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ABSTRACT 

 The optimum trajectory of a single or multi-stage satellite launcher guided with proportional 

navigation guidance (PNG) is addressed. The PNG is extended to compensate for the gravity effect. 

For the trajectory optimization problem, the launcher is modeled as a mass point flying around the 

center of the Earth. To provide a completely valid analysis, all known influences on the� launcher 

trajectory have been considered; Empirical equations have been used in order to model the Earth 

standard atmosphere in SI units. A computer program had been constructed in order to simulate the 

trajectory of such launcher from the available initial conditions. Pegasus launcher is used as a 

hypothetical example.� The simulator results show that the proportional navigation plus gravity 

compensation guidance gives fairly accurate results.  
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INTRODUCTION  

 New concept for space transportation are proposed and investigated in various countries as a 

means for improving the space transportation capability and for reducing costs. The main task of 

guidance process is to determine the vehicle position and velocity, computation of control actions 

necessary to properly adjust position and velocity, and delivery of a suitable adjustments command 

to the vehicle control system to achieve the correct trajectory. (Zarchan, 1990 and Bong Wie 

1998).  

PNG is accepted as a celebrated guidance law for many guided missile applications like the 

surface-to-air, air-to-air, air-to-surface missile encounters, standoff weapon delivery, and space 
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rendezvous. The guided point (launcher) is assumed to move towards a target point in a plane 

containing the velocity vectors of the two points. The PNG technique is defined such that the  

 

velocity vector (heading) of the launcher is turned at a rate proportional to the rotation rate 

of the line joining the launcher and the target, which is the line of sight (LOS). The PNG principle 

helps to estimate the magnitude of the lateral acceleration that is perpendicular to LOS as a function 

of LOS turn rate (Zarchan, 1990 and Asher & Yaesh 1998). 

The trajectories of rocket vehicle have three successive phases. In the first phase, which is 

called the boost phase (initial phase), the rocket engine (or engines if the rocket is multi-stage) 

provide the precise amount of propulsion required to place the rocket on a specific trajectory. Then 

the engine quits, and the final stage of the rocket (payload) coasts in the second phase that is called 

midcourse phase, and finally the terminal phase (or gravity turn trajectory) 

Guidance operations may occur in the initial, midcourse, or terminal phase of flight. 

Ballistic missiles are commonly guided only during the initial flight phase, while the rocket engines 

are burning. A cruise type of missile, such as the Shark or Matador, uses midcourse guidance, 

operating continuously during cruising flight. Air-to-air missile such as Sidewinder employ 

terminal guidance systems that lead the missile directly to the target on the basis of measurements 

on the target itself. 

Errors in accuracy for rocket vehicles trajectories are generally expressed as launch point errors, 

guidance en-route errors or aim point error. Both launch and aim-point errors can be corrected by 

surveying the launch and the target areas more accurately. Aim errors on the other hand, must 

improve the rocket’s design particularly its guidance systems. A missile’s circular error probability 

(CEP) and bias usually measure aim errors. CEP uses the mean point of impact of missile test 

firings, usually taken at maximum range, to calculate the radius of a circle that would take in 50 

percent of the impact points. Bias measures the deviation of the mean impact point from the actual 

aim point. An accurate missile has both a low CEP and low bias (Encyclopedia Britannica, 2002). 

There are no single set of initial conditions required to arrive at a specified target, but rather 

there are an infinite number of possible free flight paths originating at points in space in the vicinity 

of some nominal starting point which terminate at the desired destination. For each such point there 

is a corresponding proper velocity. It is the task of the guidance system to cause the rocket to take 

up any one of these free flight paths. 

 

LAUNCHER DYNAMIC MODEL 

 For the trajectory optimization problem the usual mass point modeling is applied for 

describing the flight system dynamics. With reference to the rotating spherical Earth, the equations 

of motion can be expressed as Fig.(1) (Mayrhofer & Sachs 1997) 
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The aerodynamic model can be described as: 

qSCL L=            (7) 

qSCD D=            (8) 

Where LC and DC  are function of α  and M  

The model of the main rocket propulsion is described as 

SPIgmT 0
�=            (9) 

 

PROPORTIONAL NAVIGATION GUIDANCE LAW 

 This guidance method is based on the requirement (Zarchan, 1990) 

dt

d
N

dt

d λγ
′=            (10) 

And the command acceleration will be  

λγ �� NVVa ccc
′==           (11) 

 

Guidance Equations 

 According to (Asher & Yaesh 1998). 
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But for satellite launcher, the target is a fixed point in the space, so ( )0=TV . Therefore, command 

acceleration expressed as 

( )γλε −
′

=
′

= 2sin
2

2sin
2

22

TMTM

c
r

VN

r

VN
a        (15) 

The target can be defined as a fixed point in the missile local plane ( )z,ρ  as shown in 

Fig.(2) measured from the launcher , then the calculations of related quantities gives  
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LINEARIZATION 

 In order to allow better ways of analyses and optimization of the guidance command 

acceleration it is important to leave the non-linear missile target simulation and find a simpler 

model, as it is usual in engineering practice. We are going to linearize the acceleration command 

equations allowing the application of powerful analytical techniques (Zarchan, 1990). 

