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ABSTRACT 

 

In the present work a general dynamic behavior of non return valves subjected to jet 

flow is presented. The differential equations of valve motion and discharge were developed in 

a non-dimensional from, in terms of suitable dimensionless variables and parameters of the 

valve system. 

  The derived equations are coupled nonlinear differential equations. Thus, a computer 

program was developed using a package called (MatLab) to solve these equations. The study 

shows that there are three types of the valve responses depending on the overall hydrostatic 

pressure difference and it is found that the valve vibrating at a constant limit cycle, which is 

leading to the failure of the system. It is also shown that the limit cycle frequency decreases 

with increasing the stiffness parameter and inertia factor. Finally the study shows that the 

losses factor has negligible effect on valve vibration and discharge.      

 
KEY WORDS: - Dynamic, Return valves, Nonlinear equations  

 
 الخلاصة

اشثختج الىاثير ث .ححثج  ايثيي اثثيدحىثج رااةثت الخفثال الثميكيوللي لمفثىيويث العاا ي لثت , في هذا البحثذ

 .بحاكت الفىين و  اييي الىيئع بم لت الىخغلااث العباميتالخيصت 

ج ولثثذلت حثثه بكثثي  بثثااو, اي واثثير ث الحاكثثت والنايثثيي هثثي واثثير ث حثيطثثملت تلثثا لتلثثت وواحبتثثت الخفثثال  

بلكج المااةت اي هكيلت رثعد حثي ث  ةثخنيبت  ".لحل هذه الىاير ث  مريي(  MAT LAB)بـ ىحيةىبلت بيةخخمان وي يسى

و الثذ  يثير  بثمواه الثى  ريبثجحثم   كثم حثارر  وو ثم اي الفثىين يهخث ,الفىين حاخىم  مى فاق الضغط الهييماوةخيحللي 

رر الحم  الزيبج حكتص ب ييرة وايول النسي ة و وايول التفىا الذاحي واي وكذلت بلكج المااةت اي قلىت الخا, فشل الفىين 

 . ذو قلىت  مى اهخ از الفىين وكىلت الناييي حأرلاوايول الخسياة للس له 
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NOMENCLATURE  

                                                                                                                               
Symbol Meaning Units 

a Acceleration                                                                                   m/s
2
 

A Area of the pipe                                                               m
2 

A2 Area of the pipe upstream of valves                                                     m
2
 

A3 Area of vena contract in the valve gap     m
2
 

A4 Area of the pipe downstream of valves m
2
 

Ao Area of the orifice  m
2
 

C Damping  N.s/m 

Cc Valve contraction coefficient  - 

Cd Valve velocity coefficient - 

Cv Valve discharge coefficient  - 

g Gravity acceleration   m/s
2
 

hL Head losses over the length (L)           m 

Iij Inertia of the fluid between any section i-j    m 

k Stiffness    N/m 

K Dimensionless Stiffness  - 

Leq Equivalent pipe length m 

Lij Pipe length over section i-j  m 

Lo Length of jet through valve  m 

P Pressure  N/m
2 

q Discharge             m
3
/s 

Q Dimensionless discharge                                                                                                           - 

r Radius of the pipe  m
2 

t Time      s 

v Velocity            m/s 

w Area of the valve  m
2 

x Valve displacement measured from seat      m 

X Dimensionless Valve displacement  - 

xo  Valve initial ( no load ) opening  m 

Xo Dimensionless Valve initial opening  - 
                

 

Greek Symbols 

 
Symbol Meaning Unit 

Ψ Overall losses coefficient  - 

Α Dimensionless inertia factor  - 

αο Dimensionless inertia factor of the jet  - 

μ Dimensionless mass ratio  - 

 Dimensionless time  - 

ο Shear on the pipe wall     N/m 

 Damping factor  - 

 Dimensionless downstream pipe area  - 

 Dimensionless down steam pipe  - 

 Specific weight  - 

 Fluid density  Kg/m
3 

 Reference frequency  - 

Λ Integration factor  - 
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INTRODUCTION 

