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ABSTRACT 
        The prediction of the blood flow through an axisymmetric arterial stenosis is one of the 
most important aspects to be considered during the Atherosclrosis. Since the blood is specified as 
a non-Newtonian flow, therefore the effect of fluid types and effect of rheological properties of 
non-Newtonian fluid on the degree of stenosis have been studied. The motion equations are 
written in vorticity-stream function formulation and solved numerically. A comparison is made 
between a Newtonian and non-Newtonian fluid for blood flow at different velocities, viscosity 
and Reynolds number were solved also. It is found that the properties of blood must be at a 
certain range to preventing atheroscirasis 
 

 
   الخلاصة

أن عملية تدفق الدم خلال تضيق الشريان المتناظر يعد واحد من أهم الظواهر التي تؤخذ بنظر الاعتبار خلال تصلب        
 دراسة أنواع الموائع وتأثير خواص الدم الغير نيوتيني على تان الدم يصنف من الموائع الغير نيوتينية لذلك تم وبما .نالشرايي

غير التمت مقارنة بين المائع النيوتيني و  ،لة الجريان بصيغة المسار الدوامي وتم تحليلها عددياً معادبت آت.درجة تضيق الشريان
محدودة الدم يجب أن تكون ضمن حدود خصائص إن تبين قد ل.  رينولد مختلفة  رقممدياتولزوجة جريان ولسرع النيوتيني 

  .لغرض منع حدوث حالة تصلب الشريان
 
Nomenclature  
 

A1 Rate of deformation tensor ⎯ 
I Unit tensor  ⎯ 
J Jacobian of direct transformation  ⎯ 
K Keulegan-Carpenter number ⎯ 
n Power index ⎯ 
p Pressure N/m2 
Q Flow rate m3/s 
R Radius of the tube at region concerned   m 
Re Reynolds Number ⎯ 

Rmin Radius of the tube at the throat m 
Ro Radius of the tube m 
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τ  Period of the imposed flow s 
T Cauchy `tensor stress N/ m2 
t Time s 

t+∆t Time step s 
u,v Velocity components in x and r directions  m/s 

x,r,t,v,u,p,Λ  Dimensionless variables    ⎯ 
Uo Averaged velocity over the section of radius Ro m/s 

Greek Symbols 
∞η−ηo  Asymptotic apparent viscosities N.s/m2 

γ&  Shear rate 1/s 

ψ Stream function m3/s 
ω Vorticity 1/s 
ρ Density of the fluid kg/m3 
Λ Material parameter ⎯ 
λ Non-dimensional viscosity ⎯ 
α Womersley number ⎯ 
ζ, η Coordinate in the transformed domain  ⎯ 
α, β, γ Transformation parameter grid generation  ⎯ 
δ,σ Geometrical parameters m 
χ  Dimensional generalized viscosity N.s/m2 

(x,r,θ) Cylindrical coordinates system m 
µ Viscosity of the fluid N.s/m2 

RF Relaxation Factor ⎯ 
r.h.s Right Hand Solution ⎯ 

S.O.R. Successive Over Relaxation ⎯ 
WBC Wight Blood Cell ⎯ 

 
INTRODUCTION   
       The work is concerned with the effect 
of the Newtonian and non-Newtonian 
behavior of fluids. Basically, fluid is called 
non-Newtonian if its viscosity depends on 
the force that is applied to it. Viscosity is a 
measure of how easily a fluid flows (the 
higher the viscosity, the harder it would be 
to stir a bowl full of it). For example, water 
has lower viscosity than syrup. For an 
ordinary fluid (like water) the viscosity 
wouldn’t depend on how fast you were 
stirring it, but for a non-Newtonian fluid it 
would. The average velocity in the aorta is 
about 30 cm/sec that in a capillary is only 
about 1 mm/sec. It is in the capillaries that 
exchange of O2 and Co2 take place, and this 
low velocity allows time for diffusion of the 
gases to occur [John, 1987]. There is no 
direct proportionality between shear stress 

and shear rate for these fluids, there are a 
large number of rheological equations which 
describe the flow behavior of these fluids, 
but there is no single equation which exactly 
describes the shear stress-shear rate 
relationship of all these fluids over all ranges 
of shear rates [William, 1978]. The previous 
is a part of general science of Rheology, 
rheology as a science is concerned with the 
study of material that cannot be described by 
the classical law of Hooke for solids or 
Newton’s law for liquids. That means; it is 
the science that studies the intermediate 
material between the above laws. 
         [Obaid, 1996] stated both Newtonian 
and non-Newtonian fluid flow cases were 
investigated for downstream facing step 
problem .The governing equations solved 
using  a numerical finite element technique. 
The results are presented for different
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Reynolds numbers and for some values of fluids parameter. He found that the length of the 
separated region grows consistently with Reynolds numbers. Also, the separated region grows 
slightly with increasing power index (n) when a certain Reynolds numbers have been considered.  
          [Pontrelil, 2001] presented a differential model of blood flow through a compliant vessel. 
A nonlinear, viscoelastic, constitutive equation for the wall is coupled with the one-dimensional, 
averaged fluid momentum equation to describe wave propagation disturbances due to prosthetic 
implantations, the geometrical, physical and biomechanical parameters need to be carefully 
identified with reference to a specific flow problem. 
        The purpose of this work is to study the blood flow over different degree of arterials 
stenosions, viscosity and Reynolds number.  

