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ABSTRACT: 
 
     This paper deals with the dynamics and stability behavior of a welded pipe containing flowing 
fluid having a small harmonic component superposed. The equation of motion was derived to 
represent the motion of a welded pipe conveying a pulsatile flow using a tensioned Euler- Bernoulli 
beam theory. The finite element analysis was used to simulate the harmonic motion of a welded pipe 
conveying fluid. It was shown that welded pipes with clamped-clamped and clamped-pinned supports 
are subject to a multitude of parametric instabilities in all their modes. Stability maps are presented for 
parametric instabilities of welded pipe with clamped-clamped and clamped-pinned ends. It is found 
that the extent of the instability regions increases with flow velocity for clamped-clamped and 
clamped-pinned welded pipes. The most important consideration from a practical point of view is to 
avoid the onset of parametric resonance. 
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INTRODUCTION: 

 
      Welded pipe conveying fluid are widely used in engineering applications. One of the design 
challenges is to avoid pipe buckling and flutter under various operation conditions. It's clear that if the 
velocity of a fluid conveying in pipe is not constant, but has a harmonic fluctuation over and above a 
constant mean value, then the pipe experiences instability, this phenomenon is similar to a beam 



N K. Abid Al-Sahib                                                                     Stability Issues of Welded Pipe Containing Pulsatile Flows 

��
 

 ���S

subjected to a periodic axial load [Bolotin, 1964].  The dynamic behavior of the system strongly 
depends on the different kinds of boundary conditions and on the fact whether the pipe is considered 
to be inextensible, i.e the cross-sectional area of the pipe is constant.  
       Many recent researches have been carried out on the vibration of a pipe conveying fluid. Zsolt 
Szabo et al [Zsolt Szabó, 1997] studied the dynamics of a pipe containing pulsative flow, the stability 
analyses of the linearized systems were performed in autonomous and nonautonomous (time-periodic) 
case. Zsolt Szabó [Zsolt Szabó, 2000] investigated the dynamic behavior of a continuum inextensible 
pipe containing fluid flow having a velocity relative to the pipe has the same but time-periodic 
magnitude along the pipe at a certain time instant. Wang and Bloom [Wang, 2001] studied the static 
and dynamic instabilities of submerged and inclined concentric pipes conveying fluid, Zsolt Szabó 
[Zsolt Szabó, 2003] investigated the nonlinear dynamics of a cantilever elastic pipe that contains 
pulsatile flow. The equation of motion was derived by using Hamiltonian action function. He used 
Galerkin's technique to include only finite number of spatial modes in the solution. The stability chart 
of the time-varying system was computed in the space of the relative perturbation amplitude of the 
flow velocity and dimensionless forcing frequency using an efficient numerical method based on 
Chebyshev polynomials. In the near of some critical regions bifurcation diagrams were also computed 
which show secondary bifurcations and phase locking followed by chaotic motion. 
       In the industry welded pipe conveying fluid encountered, for example, in the form of exhaust 
pipes in engines, stacks of fuel gases, air-conditioning ducts, pipes carrying fluid (chemicals) in 
chemical and power plants, risers in offshore platforms, and tubes in heat exchangers and power 
plants. The fluid inside the pipe dynamically interacts with the pipe motion, possibly causing the pipe 
to vibrate. 
      Also, pipelines play a significant role in the economic and environmental considerations of 
countries. Some carry water to help irrigate desert areas; others deliver gas over vast distances, and 
those that carry liquid fuels often unseen as they are buried underground [Lee and Mote, 1997].  
       In this paper an attempt to study, analytically and numerically, the effect of harmonic fluctuation 
of the fluid velocity on the dynamic behavior of a welded pipe conveying unsteady flow. 
 
EQUATION OF MOTION: 

 
      The system under consideration consists of a uniform welded pipe conveying unsteady fluid 
sketched in Fig. (1). the pipe is initially straight, stressed, and finite length. 
      The equation of motion for pre-stressed single-span pipe conveying unsteady fluid as a function of 
the axial distance z and time t, based on beam theory is given by [Kuiper, 2006]: 
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Where: EI is the bending stiffness of the pipe, m=mf+mp, mf is the mass of fluid per unit length, mp is 

the mass of the pipe per unit length, 
ii.eff

PA±T=T  so-called effective force, Ai is the internal 

cross sectional area of the pipe, Pi is the hydrostatic pressure inside the pipe, T is a prescribe axial 
force due to welding, and U is a fluid velocity.  
     The left end of the pipe is rigidly support, whereas the right end is assumed to allow no lateral 
displacement but to provide a restoring moment proportional to the rotation angle of the pipe. The 
clamped-clamped or clamped-pinned pipe is obtained from this formulation in the limit of the 
restoring rotational moment going to infinity or zero respectively. Thus, the boundary conditions at 
ends of the pipe are given as [Paidoussis, 1998]: 
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( ) 0=t,Ly                                                                                                                                (5) 
 
