IMPROVEMENT OF TRAFFIC CAPACITY FOR AL-MOTANABI SQUARE IN KUT CITY

Dr.Khalaf T. Mohammed General Manage (Amanat Baghdad Dr. Namir G. Ahmed Abbas F. Jassim Lecturer (Dept. of HWY's Asst .lecturer (Dept. of HWY's Transportation- University of Al-Mustansiriyah

ABSTRACT

The concept of capacity and level of service are the control points of the analysis of intersections and must be fully considered to evaluate the overall operation of the intersections.

The objectives of the present study include the analysis, evaluation and improvement of the operation for AL-Motanabi square in Kut city and to present a best proposal to enhance the performance from the capacity point of view.

To achieve these objectives, the estimated distribution of the traffic data in different direction that required for the traffic and geometrical analysis were gathered manually, while SIDRA traffic program is used for the requirements of traffic analysis process.

It has been concluded that, two layer flyover is the best proposal to improve the operation ability of AL-Motanabi square.

الخلاصة

ة الاستيعابية ومستوى الخدمة هما نقاط السيطرة لعمليات تحليل التقاطعات ويجب أن تؤخذ بعين الاعتبار عند تقييم	أن مفهوم الطاة
	التشغيل للتقاط
· تشتمل على ؛ التحليل ، التقييم و تحسين القدرة التشغيلية لساحة المتنبي في مدينة الكوت و عرض أفضل المقتر حات	أن هذه الدر اسة
من حيث الطاقة الاستيعابية ولتحقيق هذه الأهداف فقد تم جمع المعلومات المرورية يدويا لمختلف الاتجاهات	لتحسين الأداء
بل المروري والهندسي بينما تم استخدام برنامج SIDRA لأغراض عمليات التحليل المروري .	لأغراض التحا
، بان اقتر اح تنفيذ مجسر ات بمستويين هو أفضل البدائل لتحسين القابلية التشغيلية لساحة المتنبي .	لقد تم الاستنتاج

Key Words

Traffic Spare Capacity, Level of Service (LOS), SIDRA Application, Peak Hour Factor (PHF), Saturation Flow.

INTRODUCTION

The underlying objective of level of service analysis is to quantify a roadway's performance with regard to specified traffic volumes (i.e., its ability to efficiently handle a specified volume of traffic). This performance can be measured in terms of travel delay (as the roadway becomes increasingly congested) as well as other factors. The comparative performance of various roadway segments (which is determined from an analysis of traffic) is important because it can be used as a basis to allocate scarce roadway construction and improvement funds (Zegeer ,1986).

Capacity is simply defined as the highest traffic flow that a roadway is capable of supporting. For level of service analysis, a consistent and reasonably precise method of determining of a roadway section is a function of factors such as roadway type (e.g., freeway, multilane highway

K.T.Mohammed	MPROVEMENT OF TRAFFIC CAPACITY FOR AL-
N.G.Ahmed	MOTANABI-SQUARE-IN-KUT-SITY
A.F. jassim	

without full access control, or rural road), free-flow speed, number of lanes, and widths of lanes and shoulders(Khisty and Lall ,1998).

Al- Motanabi square is a congested intersection located in the centre of Al-Kut city. Its significant locations and highly traffic volume can be related to:-

1. Al-Motanabi square located in an important location. It connects between main directions from Messan and Nasseria toward Baghdad.

2. The closely location of two main bridges on Tigers river. These Bridges represent a principle path of traffic movement.

3. Existing of High percentage of Heavy vehicles for all arms at Al- Motanabi square. These types of vehicles lead to create a high delay especially at peak hour.

4. The existing of different public activities near Al- Motanabi square. These activities results a high traffic volume.

From site observation and traffic accounts, it was found that the capacity of this square is less than the traffic volume at peak hour. This mean that the construction of a bridge is very important at this site so it is very important to carry out a traffic study to proposed the required improvement to solve the congested traffic problem at Al-Motanabi square.