 

Check or non return valves are widely used in many power or process plants. They are 

unique because in their main mode they operate without receiving any out side help usually 

do not give indication of their setting. Furthermore, they must be reliable and must be able to 

operate for an extended period, thus they must be carefully designed J. W. Hutchison 1976 

.Various types of these valves and their application have been described by Siikonen 1983, in 

the technical research center of Finland, suggested a computational method for the valve 

dynamics. The method consists of a hydraulic part and a five equations model describing 

valve dynamics. These equations are coupled ordinary differential equations. Some important 

parameters for the boundary condition were determined experimentally, such as losses, 

discharge coefficient etc. The hydraulic equations were solved using the method of 

characteristics. The method gives good indication of behavior of non – return valves under 

unsteady flow condition.   

Renold and Soung 1976 examined the hydraulic performance characteristics of large 

diameter titling desk check valves. In particular, design parameters of pressure drop during 

normal operation, maximum permissible flow during valve closure, and maximum hammer 

surge are considered. Equations and coefficients were provided, for evaluation of pressure 

losses, as a function of desk angle and line Reynolds number .A method of calculating fluid 

torques on a moving disk In general, all the design techniques developed are general and can 

be applied to the most check valves design.  

Kubie 1982 studied the performance and design of plug type check valves. Full non-

linear equations of system, which are consisting of pipeline, pumps and check valve, were 

developed Using Newton second law, effect of different parameters such as discharge 

coefficient and inertia was developed. In particular, the work demonstrated that the check 

valves could not be properly designed without having enough information about the system in 

which they are to operate where the valves vary sensible to the system components specially 

inertia effect 

Weaver and Dubi 1978 studied experimentally the flow-induced vibration of a check 

valve with a spring damper to prevent slamming. Both prototype and two- dimensional 

experiments were conducted to develop   an under standing of the mechanism of self-

excitation as will as the phenomenon was studied is considered to be the same as that causing 

vibration in numerous other flow control devices. 

More research is being done and attempts are being made to develop an understanding 

of mechanisms of excitation. However, in many cases it is still necessary to use cut and try 

methods. 

 

MATHEMATICAL MODELING 

 
The basic system considered in the analysis is consisting of check valve, constant 

presser reservoir and connecting pipeline system. The excitation mechanism nature can be 

understood through the physical modeling and flow visualization. Through the physical model 

and flow visualization studies, an understanding of the excitation mechanism was developed. 

Furthermore, it was established that the effect of the unsteady separated flow around the valve 

is not an important part of the mechanism. Thus it was felt that the behavior of the valve 

might to be modeled satisfactory using simple one dimensional fluid mechanism Weaver and 

Ziada 1980. Therefore, the valve can be represented as an orifice with time varying area, in 

general pipeline system as show in Fig .(2). Water hammer occurred on each closure but was 

found to die out before valve recluse and, hence, it is not important phenomenon of the valve 
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Weaver et.al. 1975. Vortex shedding occurred in the wake of valve clapper during each cycle 

but this also played on role in the excitation mechanism Weaver et.al. 1975 . The pressure 

difference between up stream and down stream orifice is the same pressure acting on the up 

and down valve. Dynamic behavior in general pipeline system is influenced by the 

characteristics of rest of the system, especially the fluid inertia effects. 

Referring to Fig.(1), which shows the forces acting on an element in the pipeline 

system, using Newton's second law and remembering that the flow is incompressible fluid 

flow, gives . 

 
 
 
 
 
 
 
 
 
 
 
 

Fig.(1). Forces acting on an element in the pipeline system. 