Where Krs is the stiffness of the rotational spring at the right end. 
      The statement of the problem eqs. (1) ~ (5) can be written in a non-dimensional form as follows: 
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( ) 0U,1V =                                                                                                                              (10) 

With the following dimensionless variables and parameters:  
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Fig. (1) Welded pipe conveying fluid 

 

 

ANALYTICAL ANALYSIS: 

 
     It is clear that if a velocity of a fluid conveying in a welded pipe is not constant, but has a harmonic 
fluctuation under and above a constant mean value, then the pipe experiences instability. 
     To describe the function of this unsteady flow harmonically, Fourier series with one harmonic for 
the periodic velocity may be used to obtain [Bolotin, 1964], 
 

)]Uw(CosZ+1[V=V
O                                                                                                           (11) 

   Where Z is an excitation parameter, w is a non-dimensional circular frequency, and U is a non-
dimensional time. 

Substituting eq. (11) into eq. (6) yields: 
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    Where                                                                                                                                            (12)  
 

  ))Uw(CosZ+1(=[  
 

 
Regions of Instabilities: 

 
      The regions of instability of eq. (12) are separated from the stable region by periodic solution with 
periods (T) and (2T), where (T=2\/w) hence there are two solutions of identical periods bound the 
region of instability, the regions enclosed by the solution having period (2T) correspond to the 
"primary instabilities", while the region of "secondary instabilities" are enclosed by the solution 
having period (T), for example, if a system with natural frequency (wn), the primary instabilities 
occurs at (w=2wn/q) where (q=1,3,5 …) while the secondary instability region occurs at (w=2wn/q) 
where (q=0,2,4 …) furthermore, instabilities corresponding to (q=1 and 2) are known as the principal 
primary and the principal secondary instabilities respectively. 
 
Primary Instability Regions: 

 
        To determine the region of primary instability the displacement V may be expressed as follows 

[Singh, 1979]: 
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Where Hq  and  Rq  are unknowns function of W, substituting eq. (13) into eq. (12) gives, 
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    The region of principal primary instability can be obtained by truncating the series in eq. (14) at 

(q=1), now equating the coefficients of [Sin (wU/2)] and [Cos (wU/2)] from both sides of eq. (14) yield, 
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Neglecting (X) results in an accuracy of the order (98%) furthermore, the effect of neglecting (X) 
should not be mean that the effect of fluid mass (mf) is also negligible, this is attributed to the fact that 
the non-dimensional flow velocity (V) and the natural frequency (w) are also function to (mf), 
neglecting (X) in eqs. (15) and (16) results [Chen, 1971], 
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Note that eq. (17) gives the upper limit of the primary instability region, while eq. (18) represents the 
lower instability region; the solution of eq. (17) may be written as, 
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While the solution of eq. (18), 
 

)Wk(CoshT+)Wk(SinhT+)Wk(CosT+)Wk(SinT=R
242312111                           (20) 

 

Where:     2

w+a+a
=f

22

11

1

 ,       2

w+a+a-
=f

22

11

2

 
 
 

                  2

w+a+a
=k

22

22

1

,      2

w+a+a-
=k

22

22

2

 
 

ZV-
2

ZV
+Y+V=a 2

0

22

02

01
   ,     

ZV+
2

ZV
+Y+V=a 2

0

22

02

02
 

  
And E1…E4, T1……T4   are arbitrary constants. 
 
       The upper limit can be evaluated by substituting eq. (19) into the boundary conditions eqs. (7)~ 
(10) to give the following equation in matrix form: 
 

0=}E]{A[
jj,i                                                                                                                           (21) 

While the lower limit can be evaluated by substituting eq. (20) into the boundary conditions eqs. (7)~ 
(10) yields. 
 

