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ABSTRACT

The prediction of the blood flow through an axisymmetric arterial stenosis is one of the
most important aspects to be considered during the Atherosclrosis. Since the blood is specified as
a non-Newtonian flow, therefore the effect of fluid types and effect of rheological properties of
non-Newtonian fluid on the degree of stenosis have been studied. The motion equations are
written in vorticity-stream function formulation and solved numerically. A comparison is made
between a Newtonian and non-Newtonian fluid for blood flow at different velocities, viscosity
and Reynolds number were solved also. It is found that the properties of blood must be at a
certain range to preventing atheroscirasis
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Nomenclature
A Rate of deformation tensor —
I Unit tensor —
J Jacobian of direct transformation —
K Keulegan-Carpenter number —
n Power index —
p Pressure N/m’
Q Flow rate m’/s
R Radius of the tube at region concerned m
Re Reynolds Number —
Ruin Radius of the tube at the throat m
R, Radius of the tube m
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T Period of the imposed flow s
T Cauchy “tensor stress N/ m?
t Time s
t+At Time step s
u,v Velocity components in x and r directions m/s
XV 0D, /A Dimensionless variables _
U, Averaged velocity over the section of radius R, m/s
Greek Symbols
Mo = Nwo Asymptotic apparent viscosities N.s/m?
Y Shear rate /s
1\ Stream function m’/s
® Vorticity /s
p Density of the fluid kg/m’
A Material parameter —
A Non-dimensional viscosity —
o Womersley number -

(o Coordinate in the transformed domain —
o, B,y Transformation parameter grid generation —

3,0 Geometrical parameters m

y4 Dimensional generalized viscosity N.s/m’
(X,r,0) Cylindrical coordinates system m

" Viscosity of the fluid N.s/m?
RF Relaxation Factor —

r.h.s Right Hand Solution —
S.O.R. Successive Over Relaxation —
WBC Wight Blood Cell —

INTRODUCTION and shear rate for these fluids, there are a

The work is concerned with the effect
of the Newtonian and non-Newtonian
behavior of fluids. Basically, fluid is called
non-Newtonian if its viscosity depends on
the force that is applied to it. Viscosity is a
measure of how easily a fluid flows (the
higher the viscosity, the harder it would be
to stir a bowl full of it). For example, water
has lower viscosity than syrup. For an
ordinary fluid (like water) the viscosity
wouldn’t depend on how fast you were
stirring it, but for a non-Newtonian fluid it
would. The average velocity in the aorta is
about 30 cm/sec that in a capillary is only
about 1 mm/sec. It is in the capillaries that
exchange of O, and Co, take place, and this
low velocity allows time for diffusion of the
gases to occur [John, 1987]. There is no
direct proportionality between shear stress
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large number of rheological equations which
describe the flow behavior of these fluids,
but there is no single equation which exactly
describes the shear stress-shear rate
relationship of all these fluids over all ranges
of shear rates [William, 1978]. The previous
is a part of general science of Rheology,
rheology as a science is concerned with the
study of material that cannot be described by
the classical law of Hooke for solids or
Newton’s law for liquids. That means; it is
the science that studies the intermediate
material between the above laws.

[Obaid, 1996] stated both Newtonian
and non-Newtonian fluid flow cases were
investigated for downstream facing step
problem .The governing equations solved
using a numerical finite element technique.
The results are presented for different
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Reynolds numbers and for some values of fluids parameter. He found that the length of the
separated region grows consistently with Reynolds numbers. Also, the separated region grows
slightly with increasing power index (n) when a certain Reynolds numbers have been considered.

[Pontrelil, 2001] presented a differential model of blood flow through a compliant vessel.
A nonlinear, viscoelastic, constitutive equation for the wall is coupled with the one-dimensional,
averaged fluid momentum equation to describe wave propagation disturbances due to prosthetic
implantations, the geometrical, physical and biomechanical parameters need to be carefully
identified with reference to a specific flow problem.