 
 
  
 

                          (1)

  

 
 
 
Re – arranging eq. (1), and dividing by  = g , A = πr

2
 ,then  

 
                                                                                                                   (2)  

 
Substituting for vdv =1/2 dv

2
, then eq. (2) becomes       

      

      
dt

dv

g

ds

r

ds

g

dvdp o 






2

2

2

                     (3)   

Eq. (3) applies to unsteady flow of both compressible and incompressible real fluid. 

 

For incompressible flow that are considering here γ is constant, so it can be integrate 

directly between point i and j and substituting for the distance between them L, then eq.(3.3) 

becomes:  

dt

dv

g

L

R

L

g

vvpp
Jijijojiji













2

2

22

                                               (4)      

  amF .











dt

dv

ds

dv
AdsdsrAdppPiA oj  )2()(

dt

dv

g

ds

g

dv
v

r

dsdp o 






2

Fi = Pi A Fj = (Pj+dp)A 

ds 

τo 

τo 

r 

R

Lijo



2
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Where  term represents the head losses (hL) over the length (L), thus the Eq. (4)  

 

becomes: 

 dt

dv

g

L
h

g

vp

g

vp Jij

L

jjii 
22

22

       

                                           (5) 

Eq. (5) is the same as the steady flow equation, with addition of the last term,               which 

is called the accelerative head.  

The head losses term can be expressed in terms of velocity, v, which is defined as: 

                   

                                                                      (6) 

Where: 

    = loss factor 

Substituting for eq.(6) in eq.(5), then 

dt

dq

gA

L

g

v
)φ(

γ

p

g

v

γ

p

J

ijj

ij

jii 
2

1
2

22

      (7) 

 where in general  q = vA 

Equation above is the unsteady Bernoulli equation, where P, , v,     , and q, are the pressure, 

specific weight, mean velocity, turbulent losses factor and discharge respectively. 

Applying eq.(7) between sections 1 & 2 as shown in  Fig.(2) to get the equation of 

motion of the water column in the upper stream pipeline system, thus: 

dt

dv

g

L

g

v
)φ(

γ

p

g

v

γ

p 221

2

2

21

2

2

11

2
1

2



                                              (8) 

   










dt

dv

g

Lij

g

v
h

j

ijL
2

2



ij


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Fig.( 2). General pipeline system with valve modeled as an orifice 

 
 

Applying Eq.(7) between section 2 & 3 to get equation of motion through the orifice, then  

dt

dq

gA

L

g

vp

g

vp

3

32

2

3

32

3

2

22

2
)1(

2



  


                                                   (9) 

Where: 

L2-3= is the jet length. 

Referring to Fig.( 2), which shows the orifice in the pipeline system, it can be noted 

that the streamlines continue to converge for short distance downstream of the plane of the 

orifice. Hence the minimum-flow area is actually smaller than the area of the orifice. To relate 

area of minimum flow, which is often, called the contracted area of the jet, or vena contract, 

to the area of the orifice Ao, using the contraction coefficient, which is define as:  

oc ACA 3                                                                                                                                                                      

(10)                     

Where: 

Cc: contraction coefficient.  

The velocity beyond the orifice section,v3, can be eliminated by means of the continuity 

equation. Solving eq. (9) for v3, then    





















 

dt

dq

gA

LPP

A

A

g
V

3

3232

2

2

3

2

3

1

2


                                                    ( 11)                           

The discharge, is given by V3A3, or, in terms of eq.(10) & eq.(11) is given by:  




 51

PP
H

1 
2 

o
x

x

F
lo

w
 

3 4 
5 
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





















 

dt

dq

gA

LPP

A

AC

g
ACq

oc

ov

3

3232

2

2

1

2


                                             (12)                                   

Equation (12) describes the discharge for the flow of an incompressible fluid through 

an orifice; however, it is valid for relatively high Reynolds number John et.al. 1990. For low 

and moderate values of Reynolds numbers, viscous effects are signification and, an additional 

coefficient of viscosity must be applied to the discharge equation to relate the ideal flow to the 

actual flow. Thus for viscous fluid flowing through an orifice, the following discharge 

equation can be established: 























 

dt

dq

gA

LPP

A

AC

g
ACq

oc

od

3

3232

2

2

1

2


                                           (13)                                   

Where Cd is the discharge coefficient and it is given by 

Cd = CvCc  

 It is should be noted that the contraction and discharge coefficient in eq. (13) will 

generally depend on valve’s geometry, position and velocity in a way that cannot be 

predicated theoretically Daily   and McCloy .  

