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ABSTRACT 

   

 This study is concerned with the derivation of differential equation of motion for the free coupled 

vertical – torsional and lateral vibration of opened thin-walled curved beams. The curved beam to be 

considered in this study is of isotropic opened thin – walled (I) section with equal top and bottom 

flanges. 

   The derivation depends on Hamilton's principle which required finding the potential and kinetic 

energy of the curved beam section due to internal stresses and all types of movements 

(Vertical,Torsional and Lateral) .The effect  of restrained warping displacement  is also considered in 

this study. 

   Three differential equations are derived for vertical, torsional and lateral movement .and approximate 

solutions are developed by using the method of multiple scale via a perturbation technique. The 

resulting natural frequencies and modes for vertical , torsional and lateral movements are compared 

with those calculated by using finite element  approach ( STAAD Pro. 2007 ) and with the results other 

studies. 

 

 

 :الخلاصة  

 

 Vertical,Torsional and)ملٌد  ًاتلتلٌا و ًاتيقلو عشاساح الحلزث ةاتتالاه التعنى ىذه الذراسج ةاشتقاق المعادلج التفاضليةج لهىتل

Lateral )ةٌاسلةج اليحلا   ضلياعًتختص ىذه الذراسج ةالاسلٌر المقٌسلج التلو تت لٌ  فلئ  لفا ة رشةقلج تبل   فل  ة, لياسٌر المقٌسج

 (.I)لت ٌ  فقاط  ففتٌحج ةب   الحزف 

يو اشتقاق المعادتح التفاضيةج ةصٌرث ر ةسج ًشذ تةيب ىلذا احتسلاا الةاشلج ال افنلج ( Hamilton's principle)اعتمذ فتذا ىافيتٌ  

 شلذً, الحزكج الناتاج علئ اتىتلشاس الحلز  أنواعًالحزكةج المتٌلذث يو فقة  الاسز المقٌص نتةاج اتجياداح المتٌلذث يةو ًنتةاج لامة  

 . يو ىذه الذراسج(   Warping Displacement)  الحزكج اتلتٌا ةج ليمقة تقةةذحأرَرعتتار خذ ةاتأ

 

وحو  لول  ول م بوا بااوخعما   والأفقوٌو الالخووايٌ  موودًألعحوصل البحذ الي اشخقاق رلاد معادلاث لاخطَت للاهخسازاث الحرة بالاحجاه 

بمزَلاحبوا فوٌ درااواث (  لأطووارواالخردداث الطبَعَت ) إلَباورنج ال خايج الخٌ ح  الخوصل و ق(   Perturbation Technique)طرٍفت 

 . أخرى 
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INTRODUCTION 

 

   Thin-walled beam represents an efficient case for most metal and some concrete structures. Wide 

development in modern structures, especially the needing for long span elements ( with reduced self 

weight) increases the applications of thin-walled beams in the design due to it's substantial flexural 

rigidity more over this type of structure should be carefully analyzed because it has low resistance for 

torsional deformation. 

   History of thin-walled beams stared in 1961 when Vlasov 
(15)

, derived the linear theory of thin-walled 

beam by a set of four ordinary differential equations, and was later employed by Timoshington, S.P., 

and Gere. S. M 
(14)

 to develop the theory of torsional and torsional-flexural instability. 

   Culver 1967
(4)

, studied the vibration of horizontally curved beams in a direction normal to the plane 

of curvature including the effecting of warping. The natural frequencies of prismatic and thin – walled 

opened sections were determined in this study. Rutenberg 1979
(13)

, evaluated the natural frequencies of 

curved thin – walled beams with opened cross sections using two simple hand calculation methods. In 

this study the effecting of shear deformation and flexural rotary inertia were neglected and only the 

vibrations which is normal to a plane of curvature were considered..  

   Yoo and Fehrenbach 1981
(19)

, determined the natural frequencies of thin – walled curved beams by 

using the means of variation procedure to formulate the stiffness relationship taking into consideration 

the effecting of warping contribution. Another study was represented by Yoo 1987
(20)

, in which mass 

matrix of order (12x12) was obtained for curved beam element. Warping contribution to torsional 

behavior has been assessed (in this study) according to the magnitude of a cross – sectional parameter 

(L
2
 G J / E Iw ).   

    Simple closed form solution had been obtained by Roberts, T.M. 1987
(12)

 for the lowest natural 

frequency of flexural, torsional and flexural-torsional vibration of strait thin-walled beams of opened 

cross sections. The beam in this study was under the effect of axial force and moment. The derivation 

depends on an assumption that the sum of potential and kinetic energy (V and KE, respectively) is 

constant. 

