = 00 O 1 00 O 0

00 O 0 1 0 0 -cg

co0¢c¢c,, O O1w¢c O

0 0 O 0 00 1 0

0 0 O 0O 00 O 1 |

TRANSFER MATRIX

Transfer matrix (point matrix and field matrix) relate the state vectors at the ends of the
shaft. The state vector at any station may be defined in xyz coordinate system as:

{S}z{ux ey Ivly 'Vx -Uy ex Mx Vy }T (122)

As mentioned before.
u: displacement (m)
0: angle (rad)

V: shear force (N)
M: moment (N.m)

The filed matrix F; which has the form shown in equation (3.13) is related the state vector at
the left {S }:to the state vector at right {S }iR_l as following:
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s1=[FIs). 023

[
while the state vector at the left of the station {S }i is related to the state at the right lumped

mass {S}ib v the point matrix [P]

{sii =[Plis} (1.24)
OVERALL TRANSFER MATRIX
The overall transfer matrix is found according to:
[U] = [P] [shaft,] [Ferack] [Shafts] (1.25)
where:

[U]: Overall transfer matrix
[P]: Point matrix of the attached mass
[Ferack]: Crack flexibility matrix
[shaft;] = [Ms4] [Fi]
[shaft,] = [Ms;] [F]
Ms;, Ms,: Point matrix of part one and two
of the shaft respectively [left and right of the crack]
F1, F> = Field matrix of the two parts of the shaft.
The state vector at the left side é }IS related to the state vector
at the right{s }.R by the following r Fé

fon
s =) =

This equation can be solved for different boundary conditions at the left and right ends.
UNDAMPED FREE RESPONSE
clamped — free rotor
In this case the boundary conditions are no displacement or tilt at the support end and no
sheer or moment at the free end. Applying these conditions to the overall transfer matrix
given in equation (4.26) leads to the following:

U1l U12 U13 Ul14 U15 Ule U17 uUi1s| (o

u, U2l U22 U23 U24 U25 U26 U27 U28||0
6, | |U31 U32 U33 U34 U35 U36 U37 U38| M,
0 U4l U42 U43 U44 U45 U46 U47 U48| |-V,
0 U51 U52 US3 US4 USB5 US6 US7 US8| |0
-u, Uel U62 U63 U6B4 UG5 U6 U6G7 U6GS| |0
0, U7l U72 U773 U74 U75 U76 U77 UT78| M,

U8l U82 UB3 U84 U85 UB6 U87 UB8||v

- - y damped
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0 R — U33 U34 U37 U38 My
0 U43 U444 U47 U438 _V
0 U73 U74 U77 UT78 MX
U83 U84 U87 US8S X
0J; v
0" My
o =[F3 |-V, (L.27)
<
0 M,
\Ozi Vy
Where:
U33 U34 U37 U38
[F3l= |U43 U44 U47 U48
u74 U74 U777 UT78
U83 U84 U87 U8
u R
X Ul3 Ul4 Ul7 U18 My
O = luz2s u2a 27 U2s| |y
X
-u, U53 US4 US57 US58 M
0 U63 U64 U67 UG8 "
y o) vV,
M clamped
u, y
=[F4] |- 1.28
o, | T4 |-V, (1.28)
-u MX
y
Vy
0
Whére
Ul3 Ul4 Ul7 U18
[Fi] = U23 U24 U27 U28
] =
U53 US54 U57 US58
U63 U64 UG6G7 UGS
RESULTS:

By solving the eigenvalue problem of equation (1.27) four complex conjugate pairs of
eigenvalues results and from which obtains the mode shape for a given eigenvalue which is
the displacement and till portion of the state vector at the free end of the shaft.