 Referring to Fig.(2) and applying eq.(8) between sections 3 and 4 to get the equation 

of motion for the expanding jet, then:- 

 

dt

dq

gA

L

g

vp

g

vp

4

43

2

4

43

4

2

33

2
)1(

2



  
                                                  (14) 

Applying eq.( 8) between sections 3 & 4 , thus: 

dt

dq

gA

L

g

vp

g

vp

5

54

2

5

54

5

2

44

2
)1(

2



  
                                                 (15) 

Equations (14) & (15) represent the equations of motion of water column in the down stream 

pipeline system.  

As the valves dynamic behavior is strongly influence by characteristics of the rest of 

the system, especially the fluid inertia effects Lij, it is useful to include theses in the 

expression for the discharge through the valve. This may be done by substituting for            

(P2-P3)/γ in eq.(13) after assuming that the velocity,V1= V5= 0, thus: 



A.A.M. Al-Asadi                                                                                       Dynamic Behavior Of Non - Return  

H.D. Lafta                                                                                                  Valves Operating At Small Opening 

 

 5488 

g

V

g

V

dt

dq

gA

L

dt

dq

gA

L
h

PP

A

AC

g
ACq

ij

ij

L

oc

od
22

1

2
2

3

2

2

3

3251

2

2














  


      (16) 
               
In this equation and those, which follow, the summation signs for the values of losses and 

interfaces exclude those values of the valve, section 2-3 and this attributed to the fact that 

those coefficients at the valve section are depending on the valve displacement while all 

others are constants.  

Eq. (6) may be substituting for the turbulent losses in terms of losses coefficient, ij, and the 

velocity head in the pipe just downstream of the valve, (V4
2
/2g), thus: 

 

g

V

A

A

g

V

A

A

dt

dq

gA

L

dt

dq

gA

L

g

V

A

APP

A

AC

g
ACq

ij

ij

ij

ij

oc

od

22

2

1

2
2

3

2

3

2

4

2

4

2

2

2

4

3

32

2

4

2

2

451

2

2




















 


                (17) 

 

 

The eq.(17) can be simplified by putting losses coefficients ,ij , in terms of overall 

losses coefficient, ψ, which is define as: 


2

2

4

j

ij

A
A


                                                                               (18) 

Substituting for eq. (18) in eq.(17), then   

 

    

g

V

A

A

g

V

A

A

dt

dq

gA

L

dt

dq

gA

L

g

VPP

A

AC

g
ACq

ij

ij

oc

od

22

2

1

2
2

4

2

3

2

4

2

4

2

2

2

4

3

32

2

451

2

2























                         (19)                        

Assume (Leq) is the length of pipe, of constant cross section-area A4 that have the same 

inertia effect as the actual pipe. If the pipe consists of section of different cross-sectional area, 

then the equivalent length (Leq) may be defined as: 

 ijijeq ALAL 4                                                                               (20) 
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Therefore it can be simplified the inertia term in Eq.(19) by substituting  eq.(20) and 

substituting for q = A4v4, thus: to get:   

 

            

























































dt

dq

AC

LA
L

A

q
AC

A

A

A

A
g

A

AC
ACq

oc

o
eq

oc

oc

od

4

4

2
2

4

2

2

2

4

2

4

2

2

2

1
2

1

1


                           (21) 

 
Where: 

ΔH = (P1-P5)/γ, the total pressure drop cross the system and Lo is the length of the jet (L 2-3) 

of area CcAo through the valve orifice. However, it is difficult to estimate the length of this jet 

and in many applications, the inertia of the jet may be neglected in comparison with rest of 

the system.  