   Wekezer J.W. 1987
(16)

, used the finite element method to analyze thin-walled beams of variable 

opened cross sections. The finite element which is considered in this study is a special case of 

membrane shell with internal constants (Vlasov's and Wagner's assumptions). 

   In 1989, Wekezer J.W 
(17)

, developed a general constant mass matrix for thin-walled curved beams of 

constant cross section for the case of small amplitude vibration. Finite elements process was used by 

more than one study (2,8,9) to determine the natural frequencies of curved beams. Ann N. A. 2002
(1)

, 

developed two and three dimensional curved beam elements with six and seven degree of freedom per 

node (the seventh degree of freedom was accomplished for the explicit inclusion of warping). Lumped 

and consistent process were used in this study to developed the mass matrix of order (12x12) and 

(14x14) (for both six and seven degree of freedom, respectively) .  

   Genshu Tong, Qiang Xu. 2002
(7)

, provided a detailed derivation of an exact theory for biaxial ending 

and torsion of thin-walled circularly curved beams with any open profile. The derivation is based on 

two well-accepted assumptions in the theory of thin-walled members. Exact expressions for 

longitudinal displacement, longitudinal normal stress and shear stress and their resultants are presented. 

Simplified theories are also given for practical applications.  
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   Kim N. and Kim M. 2005
(10)

,  presented a curved beam theory based on centroid-shear center 

formulation for the spatially coupled free vibration and elastic analysis .For this, the displacement field 

is expressed by introducing displacement parameters defined at the centroid and shear center axes .The 

elastic strain and kinetic energies considering the thickness-curvature effect and the rotary inertia of 

curved beam were rigorously derived by degenerating the energies of the elastic continuum to those of 

curved beam and then the equilibrium equations and the boundary conditions are consistently derived 

for curved beams having non-symmetric thin-walled cross section. 

 

BASIC ASSUMTIONS 

 

 The formulation of the curved beam elements is depend on basic assumptions which are 
(19)

 : 

 The element is prismatic. 

 The cross-section maintains its original shape. 

 The deformations are small with respect to the dimensions of the cross-section (linearized 

problem). 

 The material is homogeneous, isotropic and obeys Hooke's low. 

 The cross-section dimensions are small in relation to the radius of the curvature. 

 Shear deformation in the middle surface vanishes for solid and considered linear across the 

thickness for tubular sections (for curved beam element without warping ), and the position of 

the center may be considered solely as a geometric property.  

 

FORMULATION OF THE DIFFERENTIAL EQUATION OF FREE VIBRATION 

 

In order to derive the differential equation of free vibration, Hamilton's principle 
(3)

 given in eq (1) will 

be used; 

 

 10)(

2

1

2

1

  dtWdtVT

t

t

t

t

nc

 

For the case of free vibration, there is no directly applied dynamic load and the curved beam is 

assumed to have elastic damping ( mC 2 )
(3)

 , thus there is no non- conservative force to be 

considered. Consequently, Hamilton's principle will take the form ( eq (2)): 

 

 20)(

2

1


t

t

dtVT  

 

An element of ( dL) length will be considered to calculate the kinetic and potential energy that stored in 

the carved beam ( see Fig 1 ) and method of integration over the whole length of the curved beam will 

be used to find the total energy ( Kinetic or Potential ) . The limits of integration were changed to be in 

term of () in stead of (L) using the following equation: 

 

)3(RddL  
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Kinetic Energy Of Thin-Walled Curved Beam 

 

   The kinetic energy of any system is given by 
(3)

; 

 

EnergyKinetic

where

velocitymass





:

)4()(
2

1 2

 

 

   Using equation (4), kinetic energy (stored in thin-walled curved beam) produced in free vibration will 

be calculated and it will include: 

 

a- Kinetic energy produced due to vertical movement. 

 5)(
2

)( 2

0

1 


d
t

w
m

R
tT  


  

b- Kinetic energy developed due to Lateral movement. 

 

 6)(
2

)( 2

0

2 


d
t

v
m

R
tT  


  

 

c- Kinetic energy produced due to rotation of the beam section. 

 

Figure 1: Thin-walled curved Beam layout and Coordinates 
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 7)(
2

)( 2

0

3 




d
t

I
R

tT p 


  

Total Kinetic energy will be: 
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Potential Energy of Thin-Walled Curved Beam. 

 

 It's well known that the potential energy is calculating by multiplying the applied force by the 

corresponding displacement. This concept will be applied to calculate the potential energy that 

produced in the thin-walled curved beam.  