Study Area

The study area includes Al- Motanabi square and its approaches because there are no closely intersections. **Fig. (1)** Shows a satellite image for Al-Motanabi square and its approaches.

Fig. (1): Satellite image for Al-Motanabi square in Al-Kut City.

OBJECTIVE OF THE STUDY

The main objectives of this study are:

1. Specify the peak hour at Al-Motanabi square, which represent the design hour volume in addition to the distribution of traffic volume at peak hour.

- 2. Calculate the Peak Hour Factor for all approaches in Al- Motanabi square.
- 3. Evaluation of the existing level of service (LOS) at AL-Motanabi square.
- 4. Evaluation of the level of service for all proposals suggested in this study.
- 5. Selecting the best proposal for Al-Motanabi square in which give the best level of service.

DATA COLLECION

Traffic volume

As previously mentioned, the main aims of this study are to enhance the operation of Al-Motanabi square and suggest the best geometric design. Regarding the existing situation, the traffic account is carrying out at Al-Motanabi square from 7:00 a.m to 5:30 p.m; the traffic volume contains two types of vehicle:

1. Passenger car: Any vehicle contains four tires only.

2. Heavy Vehicle: Any vehicle contains more than four tires. This type of vehicle is converted to passenger car by using (PCU) factor equal to (2.0). **Tables (1)** and (2) present the traffic account for each 15 min.**Table1**.

	From B	aghdad	From	Messan	From N	Vasseria	From a	al-Hoor
Direction / Time	Through	Right	Through	Right	Through	Right	Through	Right
7:00-7:15 7-:15-7:30 7:30-7:45 7:45-800	Pc Hv 280 36 300 35 275 33 290 38	$\begin{array}{c cc} \mathbf{P}_{\mathbf{c}} & \mathbf{H}_{\mathbf{V}} \\ \hline 31 & 4 \\ 41 & 5 \\ 43 & 5 \\ 41 & 2 \\ \end{array}$	Pc Hv 602 15 597 16 554 16 495 9	Pc Hv 49 3 50 5 70 8 62 4	Pc Hv 300 17 308 18 316 15 294 23	Pc Hv 232 14 245 16 227 7 208 14	Pc Hv 210 12 239 11 251 14 254 10	Pc Hv 35 3 36 4 28 4 31 3
8:00-8:15 8:15-8:30 8:30-8:45 8:45-9:00	250 50 300 45 300 39 310 60	43 3 40 4 44 7 41 5	31015390113651535016	61 3 54 5 51 3 70 10	230 27 157 19 199 9 181 14	2041015992051219012	317 25 348 20 312 30 273 25	36 5 25 2 31 3 37 2
9:00-9:15 9:15-9:30 9:30-9:45 9:45-10:00	380 42 362 39 342 36 307 27	29 4 32 6 29 7 26 6	438 12 417 20 456 21 439 19	60 7 52 5 51 4 48 5	17912168191721715916	18711179141812217920	24921236192211720712	21 3 27 4 29 5 23 3
10:00-10:15 10:15-10:30 10:30-10:45 10:45-11:00	23520240222252523019	30 3 29 3 38 4 30 2	430 14 483 12 490 13 478 20	29 6 48 5 36 6 40 2	161 21 145 28 155 21 161 42	205919811209821113	10810261152241522320	27 3 38 2 40 4 37 2
11:00-11:15 11:15-11:30 11:30-11:45 11:45-12:00	225 21 209 27 217 22 230 29	27 4 23 6 28 5 23 4	421 17 443 16 427 15 420 12	29 3 32 4 33 6 43 7	15720143171391513319	177 12 181 18 173 13 179 7	1901318717201132109	31 4 37 2 33 3 29 4
12:00-12:15 12:15-12:30 12:30-12:45 12:45-1:00	200 15 220 25 243 40 200 10	21 2 32 6 36 4 31 2	410 15 417 10 425 10 556 21	70 5 72 6 74 8 71 6	159 16 140 18 144 24 134 19	2021016362041222010	18310220162161922515	30 3 39 3 32 4 31 2
1:00-1:15 1:15-1:30 1:30-1:45 1:45-2:00	188 25 170 20 180 16 190 32	$\begin{array}{cccc} 30 & 2 \\ 32 & 2 \\ 26 & 1 \\ 32 & 3 \end{array}$	476 23 490 27 460 13 514 10	54 4 43 3 53 5 60 3	139 21 122 21 129 19 130 18	179151998167517112	186 14 214 17 138 12 126 10	28 2 29 2 20 3 22 4