Assuming that the valve can be represented by single degree of freedom system [13] 

and it is equation of motion is given by:  

  0
2

2

 Fxxk
dt

dx
C

dt

xd
m o                                                              (22) 

Where: 

m is total effective mass, and C is the system damping including that due to fluid, k is the 

elastic restoring force of the valve, xo is the zero load opening displacement of the valve, and 

F is the dynamic fluid loading on the valve, and it can be determined by integrating the 

dynamic pressure, ∆p, over the surface of the valve:- 

 

 
s

dspF                                       (23) 

where  

s : surface area of the valve. 

∆p : dynamic pressure. 

If the pumping action of the valve is neglected and the dynamic pressure is assumed to 

act uniformly over the upstream and downstream faces of the valve, so that the dynamic load 

is given by:- 

 F = λs(p2-p3)                              (24) 

Where λ is an integration factor depends on the valve geometry and arrangement.  

Substituting eqs.(10, 14, and 15)  for (P2-P3) in eq.(13) and simplifying the resulting equation 

in a manner similar to that followed for simplifying eq.(21), and assuming that V1=V5=0, thus 

 

 
























dt

dq
L

A
q

A

A

A

A

A
ppsF eq

4

2

2

3

2

4

2

2

2

4

2

4

51
2





                                      (25) 

Where π is the fluid density  
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For the purpose of analysis it is convenient to represent eq.(21) and eq.(22) in terms of 

dimensionless form. In addition for most flow control devices operating at small opening, the 

flow area is linearly related to the valve displacement, thus the dynamic discharge equation 

and the valve displacement   (for more details see Appendix A) are given by:-   

 

2

1

2

22

2

2

2

1
2

2

1











































































 d

dQ

XC

Q
XC

P

XC

XC
Q

c

o

c

c

d                                     (26) 

 

  0

1

2

1
2

2

22

2

2

2

2

































































d

dQ

XC

Q
XC

P

XXK
d

dX

d

Xd

c

o

c

o                   (27)  

It should be noted that the discharge (Q) and the inertia factor (αo) represent the dynamic 

effects and approach zero faster than the displacement X and are equal to zero when the valve 

is closed. 

 
- RESULTS & DISCUSSION 

 

The governing differential equations obtained in the present study are coupled non-

linear differential equations in terms of valve discharge and displacement and until this time 

there is no way to be solved analytically. Thus, a numerical solution was adopted to obtain the 

solution for displacement and discharge. For this purpose computer simulation programs are 

developed using a package which is called MAT LAB. The flow chart of the program is 

shown in appendix (B). The general results are presented below for the most instructive and 

interesting cases. Also, for the purpose of comparison, the present results are compared 

quantitatively with the experimental data for specific case of a swing check valve. 

In parametric study, the valve and discharge contraction coefficients are assumed 

constant, because there is no way to predict their variation with accelerating and decelerating 

flows or as a function of the valve motion.  

The computations were executed show that there are three types of response 

depending on the overall hydrostatic pressure difference across the valve:  

1- The valve undergo small damped oscillations and come to rest at an opening for which 

the static pressure drop across the valve is balanced by the valve elastic restraint. This 

occurs for (ΔP≤2.6). 

2- The valve closes for several times and come to rest in a closed position. This occurs 

for (ΔP≥40).  

3- The valve oscillates at a limit cycle of constant amplitude. This occurs for (2.6 

≤ΔP≤40). 

The latter case will be carefully discussed because it represents greatest insight into the 

system's behavior. Also, such results offer the possibility of comparison with experimental 

observations of vibrating structures. 