 

The strain energy produced in the thin-walled curved beam of an ( I section ) can be divided to : 

 

a- Strain energy stored in the right and left flange due to both normal and flexural stresses (σt, σf) 

respectively (see Fig 2a&c) 
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;

)9())()((
2

22

0

1

22

0

1

bd
w

EI
u

EA
R

V

strainoftermsinOr

ad
E

A

E

AR
V

zff

ft

f

ft

f


























 

 

b- Strain energy stored in the web due to longitudinal direct stress )σt) (see Fig 2a) 
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c- Strain energy stored in the web and flanges due to shear stress )τw ,τf).( see Fig 2d) 
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Examining the estimated movements (vertical, longitudinal, lateral and torsional) for the section of 

thin-walled curved beam (Fig 3), shear strain for the flange and web can be written as; 

 

a- Normal stress  

( t ) 

 b- Flexural stress due  

to bending in z  

direction (f) 
 

c- Flexural stress due 

to bending in y 

direction ( f ) 

d- Shear stress  

Figure 2 : Types of stress  produced in curved thin-walled beam 
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Figure 3 : Types of deformation in thin-walled curved beam 

a- Beam cross section 
b- Combined displacements 

c- Wariping deformation 

d- Torsional deformation 
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Substituted ( Eq. 12 ) into ( Eq. 11) and making the suitable simplification , (V3) can be written as; 
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In order to replace all terms of (u) by an equivalent expression (in term of v,w and υ ), the following 

relationships will be depends: 

 

Using Hooke's low 
(6)

, the shear strain for the web ( fw  , ) can be defined as; 
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References (5,17,19) mentioned the relationship between internal force and the displacements at a point 

on the middle surface of the member ( see Fig 4); 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 : Generalized forces and displacements for curved beams 

with warping
(1)
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Substituted ( Eq. 15 ) into ( Eq. 14) and making the suitable simplification , ( fw  , ) can be written as; 
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Substituted value of ( Eq. 18a) into ( Eq. 13a) , the value of the warping displacement can get as; 
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Using the expression of warping displacement (Eq.18), the strain energy ( V1,V2,V3 and V4 ) can be 

simplified to be in terms of ( w,v and υ ) as shown below . 
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The total Potential energy will be: 

 

)25(4321 VVVVV 

 

Applying Hamilton's principle and use it's role (The value of δv, δw and δυ are vanish at the limit of 

integration t1 and t2 ), the three equations of motion will be ( method of integration by parts are used to 

simplified the equations and all terms of higher derivatives than four were neglected in the final      

result ): 
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Vertical Vibration: 
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Lateral Vibration: 
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Torsional Vibration: 
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PERTURBATION TECHNIQUE 

 

      The three derived differential equation of motion ( Eqs. 26 ) are solved analytically by expansion 

the solution to be in term of the normal modes of the linearized problem and using  the perturbation 

technique  ( multiple scale method )
(11)

 according to the following steps: 

 

1- Assume the expression of the vertical, lateral and torsional displacement ( w,v and ø ) to 

be: 
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                                                 (27) 

Where )(xwm , )(xvm  and )(xm  are the linear undamped natural vertical, lateral and 

torsional mth modes, respectively. 

 

2- Substituting the assumed expressing of the three displacement into  ( Eqs. 26 ) , multiplying 

by (wn,vm and øo ) and using the orthogonality properties of the linear mode, three coupled 
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system of N-coupled second order ordinary differential equation for Zvn , Zwm and Z øo will 

obtained. 

 

3-  Mode by mode analysis will be used to solve the differential equation.  

 

 

CASE  STUDY : 

 

   The three derived differential equation of motion ( Eqs. 26 ) are solved using perturbation technique 

,the results ( natural frequencies and modes ) of the present study was compared with those calculated 

by Ann N. A. 2002
(1)

, the geometry and material property of the case study will be the same of one 

used in problem 3 of Ref (1) ( see Fig 5 and Table 1 & 2 ) . 

 

Table 1 : Geometric properties of the study case 

 

Sectional Property 

bf = 1.00 m Aw = 0.05 m
2
 

dw = 1.45 m J = 1.4583333E-4 m
4
 

tw = tf = 0.05 m 
y

I = 8.3489583E-3 m
4
 

A = 0.175 m
2
 

z
I = 7.033333E-2 m

4
 

Af = 0.0725 m
2
 R = 25.00 m 

 

Table 2 : Material properties of the study case 

 

Material Property 

E = 200000 Mpa 

G = 200 Mpa 

m = 7834.6 kg/m
2
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Table 3 : Natural frequency of the study case 

 

 

 

 

Table 4 : Percentage of difference between the presented study and other theories 

 

Mode Percentage of difference 

Type No. 
STAAD Pro. 

F.E. 

Study present in Ref (1) 

Lumped mass Consistent mass 

FY 1 5.25 6.49 5.68 

FY & T 2 0.49 8.33 3.63 

FY & T 3 0.79 19.98 12.36 

FY & T 4 2.42 --- 10.87 

FY & T 5 0.22 --- 8.90 

FZ 1 0.29 6.10 6.55 

FZ 2 0.56 3.44 4.13 

 

 

 

 

 

 

Mode Cyclie Frequency ( Hz ) 

Type No. 
STAAD Pro. 