MPROVEMENT OF TRAFFIC CAPACITY FOR AL-MOTANABI-SQUARE-IN-KUT-SITY

2:00-2:15 2:15-2:30 2:30-2:45 2:45-3:00	19223202271982820222	27 3 31 2 23 4 20 3	310 15 390 11 365 15 450 16	57 4 58 5 42 4 46 5	11721116231221713622	1801717912184131907	1338141121391712814	22 6 27 4 21 3 20 7
3:00-3:15 3:15-3:30 3:30-3:45 3:45-4:00	19523201211931917030	20 4 25 6 22 4 23 3	49224499215531752517	44 6 48 5 51 5 48 6	13017133191422613837	192 8 198 6 178 3 249 9	120 9 130 8 112 7 106 8	30 6 29 4 27 3 21 2
4:00-4:15 4:15-4:30 4:30-4:45 4:45-5:00	164 32 160 29 130 22 121 24	27 2 25 3 21 3 19 3	53714518154451141213	42 7 48 9 41 6 50 3	13026115191071210413	174 3 167 5 149 6 151 6	102 9 97 11 108 12 112 9	25 3 20 2 21 3 19 2
5:00-5:15 5:15-5:30	105 25 90 17	20 1 17 2	307 10 275 12	42 7 36 5	98 10 86 8	139 5 132 4	90 7 82 6	17 1 18 2

Table (2). Total traffic volume at Al-Motanabi square for each (15) min.

Time	Pc	Hv	Total =(P_C +2* H_V)
7:00-7:15 a.m	1739	104	1947
7:15-7:30	1816	110	2036
7:30-7:45	1764	102	1968
7:45-8:00	1675	103	1881
8:00-8:15	1451	138	1727
8:15-8:30	1473	115	1703
8:30-8:45	1517	118	1753
8:45-9:00	1452	144	1740
9:00-9:15	1543	112	1767
9:15-9:30	1473	126	1725
9:30-9:45	1481	129	1739
9:45-10:00	1388	108	1604
10:00-10:15	1297	86	1469
10:15-10:30	1442	98	1638
10:30-10:45	1417	96	1609
10:45-11:00	1410	120	1650
11:00-11:15	1257	94	1445
11:15-11:30	1255	107	1469
11:30-11:45	1251	92	1435
11:45-12:00	1267	91	1449
12:00 -12:15 p.m	1270	76	1422
12:15-12:30	1303	90	1483
12:30-12:45	1374	119	1614
12:45-1:00	1468	85	1638
1:00-1:15	1280	106	1492
1:15-1:30	1299	100	1499
1:30-1:45	1183	74	1331
1:45-2:00	1245	92	1429
2:00-2:15	1040	97	1234

Nu

(ini)

Number 3 Volume 13 September 2006

Journal of Engineering

2:15-2:30	1144	96	1336
2:30-2:45	1094	97	1288
2:45-3:00	1192	96	1384
3:00 -3:15	1223	997	1417
3:15-3:30	1263	93	1449
3:30-3:45	1278	114	1506
3:45-4:00	1280	132	1504
4:00 -4:15	1154	116	1346
4:15-4:30	1150	113	1336
4:30-4:45	1022	85	1172
4:45-5:00	988	83	1134
5:00 -5:15	818	66	950
5:15-5:30	736	56	848

SATURATION FLOW

Saturation flow represents one of the main parameter in which has a major affect in the capacity of intersection (TRB, 1985). The existing saturation flow is calculated by using Webster method (Charles and Webester, 1958). **Table (3)** shows the calculated saturation flow at the stop line for all approaches in Al-Motanabi square.