The purpose of this work is to study the blood flow over different degree of arterials

stenosions, viscosity and Reynolds number.

A computer program using FORTRAN 90 developed to solve the governing equation using
finite difference approximation method.

MATHEMATICAL MODEL FOR BLOOD FLOW

While the non-Newtonian approximation for blood flow is acceptable in modeling flow
in large arteries and in the propagation of a pressure pulse, a nonlinear constitutive equation has
to be used to describe flow in small vessels or at low shear rates, since the average shear rate at
the wall of arteries is larger than this value.

Nevertheless, near the center of the vessels, or in separated regions of recirculating flow
such as the downstream side of stenosis due to atherosclrosis, the average value of shear rate will
be small. Non-Newtonian models take into account the effect of a shear-rate dependent viscosity
in some range and reduce Navier-Stokes fluid in some other ranges.

While the plasma is a fluid with no significant departure from Newtonian behavior, when
red cells are considered, the viscosity of the whole mixture increases noticeably. Marked Non-
Newtonian properties are evidenced for concentrations greater than 10% [Chien, 1984]. It is
experimentally shown that the blood apparent viscosity decreases as the shear rate increases. In
the past years, many constitution equations have been proposed for the blood to model this shear-
thinning property [Mann, 1990], [Phillips, 1975],|Oiknine, 1983]. Some of them depend
on a large number of parameters, while some others are not completely satisfactory in all
deformation ranges and for all flows.

Most of such models are based on the following stress — strain rate relationship:

T=—pl+u(HA ()
Where T is Cauchy« s tensor stress. With :

A;=gradv + (gradv) T
The rate of deformation tensor and its magnitude (i.e. the shear rate):

7=BMNW2

In the following expression for the blood viscosity function () is suggested [Oiknine,
1983]:

Mﬂ=m+%ﬂm[

1+ log, (1I+Ay) @
1+ Ay
Where 77, and 77, (7702 7700) are the asymptotic apparent viscosities as (7 —0 and )

respectively, and (A > 0) is a material constant with the dimension of time representing the degree
of shear-thinning (for 77, =177, , y(y):constant and the model reduces to the Newtonian

one)
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The complex nature of blood is approximated here with a three-parameter shear-thinning model,
the apparent viscosity p and the shear rate 7. The apparent viscosity is expressed as a decreasing

function of the shear rate 7. Note that, at low shear rates, the apparent viscosity increases
considerably. The asymptotic values 77, are common in many other inelastic shear-thinning

models and they are calibrated by best fitting experimental data, while the value of A is found by
nonlinear regression analysis of viscometric data [Yeleswarapu, 1996].

The Equations of Motion

Blood is assumed to be anisotropic, homogeneous and incompressible continuum, having
constant density p, and the vessel walls are considered rigid and impermeable. Its viscosity has
the expression given by the equation (2).
The equation of motion is :

p(%+v . VVJ=divT 3)

where V is the velocity vector and the body forces are supposed negligible.

Let us now consider a cylindrical coordinate system (X, r, 6) having the x — axis coincident
with the pipe axis. Because of an axisymmetric two-dimension solution, all variables are assumed
independent of 0 and the peripheral component of V vanishes.

The pipe has a circular cross section whose radius is Ry in every where except in a small
region centered at (x = 0) with a mild smooth axisymmetric contraction (stenosis), as described
by the following function [Yeleswarapu, 1996]:

2
R:RO[I—ST(I_COS(;X/D)j ] ,0<x<2D

“4)

Where ST is the degree of the stenosis defined by:

ST= (R =R RRmm) 100%

0
and R, is the radius of the tube at the throat of the constriction.
The vector equation (3) can be written in scalar form:

( ou ou o ou j _ o

pl —+Uu—+v
ot or  ox or (%)