A computer program using FORTRAN 90 developed to solve the governing equation using 
finite difference approximation method.      
 
MATHEMATICAL MODEL FOR BLOOD FLOW       
 While the non-Newtonian approximation for blood flow is acceptable in modeling flow 
in large arteries and in the propagation of a pressure pulse, a nonlinear constitutive equation has 
to be used to describe flow in small vessels or at low shear rates, since the average shear rate at 
the wall of arteries is larger than this value.  
 Nevertheless, near the center of the vessels, or in separated regions of recirculating flow 
such as the downstream side of stenosis due to atherosclrosis, the average value of shear rate will 
be small. Non-Newtonian models take into account the effect of a shear-rate dependent viscosity 
in some range and reduce Navier-Stokes fluid in some other ranges. 
 While the plasma is a fluid with no significant departure from Newtonian behavior, when 
red cells are considered, the viscosity of the whole mixture increases noticeably. Marked Non- 
Newtonian properties are evidenced for concentrations greater than 10% [Chien, 1984]. It is 
experimentally shown that the blood apparent viscosity decreases as the shear rate increases. In 
the past years, many constitution equations have been proposed for the blood to model this shear-
thinning property [Mann, 1990],             [Phillips, 1975],[Oiknine, 1983]. Some of them depend 
on a large number of parameters, while some others are not completely satisfactory in all 
deformation ranges and for all flows. 
Most of such models are based on the following stress – strain rate relationship:  
 

1)(T AI γµρ &+−=          (1) 
Where T is Cauchy، s tensor stress. With : 
A1 = grad υ + (grad υ) T 
The rate of deformation tensor and its magnitude (i.e. the shear rate): 
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 In the following expression for the blood viscosity function )(γµ &  is suggested [Oiknine, 
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       Where 0η  and ( )∞∞ ≥ ηηη 0  are the asymptotic apparent viscosities as ( 0→γ&  and ∞) 
respectively, and (Λ ≥ 0) is a material constant with the dimension of time representing the degree 
of shear-thinning (for ( ) constant== ∞ γµηη &,0  and the model reduces to the Newtonian 
one) . 
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 The complex nature of blood is approximated here with a three-parameter shear-thinning model, 
the apparent viscosity µ and the shear rate γ& . The apparent viscosity is expressed as a decreasing 
function of the shear rate γ& . Note that, at low shear rates, the apparent viscosity increases 
considerably. The asymptotic values 0η  are common in many other inelastic shear-thinning 
models and they are calibrated by best fitting experimental data, while the value of Λ is found by 
nonlinear regression analysis of viscometric data [Yeleswarapu, 1996]. 
 
The Equations of Motion  
       Blood is assumed to be anisotropic, homogeneous and incompressible continuum, having 
constant density ρ, and the vessel walls are considered rigid  and impermeable. Its viscosity has 
the expression given by the equation (2). 
The equation of motion is : 

TdivVV
t
V

=⎟
⎠
⎞

⎜
⎝
⎛ ∇+
∂
∂

•ρ       (3) 

where V is the velocity vector and the body forces are supposed negligible. 
        Let us now consider a cylindrical coordinate system (x, r, θ) having the x – axis coincident 
with the pipe axis. Because of an axisymmetric two-dimension solution, all variables are assumed 
independent of θ and the peripheral component of V vanishes. 
        The pipe has a circular cross section whose radius is R0 in every where except in a small 
region centered at (x = 0) with a mild smooth axisymmetric contraction (stenosis), as described 
by the following function [Yeleswarapu, 1996]:  
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Where ST is the degree of the stenosis defined by:  

%100)(ST min

o

o

R
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and Rmin is the radius of the tube at the throat of the constriction.  
The vector equation (3) can be written in scalar form: 
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Where (u,v) are the components of V in x and r directions respectively. 
Let us now introduce a set of nondimensional variables: 
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0R
x

→x          
0R

r
→r  

0

0

R
Ut

→t                
0U

u
→u  

0U
v

→v               2
0U

p
ρ

→p  

0

0Λ
R
UΛ

→   
∞

=
η
ηλ 0  

With U0 the velocity averaged over the inlet section of radius R0. 
Moreover, two characteristic nondimensional numbers: 