0=}T]{B[
jj,i                                                                                                                             (22) 

 
Both eqs. (21) and (22) are functions of many physical parameter such as (w, Z, V0) searching for 
values of any of these parameters which vanish the above determinants gives the appropriate limit of 
the primary region. 
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Secondary Instability Regions: 

 
    To determine the regions of secondary instability, the displacement W, is expressed as [Singh, 1979], 
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Substituting eq. (23) into eq. (12) result in eq. (14) with summation over q=0, 2, 4, … the region of the 
principal secondary instability can be prediction by truncated the series in the resulting equation ( with 
q=0,2,4,… ) at q=0,2 and neglecting ( X ) result the following equations: 
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Note that eq. (24) is an uncoupled differential equation related to the upper limit and may have a 
solution of the form: 
 

)Wg(CoshD+)Wg(SinhD+)Wg(CosD+)Wg(SinD=H
242312112                     (27) 

 

Where:     2

w4+b+b
=g

22

11

1

 ,       2

w4+b+b-
=g

22

11

2

 

4

ZV
+Y+V=b

22

02

01
 

 
While eqs. (25) and (26) are coupled differential equations related to the lower limit and can be solved 
by using the series solution as,  
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 Where _j's are the roots of the polynomial 
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     There are two limits which bound the principal secondary instability regions, the upper and lower 
limits; the upper limit can be evaluated by substituting eq. (27) into the boundary conditions equations 
eqs. (7)~ (10) Which gives, 
 

0=}D]{A[
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While the lower limit can be evaluated by substituting eqs. (28)& (29) into the boundary conditions 
eqs. (7)~ (10) yields, 
 

  
0=}d]{B[

jj,i                                                                                                                         (32) 
 
Both equations (31) and (32) are functions of many physical parameters such as (µ, w, Z, and V) 
searching for values of any of these parameters which vanishing the above determinants gives the 
appropriate limit of the secondary region. 
 
 

 

FINITE ELEMENT MODELING PROCEDURE: 

 
     The FE analysis was carried out using a general purpose FE package ANSYS V9.0. The approach 
is divided into five parts: thermal analysis, coupled field thermal-structure analysis, computational 
fluid dynamics (CFD), coupled field fluid-structure analysis, and modal analysis. 
    A non- linear transient thermal analysis was conducted first to obtain the global temperature history 
generated during and after welding process. A stress analysis was then developed with the 
temperatures obtained from the thermal analysis used as loading to the stress model.   
     The solutions of the governing Navier-Stokes equations for the axisymmetric geometries modeled 
are obtained using ANSYS FLOTRAN analysis. The governing flow equations are discretized in 
space according to the spectral element method. Spectral elements combine high order accuracy with 
the geometric flexibility of low-order finite element methods. The computational domain is divided 
into a number of non-degenerate spectral elements within which all information on geometry, flow 
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initial and boundary conditions and solutions is approximated by high order polynomial expansions. A 
local mesh is constructed within each element, and points on this mesh are used as interpolate points 
for the expansion of all dependent variables. All the simulations were performed with no-slip (zero 
velocity) conditions at all walls and zero pressure at the flow outlet. 
    The coupled field fluid-structure analysis solved the equations for the fluid and solid domains 
independently of each other. It transfers fluid forces and solid displacements, velocities across the 
fluid-solid interface. The algorithm continues to loop through the solid and fluid analyses until 
convergence is reached for the time step (or until the maximum number of stagger iterations is 
reached). Convergence in the stagger loop is based on the quantities being transferred at the fluid-solid 
interface.  
       Finally used modal analysis to determine the vibration characteristics (natural frequencies and 
mode shapes) of a welded pipe conveying fluid. The natural frequencies and mode shapes are 
important parameters in the design of a structure for dynamic loading conditions.  
 

RESULTS AND DISCUSSIONS: 

 
     Study the stability issues for particular single span ASTM214-71 mild steel welded pipe system 
with (1 m) length, (50.8 mm) outer diameter, (1.5 mm) thickness. The welded pipe was formed by 
joining two (0.5 m) pipes by fusion arc welding with a current of 30 A and voltage equal 460 volt 
using an electrode type E7010-G to make a straight pipe 1m length with welding on its mid span.; the 
welding procedure was modeled as a single pass in this analysis. 
    The analytical analysis is performed using Matlab V6.5 software to determine the limits of primary 
and secondary instability regions. The program was developed to be used for any specified pipe 
dimensions, length, pipe material stiffness, different flow velocities, and welding specifications. The 
FE analysis is performed using ANSYS V9.0 software. The parameters used in the calculations are 
listed in table (1). 
 

Table (1) Parameters used in the calculation 

EI                       1.4122*10
4
         Nm

2
 

mf                       1.795                   Kg/m 

m                        3.608                   Kg/m 

R                        25.4                     mm 

Teff.                    3.0243*10
5
          N 

L                        1                           m 

�f                               1000                  Kg/m
3 

	                        3.264 

 

 

Clamped-Clamped Welded Pipe: 

 
    Fig. (2) Shows the regions of parametric instability in the range 0.5 <w/ w01< 6.0 for a clamped-
clamped welded pipe (V0 =2), where w01 is the first mode natural frequency at zero flow. If instead of 
w/ w01, the ordinate w/ wn had been utilized, where wn is the actual natural frequency for the mode 
concerned at V0=2, then the principal primary regions of all the modes would begin at w/ wn=2, the 
second primary region at w/wn=2/3, the principal secondary region at w/ wn=1, and so on. 
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    With the ordinate used here, associated with the first mode are: 
1- The principal primary region beginning at w/ w01= 1.8. 
2- The principal secondary at w/ w01=0.9. 
3- The secondary primary region beginning at w/ w01=0.6. 