0? u, 1 du u ov
+ﬂ(7){ : 2‘2}26" o 6/1(6u a)
or~ roxtor ot ot ox\ox Or

SERCRIR

P A e
ot or  ox

or* ror ox? (6)

or\ox or ox oX

Where (u,v) are the components of V in x and r directions respectively.
Let us now introduce a set of nondimensional variables:
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X r
X > — r—> —
R, R,
t tY, uo -
RO UO
NI
U, pU;
AU
A2 q ="
RO 7700

With Uj the velocity averaged over the inlet section of radius R,.
Moreover, two characteristic nondimensional numbers:

a=R, |-L K = o”

7
N, T R, @

Are introduced in unsteady flows and are defined as the Womersley and the Keulegan-
Carpenter numbers respectively (typically, the characteristic time 7 is the period of an imposed
flow rate)

R,U
In the study case 7 is the unit time and equal to R, /U for (K=1), and &’ = PRo0 s the
e

Reynolds number. The nondimensional counterparts of equations (5)-(6) are cross differentiated
and subtracted, to obtain the vorticity — stream function formulation with ® the azimuthal
vorticity and y the Stokes stream function :

o (Lovoe_1ovie) oo

ot \r or &x r Ox or) r’ Ox

2 2
1{ (8w+6a)+18a) a)]+28;(8a)

x> or: ror r? ox Ox

2 2
+@c(2w+wj+2w[law_z zan

2
(24

or\_ or r orox\r? 0x r orox (®)
MOz Qx1oy 107y 1oy

ox* or* \rorr r ox* r? or
Where

, 1+log, (1+ Ay)
() =1+(4-1) . )

1+A7/

o 4 1(&#) L2 _1ow o
4 2 r2\ ox or Ox r 0x Orox (10)

o’ ror ox’

Are the dimensionless generalized viscosity and the squared shear rate, respectively.
The following relation between velocity components, vorticity and stream function holds:

_Ou 0V

a)_
ox oOr

1 [sz 1 oy 821//]2
+ —_— —_———— . —
rZ
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uo_ Loy
r oX
1 oy
r or (h

And the equations above to be solved for 0 <r >1.

It is worth noting that the r.h.s. of Eqn. (8) is made up of many terms of different physical
significance due to the variable viscosity and express a transport and diffusion of vorticity from
the boundary to the main stream. The combined nonlinear effect of these components enters in
the dynamics of the vorticity and is important for understanding the formation, the development
and the separation of boundary layer. Note that in a fluid with constant viscosity, all the terms in
square brackets except the first one disappear.

Vorticity and stream function are related by the Poisson equation:

2 2

= a_l// + a_l’y — la_l// (12)
ox>  or’ ror

The velocity field, automatically satisfying the continuity equation, can be computed from
the stream function. The boundary conditions are required for all boundaries of computational
domain since the governing equations are elliptic in partial coordinates. In general, along the
boundary of the lower symmetric plane, the stream function is respectively set equal to zero and
to a constant value, which is equivalent to one half of the mean mass flow rate through the pipe.
The vorticity is zero along the symmetry. On the wall pipe the value of the stream function is
uniform, corresponding to an impermeable wall. The value of vorticity on the pipe wall is
unknown and must be solved as a part of solution. The inlet boundary condition is uniform flow
(u=uniform velocity , v=0) and the outlet boundary of stream and vorticity which is located three
periods down stream is imposed to be the same in the stream wise direction. The initial boundary
conditions for all variables are zero Fig. (1).

— ar

NUMERICAL METHOD

The essence of computational fluid mechanics is the representation of the governing
equation in algebraic form suitable for solution by available mathematical techniques. Adopting
the finite difference approach, the governing equations that are expressed in the form of
differential equations can be represented as finite differences and converted to algebraic
equations.

In this part, the vorticity-transport equation o, stream function equation y and the shear rate
equation are discretized using the finite difference method with "Time Marching" because it
attempts to follow the time evaluation of the flow, in arriving to the steady-state solution.