τη
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0

R
UK τ

=                                                      (7) 

      Are introduced in unsteady flows and are defined as the Womersley and the Keulegan-
Carpenter numbers respectively (typically, the characteristic time τ  is the period of an imposed 
flow rate)  

In the study case τ  is the unit time and equal to oo UR for (K=1), and 
∞

=
η

ρ
α ooUR2  is the 

Reynolds number. The nondimensional counterparts of equations (5)-(6) are cross differentiated 
and subtracted, to obtain the vorticity – stream function formulation with ω the azimuthal 
vorticity and ψ the Stokes stream function :  
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Are the dimensionless generalized viscosity and the squared shear rate, respectively. 
       The following relation between velocity components, vorticity and stream function holds: 
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And the equations above to be solved for 10 ≥≤ r . 
        It is worth noting that the r.h.s. of Eqn. (8) is made up of many terms of different physical 
significance due to the variable viscosity and express a transport and diffusion of vorticity from 
the boundary to the main stream. The combined nonlinear effect of these components enters in 
the dynamics of the vorticity and is important for understanding the formation, the development 
and the separation of boundary layer. Note that in a fluid with constant viscosity, all the terms in 
square brackets except the first one disappear. 
Vorticity and stream function are related by the Poisson equation: 
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       The velocity field, automatically satisfying the continuity equation, can be computed from 
the stream function. The boundary conditions are required for all boundaries of computational 
domain since the governing equations are elliptic in partial coordinates. In general, along the 
boundary of the lower symmetric plane, the stream function is respectively set equal to zero and 
to a constant value, which is equivalent to one half of the mean mass flow rate through the pipe. 
The vorticity is zero along the symmetry. On the wall pipe the value of the stream function is 
uniform, corresponding to an impermeable wall. The value of vorticity on the pipe wall is 
unknown and must be solved as a part of solution. The inlet boundary condition is uniform flow 
(u=uniform velocity , v=0) and the outlet boundary of stream and vorticity which is located three 
periods down stream is imposed to be the same in the stream wise direction. The initial boundary 
conditions for all variables are zero Fig. (1). 
 
 
NUMERICAL METHOD 
        The essence of computational fluid mechanics is the representation of the governing 
equation in algebraic form suitable for solution by available mathematical techniques. Adopting 
the finite difference approach, the governing equations that are expressed in the form of 
differential equations can be represented as finite differences and converted to algebraic 
equations.  
        In this part, the vorticity-transport equation ω, stream function equation ψ and the shear rate 
equation are discretized using the finite difference method with "Time Marching" because it 
attempts to follow the time evaluation of the flow, in arriving to the steady-state solution. 
        The approximations for the time derivative in the vorticity equation (8), the numerator is a 
forward difference for vorticity change occurring at (m,n), from time (t) to (t + ∆t). 

tt ∆

−
=

∂
∂

+ i
nm

i
nm ),(
1

),( ωωω
          (13) 

        Where the ( 1
)(

+
+

i
nmω ) is the vorticity at time (t + ∆t) and the ( i

nm ),(ω ) is the vorticity at (t). 
        The central finite difference approximations are used for convection terms in the vorticity 
equations as follows: 
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Where α , β and γ are transformation coefficients  
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And J denotes the Jacobain of the transformation 
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        The constant ζ ( )( )rx,ζζ =  lines and constant η ( )( )rx,ηη =   lines can be spaced as 
desired around the boundaries in the physical domain, since the assignment of the (ζ,η) values to 
(x,r) boundary points via (xi) and (ri) functions are arbitrary, if the shapes of the boundaries 
shown in Fig. (1) are described. 
        A computer program developed to solve the above equations. The flow charts shown in figs. 
(2 and 3).  
 