From equation (1.28), the shear and moment portion of the state vector at the clamped is

given by:

[Fa*

clamped

R

(1.29)
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Substitution this expression for {M, -V My Vy} clamped iNt0 equation (4.27) results in:

e 3y R

u, 0]
L0 0

[I:3 ][F4] 1) _yuy [ _ o (1.30)
pa) 0]

)
Change of nkatural fre'quency versus depth of crack ratio also graphed for clamped-free
rotor as shown in figure (1.4). This graph shows how crack may be predicated by frequency

change.
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Figure (1.4): frequency change of clamped-free
rotor for. local model with depth of crack

For each frequency magnitude, given by the four pairs of eigenvalue equation (4.30)
forms a liner dependent system of equations. Solving this eigenvalue problem results
in the corresponding mode shape or the vector {uy, 6, uy 0.}

The eigenvalues and eigenvectors, or mode shapes, are determined whirl
direction to each frequency, and the true natural frequency are plotted versus shaft
speed.

Figure (1.4) shows the whirl frequency as a function of shaft speed for crack
depths ranging from (0%-30%) of the shaft diameter. The “x” symbols along
horizontal axis indicate shaft speeds for which one or more of the eigenvalues has a
positive real part, i.e., shaft speeds for which the response is unstable. Two references
lines indicating critical speeds and "2x resonance" shaft speed are also include in each
figure.
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Figure: (1.4c), %20
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Fiaure: (1.4d).

Figure (4.10-a-b-c-d) Local Asymmetry Model Free
Response at Various Crack Values for Clamped-Free

From this analysis, shaft speeds at which the 2x resonance is maximum can be predicated for
various crack depths. Table (1.2) gives the predicated 2x resonance shaft speeds based on the local
asymmetry crack model. The decrease in the 2x resonance shaft speeds indicates the decrease in the
natural frequency of the system resulting from the flexibility increased by the presence of the crack.
This free response analysis of the system containing the local asymmetry crack model indicates that a
decrease in natural frequency, which may be observed in primary and secondary critical speeds, is a
characteristic of the system response that can be directly attributed to the presence of a transverse
crack. Also, these results plotted as can be shown in figure (1.5).

Table (1.2): Resonance Shaft Speeds for Clamped-Free rotor, Local Asymmetry Crack

Model
% Crack Resonance Shaft Speed Hz
depth
uncracked 86
10 81.5
20 78.9

e
34
a2
a0

78

Resonance Shaft Speed Hz

7B

74

72 I i I I I i
0 0.05 0.1 015 0.2 025 0.3 0.35
Crack Depth a/D
~ Figure (1.5) Resonance Shaft Speed versus Crack Depth for -
Clamped-Free Rotor, Local Model
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The results obtained from current research for clamped-free rotor, local model compared with
the results of the research presented by Sekhar, A. S., (2004) as shown in table below.

Table (1.3) comparison of resonance shaft speed between current research  and Sekhar
research
%Crack depth Current research Research of Sekhr, %error
A. S (2004)
uncracked 86 86 0
10 81.5 78.2 0.033
20 78.9 70 0.089
30 73.7 54.3 0.1189

This comparison shows adequate agreement between these results

CONCLUSIONS

Crack monitoring was discussed for a clamped — free rotor and simply-supported rotor. It
was observed that as crack introduced into the rotor, a drop in the natural frequencies
occurred. Therefore, the major observation and conclusion can be summarized as follow:

The behavior of the 2x harmonic component of the system response is effective target
observation for a monitoring system where include an increase in magnitude for
increasing crack depth as well as a decrease in the shaft speed at which the 2x
harmonic component of the system response is maximum as in figures (1.4 and 1.7).
The presence of a transverse shaft crack has also been shown to induce an unstable
response for some shaft speeds as in figure

The detection of the changes in the magnitude of the 2x harmonic component of the
system response becomes much more difficult for shaft speed which is greater than
2X resonance speeds.

The Transfer matrix method offered a successfully procedure to represented rotating
system model and can be used to detect the crack which significantly reduces the
flexibility of the rotor.

It is possible to detect crack in rotor using measurements of change in the natural
frequency without need for any analysis as in figures (1.4and 1.6).
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