Table (3). Saturation flow at Al-Motanabi square

Saturation flow pc/h	approach
1600	From Baghdad
1550	From Messan
1600	From Nasseria
1600	From Al-Hoor

GEOMETRICAL DESIGN

To evaluate the level of service at Al-Motanabi Square, it is very important to specify the number of lanes for each approach. The existing geometric layout for Al-Motanabi square and its approaches are shown in **Fig.(2)**.

Fig. (2). Existing Geometrical design of Al-Motanabi square

ANALUSIS AND RESULTS

Peak Hour volume

By considering the traffic volume account that previously presented in **Table** (1), an Excel program is used to specify the peak hour. The peak hour is found to be between 7:00 and 8:00 a.m. Figures (3a and 3b) shows the peak hour in addition to the variation of flow every 15 min during the time of survey. From the traffic account, the following conclusions were observed:a- The total traffic volume during the peak hour for all approaches is (7832) pc/h. This peak hour is found to be between 7:00 and 8:00 a.m.

b- It was found that the approach from Messan city have the highest volume of traffic while the approach from Al-Hoor have the lowest volume during the Hours of the account.

c- The percentage of heavy vehicles for all approaches in Al-Motanabi square is as shown in **Table (4)**

approach	% of heavy vehicles	
From Baghdad	10.8	
From Messan	3	
From Nasseria	5.5	
From Al-Hoor	5.3	

d- For peak Hour volume, the distribution of traffic volume in Al- Motanabi square is as shown in **Figure (4)**. This Figure shows the total volume during the peak hour for passenger car and heavy vehicles.

Fig.(3.a) Distribution of traffic volume from 7:00 a.m to 6:00 p.m at Motanabi square

Fig. (3.b)Total of traffic volume every 15 min for all approaches at Al-Motanabi square.

Peak Hour Factor (PHF)

The peak hour factor is defined as the ratio of total hourly volume to the maximum 15- min rate of flow within the hour.

$$\mathbf{PHF} = \frac{Hourly \ volume}{peak \ rate \ of \ flow \ (within \ hour \)}}$$
$$\mathbf{PHF} = \frac{Hourly \ volume}{4*V15 \ min}$$

Where:-

(ini)

PHF= Peak-hour factor

 V_{15} = Volume during the peak 15 min of the peak hour, on veh/15min

The peak hour factor is calculated for each direction in Al-Motanabi square by using the data mentioned in **Table (1)**. Results of PHF is shown in **Table (5)** below

Approach	PHF
From Baghdad	0.96
From Messan	0.93
From Nasseria	0.96
From Al-Hoor	0.96

Table (5). PHF for all approach at Al-Motanabi square

EXISTING LOS AT AL-MOTANABI SQUARE

After specifying the peak hour which represent the design hour volume, it is very important to estimate the level of service (LOS) at Al-Motanabi square with existing geometric design and traffic flow. As mention before the existing geometric design consists of Unsignalized Roundabout operate under the control of Policemen.

To estimate the LOS For existing condition, the average delay at Al-Motanabi square must be calculated because the average delay represent the main parameter for LOS estimation. According to American specification, the (LOS) classified into six types depending on the value of

According to American specification, the (LOS) classified into six types depending on the value of average delay as shown in **Table (6)**.