F.E. 

Study present in Ref (1) 
Present study 

Lumped mass Consistent mass 

FY 1 1.984 2.015906 1.998710 1.8851 

FY & T 2 5.107 5.543756 5.273648 5.082 

FY & T 3 9.558 11.850720 10.820084 9.483 

FY & T 4 10.574 -- 11.583677 10.324 

FY & T 5 13.129 -- 14.379131 13.100 

FZ 1 17.055 18.215634 18.302639 17.104 

FZ 2 24.368 25.096167 25.275968 24.233 

FY: Flexural mode in Y- direction . 

T  : Torsional mode . 

FZ : Flexural mode in Z- direction . 
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 Figure 5: Case study No.1 of curved thin walled beam 

a- Layout of curved beam 

b- Cross section dimentions  

c – Finite element mesh  
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a-  Flexural and Torsional modes of out- of- plane action 

b- Flexural modes of in- plane action 

Figure 6 : Mode shapes of the study case 
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CONCLOSIONS 

In the present study, the differential equations of motion (D.E.O.M) for combined vertical, torsional 

and lateral vibration of thin-walled curved beam are derived and solved. The calculated natural 

frequencies are compared with those calculated by the finite element approach (STAAD Pro. 2007) and 

with the results of the estimating element developed by Ann N. A. 2002
(1)

.   

 

Based on the result obtained from different case study that considered to study the effecting of different 

parameters on the natural frequencies, this study arrives with the following objectives and conclusion: 

 

- Effecting of shear deformation: 

 The values of natural frequencies which obtained from the present study ( Table 3) are differ from 

those obtained by an estimating element developed by Ann N. A. 2002
(1)

 due to the effecting of shear 

deformation which is included in the present study while its ignored in the estimating element
(1)

. It's 

also clear that the effect of shear deformation can be neglected in deep thin – walled beam element  

 

- Effecting of flange's width on the natural frequency : 

 The width of the flange has a direct and inverse effect on the value of the natural frequency for both 

vertical and lateral vibration respectively (see Fig 7 and 8) .Figure (7) shows the effect of the flange 

width on the frequency of vertical vibration and its seem that the relation is a direct relation, while 

figure (8) shows the effecting of the same parameter on the frequency of the lateral vibration. The 

previous conclusion is due to the influence of the flange width on the inertia of the curved beam in both 

vertical and lateral direction. 

 

- Effecting of the web's width on the natural frequency : 

This study detects an effecting for the web width on the vertical frequency differs from the one 

produced by the flange width (see Fig 9). The relationship between the web width and the vertical 

frequency can be divided into two parts, the first part (value of bw/bf approximately less than 60% ) 

shows that bw effects on the value of the vertical frequency directly , while the effecting will be 

inversely for the other value of  bw/bf  . bw  has also a direct action on the frequency of the lateral 

vibration ( see Fig 10).  
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Figure 7 : Effects of bf on the natural frequency of vertical vibration 
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Figure 8 : Effects of bf on the natural frequency of lateral vibration 

Figure 9 : Effects of bw on the natural frequency of vertical vibration 

Figure 10 : Effects of bw on the natural frequency of lateral vibration 
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LIST OF SAMBOLS 

 

Af   Cross sectional area of the right or left flange. 

Aw   Cross sectional area of the web. 

bf   Width of the flange. 
D   Total depth of the thin-walled curved beam. 

dw  Total depth of the web 

E   Modulus of elasticity. 

G   Shear Modulus of elasticity. 

zf
I    Second moment of inertia of the right or left flange about z  axes. 

Ip  Mass polar moment of inertia. 

y
I    Second moment of inertia about y  axes. 

z
I    Second moment of inertia about z  axes. 

J  St. Venant's torsional constant. 

m   Mass per unit length. 

R   Radius of curvature . 

tf   Thickness of the of the right or left flange. 

tw   Thickness of the web. 

T   Total kinetic energy. 

u,w,v   Displacements in direction of yandzx ,  axes, respectively. 

yzx ,,   Local curvilinear coordinate. 

X,Y,Z   Global coordinate. 

V   Potential energy. 

Wnc   Non-Conservative work. 

β   Angle of curvature for the thin-walled curved beam. 

υ   Angle of twist. 

σt   Direct longitudinal stress. 
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σf   Flexural stress. 

τf   Shear stress produced in the left or right flange. 

τw   Shear stress produced in the web. 

γw   Shear strain of the web. 

γf   Shear strain of the left or right flange. 

δ   Variation operator taken during the indicated time interval 