Results and Discussion 
       The primary advantages of grids generated by the solution of partial differential equations 
are smoothness and better control of grid orthogonally at boundary, but the disadvantages are 
increased computational cost and complexity. So four-grid generation has been generated for four 
stenosis. Figure (4) shows the grid generation for (0.0), (0.2), (0.5) and (0.8) degree of stenosis.  
       The parameters that the problem depends on range around some typical values to obtain 
results of biomechanical interest. They are chosen equal to Newtonian and non-Newtonian fluids 
to allow a comparison of the two cases. The following physical parameters are assigned in 
equation (7): K=1 and α²=10. Therefore,  
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Reynolds number      Re =K * α² = 10 is within the physiological range of blood flow in small 
vessels and rheological parameters ),( Λλ are (40, 50) [Chien, 1984]. 
       The differences between Newtonian and non-Newtonian flows become significant as shown 
in Figure (5), the shear rate of Newtonian flow is greater than that of non-Newtonian flow it is 
positive at the stenosis which the non-Newtonian because a negative at the stenosis due to the 
effect of viscosity which related to a vortices at the outlet of the stenosis. The effect of 
dimensionless viscosity )(λ  shown in Figure (6) increasing λ the shear rate increases because the 
viscosity of blood depends on the Hematocrit. Where, the Hematocrit is a centrifuge or a device 
for separating the cells and on other particulate elements of the blood from the plasma.  
         Figure (7) shows the velocity profiles for non-Newtonian fluid of Re=10, 20, 50 and 300 for 
0.8 degree of stenosis. Figure (8) shows the shear stress for non-Newtonian fluid at Re (10, 20, 50 
and 300) for 0.8 degree of stenosis. The shear increases with decrease in the degree of stenosis. 
From Figures (7 and 8) it is found that the flow rates, and the different properties which affect the 
blood flow such as pressure drop, viscosity, length and radius of the vessel, which are the main 
parameters that cause the atherosclerosis. The heart tries to increase the velocity of blood and this 
velocity is periodic (pulsating), to try to open the stenosis so the recirculation is greater at 0.8 
degree of stenosis. The flows of non-Newtonian fluid of Re=50 and degrees of stenosis equal to 
0.2, 0.5, and 0.8 are simulated. The streamline of Re=50 for the three stenosis is shown in Figure 
(9) the marked effects that the degree of stenosis has on the flow field. Whereas for 0.2 degree of 
stenosis there is no vortex formed and even for 0.5 degree of stenosis there is a small recirculation 
zone, for 0.8 degree of stenosis the recirculation zone is dominant in the flow field. 
       The shear rate for non-Newtonian fluid of Re=50 and degree of stenosis equal to 0.2, 0.5 and 
0.8 is shown in Figure (10) the shear rate increases when the degree of stenosis decreases, which 
leads to adverse pressure gradient. 
        Figures (11 and 12) shows that increasing the viscosity will lead to decrease the velocity at 
the wall even for constant diameter which leads to thromboses. The increasing in the viscosity 
called the polycythaemia. This increase is due to decreases in the total volume of plasima or 
increase the total volume of the red cells. That cause deficiency of oxygen to the tissue. The 
symptoms for this case, headache, thromboses, cyanosis and itching. It is treated by blood letting 
which lead to regenerating the red cell and therefore the viscosity of blood will reduce.        
 
CONCLUSIONS 
        Mathematical models and numerical simulations offer an alternative and non-invasive tool 
for obtaining detailed and realistic descriptions of complex arterial flows. 
        A simulation of the blood flow through a stenotic arterial segment has been carried out. 
Although the important effect of unsteadiness is disregarded, this work shows the combined role 
played by the geometry and the material nonlinearity on the flow field. 
       The results demonstrate that the non-Newtonian character of the blood, in some typical 
regions, modify the flow pattern, even beyond the contracted region, reduce the shear stress at the 
wall a cross the tenosis. Therefore the presented model is able to predict the main characteristics 
of the physical flows and may have some interest in biomedical applications. An estimate of the 
characteristic parameters should be addressed on the basis of existing measurements.  
       The flow field and wall shear-stress distributions that each model induce for different 
Reynold number and degree of stenosis is investigated and results show that there are marked 
differences between simulating the blood as Newtonian and as non-Newtonian fluid. The 
rheological parameters in non-Newtonian fluid (blood) have the normal medical cases where 
increasing or decreasing these parameters, will leads to up normal  in medical cases. 
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Figure (1) Boundary condition 
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Figure (2) Flowchart for program to create  
the node grids 
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Figure (7) The velocity profiles for non-Newtonian flow for: 
(a) Re = 10 ; (b) Re = 20 ; (c) Re = 50 ; (d) Re = 300  

and for 0.8 single degree of stenosis. 
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Figure (8) Shear Rate at the wall for Re = 10, 20, 50 and 300 and single 
degree of stenosis equal to 0.8 
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Figure (10) The velocity profile for non-Newtonian flow for Re = 50 and for                  
different degrees of stenosis (a)  0.2 ; (b) 0.5 ; (c) 0.8 

Re=50
ST=0.8

R e= 50
S t= 0 .5

Re=50
St=0.2

(a) 
Re=50 
ST=0.2 

(c) 
Re=50 
ST=0.8 

(b) 
Re=50 
ST=0.5 

(a) 
30=λ

(b) 
40=λ

(c) 
50=λ

Figure (11) The velocity profile for non-Newtonian flow for Re=300, ST=0.0 
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Figure (12) The velocity profile for non-Newtonian flow for Re=300, ST=0.5 
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