Level of service (LOS)	Control delay per vehicle in sec.
А	d≤10
В	$10 < d \le 20$
С	$20 < d \le 35$
D	$35 < d \le 55$
E	$55 < d \le 80$
F	80 <d< td=""></d<>

Table(6). Level of service definitions based on delay (HCM method)

By using SIDRA program(Akcelick,2000), the average delay for existing geometric at Al-Motanabi square is (71.6) sec/veh and according to the U.S Highway Capacity Manual, Al-Motanabi square will operate 5 in LOS (E). **Table (7)** shows the average delay and LOS's for all approaches connected with Al-Motanabi square. While **Table (8)** shows the main indicators to evaluate the existing efficiency.

The details of results (Akcelick ,1986) and calculation are presented in Appendix A. The result shown in **Table (7)** is critical according to all international specification in traffic engineering.

Approach	Average delay sec/veh	Degree of saturation	Level of service(LOS)
From Baghdad	30.6	0.84	С
From Messan	112.6	1.03	F
From Nasseria	144.9	1.04	F
From Al-Hoor	12.6	0.48	В
Average	71.6		Е

Table (7) .Existing LOS at Al-Motanabi square

Table (8) -	Significant	indicators	affecting I	LOS in	Al-Motanabi square

Average delay (sec/veh)	71.6
Total delay (veh.h/h)	155.58
Stop rate	1.25
Performance index	611.71
Practical spare capacity	-14%

DESIGN PROPOSALS FOR AL-MOTANABI SQUARE

The following proposals can be suggested:

Proposal NO.1,

This proposal includes removing the Roundabout and use crossing intersection with signalization as shown in **Fig (5)**. By using this proposal, the results show unaccepted level of service (LOS F) because the average delay will be (240.4) sec/veh. **Tables (9)** and **(10)** show the level of service at Al-Motanabi square if this proposal is adopted.

Fig. (4) .peak Hour volume, the distribution of traffic volume in Al- Motanabi square

Fig. (5) .proposal NO.1 (crossing intersection)

Table (9) .Level of service at Al-Motanabi square by adopting proposal1at base year

Approach	Average delay sec/veh	Degree of saturation	Level of service(LOS)
From Baghdad	307.7	1.11	F
From Messan	312.7	1.135	F
From Nasseria	303.0	1.112	F
From Al-Hoor	278.4	1.086	F
Average	240.4		F

Table (10). Significant indicators affecting LOS in Al-Motanabi square with proposal 1at base

vear

J				
Average delay (sec/veh)	240.4			
Total delay (veh.h/h)	522.73			
Stop rate	2.11			
Performance index	1352.76			
Practical spare capacity	-21%			

PROPOSAL NO.2:

This proposal includes the execution of flyover along Baghdad –Nassreia approache, the expected number of vehicles which will use the proposed flyover will be as follow:-

- About 900 pc /h from Baghdad to Nasseria in peak hour.
- About 1000 pc/h from Nasseria to Baghdad in peak hour.

The expected traffic volume for peak hour at ground level will be as shown in Figure 6. With the execution of the proposed flyover along Baghdad- Nasseria Approaches, the new geometric for Al-Motanabi square need to enhance the number of lanes to increase the capacity of the intersection in addition to use traffic lights.

Figure 6. Expected traffic volume at Base year with adopting proposal 2

The expected average delay at the at-grade level will be (13.1) sec/veh, which means the intersection, will be in LOS (B). **Tables (11)** and **(12)** showed the results of analysis.

Ta	able (11)- Level of ser	vice at Al-Motanabi	square by adopting p	proposal NO.2 on the	base
_		У	ear		
		A	Deserves	T and af	

Approach	Average delay sec/veh	Degree of saturation	Level of Service(LOS)
From Baghdad	31.5	0.522	С
From Messan	12.0	0.626	В
From Nasseria	31.6	0.539	С
From Al-Hoor	9.7	0.369	А
Average	13.1		В

Table (12).Significant factors affecting LOS at Al-Motanabi square on the base year by adopting proposal No.2

Average delay (sec/veh)	13.1			
Total delay (veh.h/h)	21.51			
Stop rate	0.53			
Performance index	222.91			
Practical spare capacity	44%			

For target year (after 20 years with 3% annual increasing rate), the expected traffic volume will be as shown in Figure 7. The average delay will be (107.7) sec/veh and the square will operate at LOS (F). Tables 13 and 14 show the LOS's and some important parameters that affecting level of service at target year. The results for target year are unaccepted according to the international traffic specification.