The approximations for the time derivative in the vorticity equation (8), the numerator is a
forward difference for vorticity change occurring at (m,n), from time (t) to (t + At).

i+1 i
0@ _ Dmny ~ D)

= 13
ot At (13)

Where the (@) is the vorticity at time (t + At) and the (@, ) is the vorticity at (t).
The central finite difference approximations are used for convection terms in the vorticity

equations as follows:

75



Numberl Volume 17 February 2011

Journal of Engineering

1foy o) 1(0y ow|_

r\ or ox r\ ox or

I | Ve =¥ (mnon w:mn,m_w:m,m
2An 2AS

Fim,ny

_ l//(m+l,n) _l//(mfl,n) a)(m_nﬂ) _a)(m,n—l) \] (m n)
2AC 2A7R ’

(14)

w 6(//: Doy |:‘//(m+1,n)_l//(m1,n)

r’ ox  r(mn)’ 2AC

_ Vawr Vo r.(m,n) |/ J(m,n)
2An

(15)

r/] (ma n)

(““’4: —2f ay, +7a)77?7)/‘]2 =

w:"”] ]_ 2 a)(l ) + a): 1.n)
a .n m,n m-1,n
(m,n) 2A§2

_ 2 ﬂ a):m+Ln+l) - a):m+Ln71) - a):mfl.rwl) + a)(lmfl,nfli
mm 4ANC A7

a)(im n+1) - 2 a)(im n) + a)(im n-1) 2
Vo | T A ' Jimam

1 10}
—\o x.—w.x ) J—-—=
l’( n =g g 77)/ l‘2
1 w(m,nu) _a)(m,n—l)
X, (m,n)
r(m,n) 2An

a)(inwl n) _a):mfln) a):m n)
R S (LY VAN P
2A¢ Tinm

2(14 Y= X rc)(“’c r,- o, rc)/‘lz =

> X(metn) — Am-1,n)
2AC

r,(m,n)

76

(16)

(17




J.M. Hassan The Effects Of Blood Reheological On The Flow
Through An Axisymmetric Arterial Stenosis

_ Koy " Hmn-y
2An

C(j;mﬂm - aj;m—l.m aj;m.mn - aj;m‘n—n 2
INE rmn Ve Lm0 | [,
(18)

(M n)J

r _ Z(mﬂ.n)_/’{(m—l.n) a)«m,mn B a)zm.mn x (m n)
Z
[l(m,nn)_l(m,n]) 2A¢

(7577"4_14":7)/3(2 (“’uxg—a’;xn)/J)JrE: : i
xe(m,n)J/J(m,n) 9{2[

2An
XZ(mrn)
2An
i _ i i

w [0
e (m-1,n) X, J (m’ n) T (m,n) (19)
2AQ T

Z(Z:rz ("n X, -1 xu) —X:¢ ("n x,,) ~ Xy (": x;))/ J? =

- - +
2 Xty ~ Zmetn-y ~ Xm-tn-) T Xm-1.n-1y (r,(M,n)x,, (M, N)— 1, (M, N) x, (M, N))
4A¢n

_ I(mﬂ,n) -2 Z(m,n) + Z(m—l,n)
AS?

-2 +
B X (m.n+1) i((m,zn) X m.n-1) (rz (m,n) x, (m, n))j/J (zm,n) (20)
n

(r,(m,n) x,(m,n))

1
F(Wirv_l//vr,f)/‘] =

1 |:‘//(m+l,n)_‘//(ml,n) r (m n)
e B

2AC

2
Fim.ny

l//(m,nﬂ) _W(m,n—l) 21
- m,n J(m,n ( )
1A rz ( )}/ (m,n)

2
;(‘//ﬁrz (rn X, I xrz)_W§§ (rri X']) Y (l'; X{))/Jz =

_ l//(m+],n) _ZV/(m,n) + l//(m—],n)

2 (Wi  Yiminy = Yoo YWty _ 2 re (ms n) Xe (m7 n)
?mm[ a6CAy (r, (M, n)x; (M, n)—r, (M, N) X, (M,N)) AL
Ve =2V mm T Yo 22
o A;; B r (mon)x, (mony | /30 (22)

(@ 2ec =28, 2oy 470 2y )37 =

. (m.n) Koy = 2 X Y X
X > Aé,z
X - X - X tx
_ 2 ﬁx(m’n) * (m+1,n+l1) (m+1,n-1) (m=1,n+1) (m-1,n-1)
4A¢ An

77




Numberl Volume 17 February 2011 Journal of Engineering

-2 +
. Z et A{(]ﬂ;n, Z(m.m}/\](zm,n) (23)

1
;(aR Veeo -2 By Ve T 7R '/’m,)/ J?