 The numerical values of the system parameters adopted in the present study are of 

typical values and are shown in table (1). 
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Table (4.1). Dimensionless parameters of the system. 

value symbol Parameter 

0.9 K Stiffness 

0.5 X0 Initial opening 

26.7 ΔΡ Pressure difference 

0.45 ξ Damping factor 

1372 α Inertia factor 

40 ψ Losses factor 

0.032 μ Mass ratio 

4.64 η Area ratio 

0.85 Cd Discharge coefficient 

0.8 Cc Contraction coefficient 

 
- EFFECT OF STIFFNESS PARAMETER (K)  

            

Figs (3), (4), and (5) show the variation of the valve displacement against the 

dimensionless time for different values of stiffness parameter and hydrostatic pressure 

difference. 

 It can be see that for low hydrostatic pressure difference (ΔP=1.8)  the increase in 

stiffness leads to increase in the maximum overshoot. In control system the over shoot must 

be not exceeding 20 percent for design specification Weaver and Dubi [5], this makes the 

stiffness more than 0.9 unacceptable for the valve application. For high hydrostatic pressure 

difference (Δp=42.6) the valve opens for a several time and closed and remains closed. In this 

case, the increase in stiffness only increases the amplitude. For intermediate hydrostatic 

pressure difference (Δp=26.7), the behavior is similar to that observed in both the prototype 

valve model experiments reported by Weaver and Dubi [5]. 

 Further insight is obtained by examining the discharge variation as a function of the 

valve displacement as shown in Fig (6). The plot is similar to the experimental curve reported 

by [6] and show that the maximum discharge occurs after the valve has reached its maximum 

opening.  

 

- EFFECT OF INERTIA FACTOR (Α)  

    

Figs.(7), (8) and (9) show the variation  of the displacement against dimensionless 

time for different values of inertia factor and  hydrostatic pressure difference . Whereas Fig. 

(7) shows that the increase in inertia factor has no effect on the amplitude of oscillation for 

low hydrostatic pressure difference (Δp=1.8), the effect only appears at small inertia on the 

final rest of the valve. While, Figs. (8) and (9) show there are no effect of inertia factor on the 

amplitude at moderate and high hydrostatic pressure differences.  

It also has been shown in Fig.(10) that for intermediate hydrostatic pressure difference 

the flow reaches its maximum discharge very shortly after the valve reaches its maximum 

displacement for small fluid inertia. Significantly, the discharge also reduces much more 

gradually during closure so that the rate of change of discharge and dynamic pressure is 

considerably reduced. This resulting in that the valve oscillates at a higher frequency (near its 

natural frequency) and the motion is much more nearly simple harmonic motion. 
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 EXPERIMENTAL VERIFICATION OF MODEL 

 

Figs (11-a) and (11-b) show comparison of the theoretical predications with 

experimental results of limit cycle amplitude and frequency respectively. The spring stiffness 

and the frequency has been normalized with respect to the natural frequency of the valve in 

quiescent fluid in order to emphasize that these self-excited vibrations do not generally occur 

at the structural natural frequency. 

While the results of the foregoing section shown that the displacement and discharge 

characteristics agree qualitatively with experimental observation, these curves demonstrate 

that the quantitative agreement is reasonable as well. Apparently, the theory underestimates 

the limit cycle amplitude by about 20 percent while overestimating the frequency by similar 

amount. It is thought that the difference is primarily due to the assumption of constant 

discharge coefficient.  

 

- CONCLUSIONS 

 

The main conclusions can be summarized as follows: 

 A theoretical model has been derived for self-excited vibrations of valves subject to 

the jet flow mechanism of instability is sufficiently  general that it is considered 

applicable to a large variety of flow control devices operating at small openings. 

 When the valve is considered to be elastically restrained by support stiffness K at 

small initial opening (zero hydrodynamic load), its response to some disturbance can 

be classified into a three categories: 

o It may undergo small damped oscillation and come to rest at an opening for 

which the static pressure drop across the valve is balanced by the valves elastic 

restraint. Such behavior is dynamically stable and is the desired response for 

flow control structures. 

o It may open, perhaps bounce several times, and come to rest in a closed 

position.  

o Valve may repeatedly open and close again and thus oscillate at some constant 

limit cycle amplitude. This represents a dynamically unstable system. 