As defined previously TMz  is the relative separation between the rocket and the target in local 

vertical plane, then the relative acceleration can be expressed as  

λcoscTM az −=��           (22) 

And the expression for the LOS angle will be 

TM

TM

r

z
=λsin            (23) 

If we assume that the LOS angle is small, then eq.(22) and eq.(23) 

cTM az −��            (24) 

TM

TM

r

z
=λ            (25) 

In linearized analyses we treat the closing velocity as a positive constant and equal to the 

missile velocity. Since closing velocity has also been previously defined as the negative derivative 

of the range from the missile to target, and since the missile-target separation distance must go to 

zero at the flight, we can also linearized the range equation with the time varying relationship 

(Zarchan, 1990 and Asher & Yaesh 1998). 

( )ttVr fcTM −=           (26) 

Since the missile-target separation distance goes to zero at the end of flight by definition, the 

linearized miss distance is taken to be the relative separation between missile and target TMz , at the 

end of flight: 

( )
fTM tzMiss =           (27) 

This linearized model will give very high accuracy, where its results are the same as those 

obtained from the non-linear model for fixed or non-maneuvering targets (the case of our search), 

and for heading error case, and will give overestimations from the non-linear model in the case of 

maneuvering targets (Zarchan, 1990). 

 

Linearization of PNG Law 

 Substituting eq.(26), into eq.(24) we get 
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z
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The derivative of eq.(28) will give the LOS rate by 
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Thus we can express the PNG law as  
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The expression in the parentheses of eq.(30) represents the future separation between 

missile and target. More simply, the expression in parentheses is the miss distance that would result 

if the missile made no further corrective acceleration and the target did not maneuver. This 

expression is referred to as the zero effort miss (ZEM). Therefore, we can also think of PN as a 
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guidance law in which commands acceleration are issued inversely proportional to the square of 

time to go and directly proportional to the ZEM (Zarchan, 1990 and Asher & Yaesh 1998). 

 

OTMIZATION OF PNG LAW 

 We seek to find a guidance law that is a function of the system states. There are an infinite 

number of possible guidance laws; thus, it is necessary to state in mathematical terms what the 

guidance law should do. Certainly we would like to hit the target; therefore, one feature of the 

guidance law should be a zero miss distance requirement. In addition, we would like to hit the target 

in an efficient manner. In other words, we desire to use minimal total acceleration. A poplar and 

mathematically convenient way of stating the guidance problem to be solved is that we desire to 

achieve zero miss distance and to minimize the integral of the square of the command acceleration 

(Zarchan, 1990 and Asher & Yaesh 1998) i.e. 

( ) 0=fTM tz            (31) 

Subject to minimizing  

( )�
ft
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Unfortunately, if we minimize a more meaningful performance index such as the integral of 

the absolute value of ca , the solution would be mathematically intractable. Typically this type of 

problem with a quadratic performance index is solved using techniques from optimal control theory. 

However, this class of problems can be solved more easily using Schwartz inequality (Zarchan, 

1990). 

Now, we will construct from the previous equations the satellite launcher flight in state space form 

as 
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Before going in any further analyses, we must first check the controllability of the state 

space that we had performed. The general state space form 

BuAxx +=�            (34) 

by comparing eq.(33) and eq.(34) we find that  
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The system is therefore completely state variable (Ogata, 2002). 

The solution of the state space vector deferential equation is given at the final time ft  by the 

vector relationship (Zarchan, 1990). 

( ) ( ) ( ) ( ) ( )� −+−= d��Bu�t	txtt	tx ff        (35) 

Where ( ) �
	



�
�



=

10

t1
t	  

Using the above fundamental matrix in the solution for the state space vector deferential equation 

and only looking at the first state, we get  
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For convenience, let us define the terms 
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Then we can say that  
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For the conditions in which we have zero miss distance ( ) 0=fTM tz , we can rewrite eq.(39) 
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If we apply the Schwartz inequality to eq.(40) we get the relationship (Zarchan, 1990). 
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The integral of the square of the command acceleration will be minimized when the equality sign 

holds in the preceding inequality. According to the Schwartz inequality, the equality sign holds 

when 

( ) ( )ττ −= fc tkha 1           (42) 

This means that the integral of the squared acceleration is minimized when 
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Therefore, the command acceleration is given by  
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Substituting yields to the feedback control guidance law  
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2

3
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By comparing eq.(30) with eq.(45) we find that the optimum value of effective navigation ratio for 

the satellite launcher is 3=′N . 

 

 

PNG LAW WITH GRAVITY COMPENSATION 

 One of the major effects that prevent to obtain a straight-line missile’s trajectory is the 

gravity effect. Changes in the missile velocity due to gravity caused the LOS to rotate. The PNG 

law responds to the apparent LOS rate with command acceleration. If we have knowledge of 
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gravitational acceleration, it seems reasonable that it might be possible to compensate for 

unnecessary acceleration via the guidance law. (Zarchan, 1990). 