1
(‘/’n X, _chn)/‘]:

o
[aR (m,n) Y (m+1m) _Zl/l(mz’n) Y ot
l'(m,n) Aé’
- 2 fz(m,n) Ymsnen = Yineon ~ Yo F¥man
4AS An
-2 4
+ 7r(M,N) Yinnen Z(;;.zn) Y (mn-1) j/‘](zm,n)
I Wmney Vinon + Von " Wmn (24)

- n n|/Jmn

r(%n.n)( 2A77 XZ(m ’ ZAL: Xe(m’ ) (m> )

Where a , B and y are transformation coefficients
) 2

a=Xx,+r,

B=xX.X, +r, 1 (25)

n
L2 2
}/—x§+r4

And J denotes the Jacobain of the transformation

a(x,r)
J =
a(¢.m)
The constant § (é’ =¢ (X,r)) lines and constant (17 =7 (X,r)) lines can be spaced as
desired around the boundaries in the physical domain, since the assignment of the (£,n) values to
(x,r) boundary points via (xi) and (ri) functions are arbitrary, if the shapes of the boundaries
shown in Fig. (1) are described.

A computer program developed to solve the above equations. The flow charts shown in figs.
(2 and 3).

=X, r, —X,r, (26)

Results and Discussion

The primary advantages of grids generated by the solution of partial differential equations
are smoothness and better control of grid orthogonally at boundary, but the disadvantages are
increased computational cost and complexity. So four-grid generation has been generated for four
stenosis. Figure (4) shows the grid generation for (0.0), (0.2), (0.5) and (0.8) degree of stenosis.

The parameters that the problem depends on range around some typical values to obtain
results of biomechanical interest. They are chosen equal to Newtonian and non-Newtonian fluids
to allow a comparison of the two cases. The following physical parameters are assigned in
equation (7): K=1 and a>=10. Therefore,
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Reynolds number Re =K * a2 = 10 is within the physiological range of blood flow in small
vessels and rheological parameters (A, A) are (40, 50) [Chien, 1984].

The differences between Newtonian and non-Newtonian flows become significant as shown
in Figure (5), the shear rate of Newtonian flow is greater than that of non-Newtonian flow it is
positive at the stenosis which the non-Newtonian because a negative at the stenosis due to the
effect of viscosity which related to a vortices at the outlet of the stenosis. The effect of
dimensionless viscosity (A) shown in Figure (6) increasing A the shear rate increases because the

viscosity of blood depends on the Hematocrit. Where, the Hematocrit is a centrifuge or a device
for separating the cells and on other particulate elements of the blood from the plasma.

Figure (7) shows the velocity profiles for non-Newtonian fluid of Re=10, 20, 50 and 300 for
0.8 degree of stenosis. Figure (8) shows the shear stress for non-Newtonian fluid at Re (10, 20, 50
and 300) for 0.8 degree of stenosis. The shear increases with decrease in the degree of stenosis.
From Figures (7 and 8) it is found that the flow rates, and the different properties which affect the
blood flow such as pressure drop, viscosity, length and radius of the vessel, which are the main
parameters that cause the atherosclerosis. The heart tries to increase the velocity of blood and this
velocity is periodic (pulsating), to try to open the stenosis so the recirculation is greater at 0.8
degree of stenosis. The flows of non-Newtonian fluid of Re=50 and degrees of stenosis equal to
0.2, 0.5, and 0.8 are simulated. The streamline of Re=50 for the three stenosis is shown in Figure
(9) the marked effects that the degree of stenosis has on the flow field. Whereas for 0.2 degree of
stenosis there is no vortex formed and even for 0.5 degree of stenosis there is a small recirculation
zone, for 0.8 degree of stenosis the recirculation zone is dominant in the flow field.