 3 -Motion of the flow control device is far from simple harmonic and the discharge 

does not reach its maximum value until the valve has completely opened.  

 4 -Numerical results show that for systems in which the discharge variations are large 

and the fluid inertia is significant the system behaviors highly nonlinear. 

 5 -For the systems which have little fluid inertia the self-excited motion is more nearly 

simple harmonic and a much simpler analysis may be applicable. 
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Fig.(5) Effect of stiffness variation on valve displacement at (Δp=26.7). 
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Fig.(4) Effect of stiffness variation on valve displacement,(Δp=42.6). 
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Fig.(7) Effect of inertia factor variation   on valve displacement at (Δp=1.8). 

Fig.(6) Effect of stiffness  on  valve dynamic  discharge at  (Δp=26.7). 
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Fig.(8) Effect of inertia factor variation on valve displacement at (Δp=42.6). 

Fig.(9) Effect of inertia factor variation   on valve displacement at (Δp=26.7). 
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Fig.(10) Effect of inertia factor on  valve dynamic discharge at (Δp=26.7). 
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(b) Amplitude of oscillation ( Deg ) 

 
Fig.(11). Comparison between  theoretical and experimental results for 

              a swing check valve. 
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APPENDIX  (A) 

In addition, for most flow control device operating at small opening, the flow area is 

linearly related to the valve displacement, thus: 

 Wx  Ao                                                                                                                  (A.1) 

Where: 

W: area of the valve and x is valve displacement. 

Consequently, the following dimensionless parameters are defined by:    

Damping                               


 2m

c


                                                           

Frequency                              m

k r2 
                                                           

Displacement                          d

x
X

                                                              

Zero load opening                   d

x o

o
X

                                                           

Stiffness                                 rk  

k
K

                                                           

 Time                                       t                                                                

Down stream pipe area          Wd

A4
                                                             

Upstream pipe area                   4

2

A

A


                                                         

Over all pressure difference    
 2
2

d

p
P




                                                 

Discharge                                 
 dA

q
Q

4

                                                

Inertia factor of pipe                
d

Leq




2
                                                         

Inertia factor of the jet             
d

Lo
o




2
                                   

 Mass ratio                                m

ds 


3


                                                    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A.2) 
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The dynamic discharge equation (23) is given in terms of dimensionless parameters and 

displacement, by substituting Eqs. (A.1) and (A.2) thus: 

 
 

  








d

dq

WXdC

LA
L

A

q
WXdC

A

A

PP

A

WXdC

WXdC
q

c

o
eq

c

c

d








































4

4

2

2

2

4

22

4

51

2

2

2

112

1

          (A.3) 

Multiplying and dividing Eq.(A.3) by (λωd), then: 

 

 

 

 

  


































































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


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

d

dq

WXdC
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L

A

q
WXdC

A

A

PP

d

d

A

WXdC
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q

c

o

eq

c

c

d

4

4

2

2

2

4
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         (A.4) 

Or  

 

 

     
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          (A.5) 

Substituting Eq.(A.2), in Eq.(A.5), and dividing by (A4ωπ),then:  
 

 
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2
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
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Q

c

o

c
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d

                                 (A.6) 

In order to obtain the valve equation of motion (displacement) in terms of dimensionless 

parameter using Eqs. (A.2) and (A.6) then Eq. (22) becomes:- 

  0
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1
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2

22
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c

o

c

o               (A.7)  

Or  

  0
2

1
2 *

2

2

 PXXK
d

dX

d

Xd
o 





                                        (A.8)  

Where ΔΡ* is given by 
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APPENDIX ( B) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.(B.1).   Flow chart of computer simulation program. 

 

 