Similarly, associated with the second mode, the corresponding regions begin at w/ w01= 5.1, 2.6, and 
1.7, respectively. Associated with the third mode are the (1) principal secondary region beginning at 
w/ w01= 5.1, and second primary region at w/ w01=3.4.  
     Fig. (3) Shows the effect of flow velocity on the principal regions of instability associated with the 
first mode of a clamped-clamped welded pipe. It is noted that as the flow velocity increases the 
regions of instability are displaced downwards, which reflects the decrease of the first mode frequency 
with flow. It is also noted that the regions of instability become broader with increasing flow. 
      Fig. (4) Shows the effect of X on parametric instabilities. It is seen that with increasing X the 
regions of instability become broader and displaced downwards, which reflects the lowering of the 
natural frequencies as X increases for this particular flow velocity.  
 
 Clamped-Pinned  Welded Pipe: 

 
     Fig. (5) Shows the parametric instability regions for a clamped-pinned welded pipe for V0=4.5, 5.5, 
6 in the range w/w02 < 2.4. the large regions of instability in the middle of the figure are the principal 
primary regions associated with the second mode, while at the bottom is a principal secondary region 
which occurs for V0=6 only. The small regions at the top are principal secondary regions associated 
with the third mode.  
   Figures (6a, b) show, respectively, the primary and secondary instability regions, for the range of 
frequencies shown, of a welded pipe. The three uppermost regions of instability in figure (6a), for 
V0=6, 7.5, 8 and 9, are principal primary regions associated with the third mode, while the two large 
regions in the middle, for V0=8 and 9, are a mixture of principal primary regions associated with the 
second and third modes.  
      Finally, the smaller regions at the bottom of figure (6b) may similarly be divided into the 
following two groups: (i) the regions for V0=6, 7.5, and 8 are mixtures of principal primary regions 
associated with the second mode and of second primary regions associated with the third mode, (ii) the 
regions for V0=8 and 9 are mixtures of second primary regions associated with the second and third 
modes. This fusion of the regions of instability is shown particularly well in the cases of v0=8 and 9, 
where each of the regions is formed of two interlinked distinct zones, the upper of which is related to 
the second mode and the lower to the third mode. 
      In figure (6b) the upper region (V0=6) is the principal secondary one associated with third mode, 
while the remaining regions are all mixtures of principal secondary regions associated with the second 
and third modes. The upper areas of the latter are associated with the third mode and the lower areas 
with the second, except for V0=8 where no such distinction may be made. 
 
      It would be of interest to compare the results of dynamic stability obtained for a pipe conveying 
unsteady flow without welding by Chen [Chen, 1971]. We can see that the effect of welding is to 
reduce the range of beginning the principal primary, principal secondary, and second primary regions 
of instability for clamped-clamped and clamped-pinned boundary conditions.  
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Fig. (2) Parametric instability boundaries for a clamped-clamped welded pipe (V0=2). The system is 

unstable within the triangular regions 
a- First mode   b- Second mode c- Third mode 

   
  
 
 
 
 
 
 
 
 
 
 

 
 

Fig. (3) The effect of flow velocity, V0, on the principal instabilities associated with the first mode of a 
clamped-clamped welded pipe, for three values of V0 

 
       

 
 

 

 

 

 

 

 

 

 

 

 
                             Fig. (4) The effect of X on parametric instabilities 
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Fig. (5) Parametric instability boundaries for a clamped-pinned welded pipe 
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-b Fig. (6) Parametric instability boundaries for a clamped-pinned welded pipe  

a- Primary instability regions    b- Secondary instability regions 
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CONCLUSIONS 
    Analytical and finite element analyses are used to determine the regions of instability of a welded 
pipe conveying pulsatile flow with clamped-clamped and clamped-pinned boundary conditions. It was 
shown that these welded pipes are subjected to a multitude of parametric instabilities in all their 
modes. It was shown also that the pulsating flow in a welded pipe can cause parametric resonance, 
resembling a column subjected to periodic axial loads. The onset of instability in engineering systems, 
such as welded pipes could be catastrophic. The most important consideration from a practical point of 
view is to avoid the onset of parametric resonance. 
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