The shear rate for non-Newtonian fluid of Re=50 and degree of stenosis equal to 0.2, 0.5 and
0.8 is shown in Figure (10) the shear rate increases when the degree of stenosis decreases, which
leads to adverse pressure gradient.

Figures (11 and 12) shows that increasing the viscosity will lead to decrease the velocity at
the wall even for constant diameter which leads to thromboses. The increasing in the viscosity
called the polycythaemia. This increase is due to decreases in the total volume of plasima or
increase the total volume of the red cells. That cause deficiency of oxygen to the tissue. The
symptoms for this case, headache, thromboses, cyanosis and itching. It is treated by blood letting
which lead to regenerating the red cell and therefore the viscosity of blood will reduce.

CONCLUSIONS

Mathematical models and numerical simulations offer an alternative and non-invasive tool
for obtaining detailed and realistic descriptions of complex arterial flows.

A simulation of the blood flow through a stenotic arterial segment has been carried out.
Although the important effect of unsteadiness is disregarded, this work shows the combined role
played by the geometry and the material nonlinearity on the flow field.

The results demonstrate that the non-Newtonian character of the blood, in some typical
regions, modify the flow pattern, even beyond the contracted region, reduce the shear stress at the
wall a cross the tenosis. Therefore the presented model is able to predict the main characteristics
of the physical flows and may have some interest in biomedical applications. An estimate of the
characteristic parameters should be addressed on the basis of existing measurements.

The flow field and wall shear-stress distributions that each model induce for different
Reynold number and degree of stenosis is investigated and results show that there are marked
differences between simulating the blood as Newtonian and as non-Newtonian fluid. The
rheological parameters in non-Newtonian fluid (blood) have the normal medical cases where
increasing or decreasing these parameters, will leads to up normal in medical cases.
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ST=0.0

ST=0.2

Figure (4) The grid generation for the section of stenosis (0.0),(0.2), (0.5) and (0.8).
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Figure (5) Shear Rate at the wall for ngx— 10 (comparison between Newtonian
and non- ezvtonian)
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Figure (6) Shear Rate at the wall for Re = 10 and degree of stenosis equal to 0.5
for difference non dimensional viscosities A= (50, 40, 30).

75




ineering

Journal of Eng

Volume 17 February 2011

—
b
=
=
E
Z

Re=10
ST=0.8

ot PTTTTT LD LT LT T T T T ITTTT I e
T kRN N R R RN LTI
At AR AR A AR A R4 b 0 abrase,
AR N N R RN X LTTTITON
AR R AR RN LTI
I RN N R R RN LTI
At AR AR AR AR At 0 b0 brane,
At AR AR AR A4 1 e ey
._::3:‘:*‘:»*»*:::::.

" N2
...:::.;_ ,_7.:::_

Goatt111171117 11 AAAARRARAAR )

ittt AT AR R AR 10 4 00,

ittt AR AR A A A4 0000,
wttt A AR AR AR AR A Mt es
wttt AR AR A At At e
T RN N R R RN LTI
AR AR AR A A A et e
AR A AR A A4 bt ebean,
A AR AR AR A A R b b0 brann,
wtttt AR AR AR A Mt At 0 e
R RN R R RN X LTI
AR AR A A A Mt b e
AR AR AR A M e b e

ittt AR AR AR A e e

VY YYYYYYYY Y Y Y VYV VY

(a)

Re=20
ST=0.8

ot APTTTTT I LI L DL L L TITTTI M e,

Lottt A AR A AR AR M b b br 0

ottt AR AR AR R A 4 b1 0rana
Lottt R AR A0 b 1010
Lttt AR AR AR M 41 11014

( f
\?
::/

v Z.