Approach	Average delay sec/veh	Degree of saturation	Level of service(LOS)
From Baghdad	161.4	1.024	F
From Messan	186.8	1.078	F
From Nasseria	32.0	0.504	С
From Al-Hoor	13.5	0.617	В
Average	107.7		F

Table (13).Level of service at Al-Motanabi square for the target year (proposal NO.2)

Table (14).Significant parameters affecting LOS's for the target year (proposal NO.2)

	107 7
Average delay (sec/veh)	107.7
Total delay (veh.h/h)	319.18
Stop rate	1.58
Performance index	1054.69
Practical spare capacity	-17

Fig. (7). The expected traffic volume for Al-Motanabi square at target year

PROPOSAL (3).

(ini)

To improve proposal 2, the problem of congestion can be solved by establishing another flyover which connect between Messan and Naseria approaches. This proposal will make AL-Motanabi square work with three levels as shown in **Figure (8)**.By adopting this proposal ,the average delay at ground level is (18) sec/veh and the LOS will be LOS (B) for target year. Tables 15 and 16 show the results .

Table (15).Level of service at Al-Motanabi square at target year
(Proposal NO.3)

Approach	Average delay sec/veh	Degree of saturation	Level of service(LOS)
From Baghdad	29.4	0.709	С
From Messan	18.9	0.691	В
From Nasseria	29.4	0.709	С
From Al-Hoor	20.4	0.735	С
Average	18		В

Table (16).Significant parameter affect level of service at target year (proposal NO. 3)

Average delay (sec/veh)	18
Total delay (veh.h/h)	39.90
Stop rate	0.67
Performance index	345.51
Practical spare capacity	22%

Fig. (8). Traffic volume at Al-Motanabi square at peak hour with proposal 3 at target year

PROPOSAL 4

This proposal includes the execution of flyover along Messan –AL-Hoor approaches. For this proposal the expected traffic volume at ground level in AL-Motanabi square will be as shown in Figure(9). The expected traffic volume, which will be use the proposed flyover will be as follow:

.600 pc/h from Messan toward AL-Hoor in peak hour. .500 pc/h from AL-Hoor toward Messan in peak hour.

For this proposal, the same number of lanes must be adopted as shown in Figure (9). This proposal includes traffic light at ground level.

For the base year, the results of analysis show that the average delay is (21.1) sec/veh. and the square will operate at LOS(C). **Tables (17)** and **(18)** show the level of service and some significant parameters affect the performance of AL-Motanabi square.

Table (17). Level of service at Al-Motanabi square on base year (proposal No.3)			
Approach	Average delay	Degree of	Level of
	sec/veh	saturation	service(LOS)

	sec/vell	saturation	service(LUS)
From Baghdad From Messan From Nasseria From Al-Hoor	26.5 26.3 24.6 18.3	0.766 0.784 0.731 0.363	C C C B
Average	21.1		С

 Table (18). Significant parameter affecting LOS at Al-Motanabi square on the base year

 (proposal No 3)

Average delay (sec/veh)	21.1
Total delay (veh.h/h)	39.52
Stop rate	0.69
Performance index	305.43
Practical spare capacity	15%

Fig. (9). Traffic volume at Al-Motanabi square at peak hour with proposal 4 at base year.

For target Year the expected traffic volume at the at-grade level will be as shown in **Figure** (10). On the target year, the average delay is (464.2) sec/veh and the level of service will be (F) This delay and LOS are unaccepted according to the international specification. **Table** (19) and (20) present the above-mentioned results.