Fortunately in our particular case the target did not have gravitational acceleration. The launcher 

gravitational acceleration can be expressed as (Meriam, & Kraige, 1998).  

2
r

Gm
g o=            (46) 

The component of the gravity acceleration perpendicular to the LOS for the launcher is 

λcosgg
PLOSM =           (47) 

And the component of the gravity acceleration perpendicular to the LOS for the target is zero. 

The gravitational acceleration difference between the target and the missile can be treated as 

an additional terms in the ZEM. Therefore, we can modify the PNG law to account for gravity. The 

resultant law is (Zarchan, 1990 and Asher & Yaesh 1998). 
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PLOSPLOS MTcc gg

N
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2
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For the case of the satellite launcher, eq.(48) can be reduced to  

2

cosλ
λ

gN
VNa cc

′
−′= �          (49) 

 

HYPOTETICAL EXAMPLE 

 Pegasus is used for showing PNG and PN plus gravity compensation guidance. Pegasus is a 

small commercial launch vehicle developed by orbital science. It is provided with solid propellant 

booster and wings, and is lunched from an aircraft. Pegasus mission is to inject the satellite at 

altitude of (123 km), with velocity of (7790 m/sec), and zero flight path angle (FPA). Pegasus is 

released from its carrier with an initial velocity of about (0.8 Mach) and zero initial FPA with free 

flight duration of (5 sec). At the free flight, delta wing of the Pegasus is capable of achieving a zero 

FPA at the start of the first stage burning. (Isakowitz, & Hopkins Jr, & Hopkins, 1999). 

 

RESULTS AND DISCUSSION  

 Three cases are simulated. The first case when Pegasus launched without guidance, the 

second when Pegasus guided with optimum PNG, and the third Pegasus guided with PN plus 

gravity compensation guidance. The altitude, velocity, and FPA are shown in Figs.(3), Figs.(4), and 

Figs.(5) respectively.  

Pegasus without guidance is rapidly falling due to negative values of the FPA, which cause 

the thrust force to push down. This means that Pegasus cannot fly without guidance. 

For the second case the large drop in altitude, and FPA during the second stage flight lead the 

rocket be unable to reach its target which is very far from the rocket, although the altitude and FPA 

increase, the velocity continue to decrease then starts to increase before the end of flight. 

For the third case, the altitude of this case is highly accurate, and we can see from Figs.(5) that 

launcher is exceed the target and return to it because of the guidance, i.e. the launcher is reach to 

altitude of (136 km) at (267 sec) then return to attitude of (132 km) at the end of flight. At the end 

of flight for this case the launcher velocity about (5.62 %) less than the required velocity and the 

FPA is about ( �3.9− ). 

From comparing the Pegasus trajectory and the final mission requirements as given in 

(Isakowitz, & Hopkins Jr, & Hopkins, 1999), and that obtained from the PN plus gravity 

compensation guidance, we can say that the PN plus gravity compensation guidance is fairly 

applicable for satellite launcher case.   
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CONCLUSION  

 The following concluding remarks are drawn from the present work: 

1. The optimum value of the effective navigation ratio of the proportional navigation guidance for a 

satellite launcher application is 3=′N . 

2. The proportional navigation plus gravity compensation guidance advised to use for the satellite 

launcher application. 
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NOMENCLATURE 

(SI units are used, unless otherwise stated) 

ca  Command acceleration  

DC  Drag coefficient  

LC  Lift coefficient  

D  Drag force  

G  Universal constant  
g  Local Earth gravitational acceleration 

og  Earth gravitational acceleration at sea level  

PLOSg  Gravitational acceleration component perpendicular to LOS 

h  Altitude of the launcher vehicle 

SPI  Specific impulse  

L  Lift force  

M  Mach number  

m  Total launcher vehicle mass 

m�  Fuel mass flow rate  

om  Mass of the Earth 

N ′  Proportional navigation constant  
q  Dynamic pressure  

r  Radial distance between the center of the Earth and the launcher center 

ER  Mean radius of the Earth  
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γ  

ψ  

γ  
ϕ  

α  

γ  

TMr  Target-Missile separation distance  

S  Launcher reference area  

T  Total thrust of the launcher  

ft  Final flight time  

got  Time to go  

0t  Initial flight time  

V  Launcher vehicle velocity 

cV  Closing velocity between the missile and the target  

TMz  Target-Missile separation distance in local z direction  

α  Attack angle  
ψ  Azimuth angle  

ε  Launcher lead angle  

Φ  Geocentric latitude angle  
ϕ  Roll (Bank) angle  

φ  Sight angle  

γ  Flight path angle  

Λ  Geographic longitude  

λ  Local line of sight angle  

Eω  Angular velocity of the Earth rotation  

( )z,ρ  Local coordinates of launcher vehicle  

θ  Pitch or (Elevation) angle 
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Figs.(3a,b,c) respectively 

Launcher without guidance 
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Figs.(4a,b,c) respectively 

Launcher with PN guidance 
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Figs.(5a,b,c) respectively 

Launcher with PN plus gravity compensation guidance 
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