AR
R R A R RN AN EETTTITOON

AN RRRITITTINN
A RER R ITTITI
A 140100,
AN EEERETTTITO

RYRTIEI LR RN L
ottt e
ottt 44
tttptt e
Lonarttpttp 441 (RN ATITITON
atttptd 44 M 000000
Lttt 44 e [N RTTIITe
Lottt tt 4 e AN EXTTTITO
Lttt A4 AN ERERETTTIO
BTTTIE L ERN R} LN ETTTTIO

LaaAAAAAAAAAAAAAALLL.

(b)

-}
T3
O
=R
Lnrttt A8 AR R0 00000000
Lottt 414 A AR AR 00 100000000,
B L X R KRN N KRR Y ETTITIT
ot AN A2 A2 111111,
S . e
ot e,
e TN
..::,,i ?::::
..3 ?.:::e
=
40 jal}
:::t..» »...cﬁ%s
:ﬁ««et.H H..tttz
e T
iggii (I
ggii (I
gt Ty
g+t iy
z::t.H H.;E:..
éo.. ..««g
:.::t;» ?:z:t:
..3 ?:::t.
:é.f.;» 4»:»&\2
..:&«r/c\s 7«\\:«:..
.::::.; 7\::::.
A s Necsssiinn
- s

rnettrf111111 111 PRGN
.:..:33»333 3»333»2:.:.
Lttt AR AR RRARRRARRAE R 11110,
ettt Tttt
Lnerett 4444 1 K [EEREITTITON
Larrett ettt [EEREITTITIN
ettt pe R
Lnrrett 4444 1 _ AR RTTI
RETITEIR AN ERXITTITIINN

Lttt tdtd ARREREIITI
ettt e 4t
ettt 4dd e _ AR RTTITe

Lnrrttt e L ERZITITIOON

(©)

Re=300

x®
>
I

=

»n
R LR R N R R TETTRTIO
ot 110100000
...:}zzz;%?\}?.i
- LA
SR e

|
basssaor Y LT
IR ¢ X P
2:::;» ?:::%
isggso -t L2
:::t;» 1., -
:::t;» ?::t:.
‘::t.;» LN s
.;» 1., s
! e
- i
gyt Py
buigggas L
it YR
frasiusi R
[ ot to EYUTL
gt W
Piaside " H H. RO
4t R
o S
T e
T NG
e Secssping
s cassis

rortpt 1AL AAARRAR AR
Lottt 1424220 A 422444448 440000000,)

ittt e Mttt
Rriiiaaa) : T _ _ _ _44.2.00::2
Laserrerdt g4t AR 1010
ettt Attt
..::.3:1 332.:::

ettt H _
ettt 44

_ A8ttt
ENEREETITe

ettt ENESEXTIION
....:::3_ A EELITITIN
Leansad R X YV PrIN.

(d)

Figure (7) The velocity profiles for non-Newtonian flow for

20 ; (c) Re=50; (d) Re =300

and for 0.8 single degree of stenosis

(a) Re=10; (b) Re
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Figure (8) Shear Rate at the wall for Re = 10, 20, S0 and 300 and single
degree of stenosis equal to 0.8
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Figure (9) Streamline for non-Newtonian for Re = 50 and for
different degrees of Stenosis: (a) 0.2 ; (b) 0.5 ; (c) 0.8.

77




Numberl Volume 17 February 2011 Journal of Engineering

(a)
Re=50
ST=0.2
(b)
Re=50
ST=0.5
@
S : 1 Re=50
2 - ST=08

Figure (10) The velocity profile for non-Newtonian flow for Re = 50 and for
different degrees of stenosis (a) 0.2 ; (b) 0.5; (c) 0.8

(a)
A=30
- (b)
A =40
(©)
A=50

Figure (11) The velocity profile for non-Newtonian flow for Re=300, ST=0.0
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Figure (12) The velocity profile for non-Newtonian flow for Re=300, ST=0.5
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