Approach	Average delay sec/veh	Degree of saturation	Level of service(LOS)
From Baghdad From Messan From Nasseria From Al-Hoor	444 714.1 681.2 20.5	1.223 1.374 1.354 0.635	F F C B
Average	464.2		F

Table (19). Level of service at Al-Motanabi square at target year (proposal No.4)

Table (20). Significant parameter affecting LOS at Al-Motanabi square at the target year(proposal No 4)

Average delay (sec/veh)	464.2
Total delay (veh.h/h)	1561.05
Stop rate	4.11
Performance index	3417.74
Practical spare capacity	-35%

Fig. (10). Traffic Volume at AL-Motanabi Square at target year with (Proposal No.4).

Proposal (5)

This proposal includes executing of full cloverleaf to provide continuous movements for all directions as shown in **Figure (11)**, which illustrated the expected traffic volume at target year. This proposal cannot be adopted for the following reasons.

1-Traffic volume at ramp A is more than the capacity due to high number of vehicles and effect of heavy vehicles.

2- The weaving sections (Messan – Al Hoor) and (Baghdad – Nasseria) have a very high volume in weaving sections.

Fig (11). Proposal No. (5), Full cloverleaf.

DESIGN OF FLYOVER (NUMBER OF LANES)

HCM specification is used to calculate the number of lanes for the proposed flyover:

-For proposal No. 3 on the target year

a-Direction between(Baghdad -Nasseria)

N= [SF /(C_j *
$$\frac{v}{c}$$
 * f_w * f_{Hv} * f_p)]

Where

liniů)))

N = number of lanes in one direction

SF = service flow LOS under prevailing and traffic condition for N lanes in one direction (vph) C_i = Capacity under ideal condition for freeway element of design speed.

 f_w = Factor to adjust for the effect of restricted laree widths (and lour) lateral clearance.

 f_{Hv} = Factor to adjust for the effect of heavy vehicle.

 f_p = Factor to adjust for the effect of driven population.

SF = 1000 * 1.8 = 1800 pc/h

Assume LOS(D)

$$\frac{v}{-}$$
 = 0.80, f_{Hv} = 1.0, f_p = 1.0, f_{w=} 0.93

С

 $f_w = 0.93$ (use standard lane with 1 ft obstruction on both sides)

 \approx N = [1800 / (1900 *0.80 *0.93 *1.0 *1.0)] = 1.3 lanes

 \approx Use two lanes with standing lane for each direction.

b-Direction between (Messan - Nasseria)

SF = 1500*1.8 = 2700 pc/h Assume Los(D) $\frac{v}{c}$ =0.80 F_{HV} = 1.0 F_w = 0.93 (use standard lane with 1 ^{ft} obstruction on both sides) N=[2700/(1900*0.80*0.93*1.0*1.0)]=1 .9,lane use two lanes

CONCLUSIONS

By considering the previous mentioned results, and throughout the presented five proposals, it is concluded that proposal No. (3) reflects the best solution on the target year from the capacity and the performance operation point of view at Al-Motanabi square in Kut city.

REFERANCES

Akcelik R.(1986). " SIDRA version 2.2 input and out put" Austrian road research board . Technical manual ,ATM No. 19.

Akcelick ,R. ,(2000) ," aaSIDRA user guide ", Akcelick and Associates pty Ltd.

Transportation Research Board , (1985), Special Report 209 , Highway Capacity Manual, National Research council Wtashington , DC

Zegeer ,D.C ,(1986), "Field Validation of Intersection capacity Factors", Transportation Research record 1091, Transportation research Board Washoington, DC.

Khisty, C,J and Lall, B. k ,(1998), "Transportation Engineering", Handbook, Second edition, Prentice –hall International, Inc.

Charles W. and Webster f. V. (1958) ," Some Factors affecting the Capacity of Intersection Controlled by Traffic signals "Forth Int. Traffic engineering Conference ,Copenhagen.