
Journal of Engineering Volume 17 February 2011      Number1  
  

 

 159

 
 
 
 
 
 

FINITE ELEMENT METHOD FOR INCOMPRESSIBLE 
VISCOELASTIC MATERIALS 

 
Montadher A. Muhammed 

lecturer 
Material Engineer 

Najaf Technical Institute 
 

 
ABSTRACT 
A numerical method (F.E.)was derived for incompressible viscoelastic materials, the aging and 
environmental phenomena especially the temperature effect was considered in this method. A 
treatment of incompressibility was made for all permissible values of poisons ratio. A 
mechanical model represents the incompressible viscoelastic materials and so the properties can 
be derived using the Laplace transformations technique .A comparison was made with the other 
methods interested with viscoelastic materials by applying the method on a cylinder of 
viscoelastic material surrounding by a steel casing and subjected to a constant internal pressure, 
as well as a comparison with another viscoelastic method and for Asphalt Concrete problem 
exposed to constant pressure (vehicles load) was done.   
The obtained results was very convenient , as well as, a large time steps can be taken than 
others methods.  
 
 

  خلاصةال
ظروف  ظاهرة التقادم و الإدخالم ت،ة المرنة غير القابلة للانضغاط  للمواد اللزج(F.E.M)تم اشتقاق اسلوب حل عددي 

تم .سن معالجة خاصية عدم الانضغاطية لكل القيم المسموحة من نسبة بويإلى إضافة،  درجات الحرارةتأثيرالبيئية وخاصة 
  .بلاسلالقابلة للانضغاط واشتقاق خواص المادة منه باستخدام تقنية  ميكانيكي يمثل المواد اللزجة المرنة غير ا نموذجاعتماد

مرنة ذات -وتطبيق ذلك على اسطوانة لزجة، المرنة- للمواد اللزجةأخرى حل أساليبتم مقارنة اسلوب الحل العددي مع 
سفلت مرن آخر لحالة الإ- اسلوب حل لزجمع مقارنة إلى إضافة،  وجود ضغط ثابتمع) من الفولاذ(غلاف خارجي مرن

 خطوات  استخدامأظهرت النتائج تقارب آبير مع باقي الأساليب مع وجود ميزة. )وزن المرآبات (تعرض لضغط ثابتالم
  .اآبر للزمن
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INTRODUCTION 
 
     The finite element method for many 
years was used to solve problems 
depending on the Elastic and Quasi-Elastic 
theories, few researcher used the finite 
element depending on the Viscoelastic 
theories ,but the techniques still in short of 
the aging phenomena. 
In this work the aging factor was applied 
depended on the temperature effect 
(physical aging)  
For Viscoelastic materials aging may be 
due to a large number of causes: oxidation 
(with or without the stimulation of light); 
gradual loss of plasticizer or other low 
molecular weight additives [Boyer 1998]. 
Such chemical or physicochemical 
degradation processes are not considered in 
this research and only aging processes of a 
physical nature will be treated (i.e the type 
of aging that is due to inherent instability of 
the amorphous glassy state). 
Physical aging is a reversible process in 
general, i.e. by re-heating the aged material 
to T > Tg  The original state of 
thermodynamic equilibrium is recovered 
and a renewed cooling to temperature T< 
Tg will induce the same aging effects as 
before.  
Temperature effects are extremely 
important in the analysis of viscoelasticity, 
temperature has three effects [Oza 2003]: 
-temperature change causes thermal strains, 
which must be combined with mechanical 
strains, 
-material module have different values at 
different temperatures, 
-heat flow may occur. 
Williams, Landel and Ferry [David 
Roylance 2001] have proposed that the 
variations in relaxation time are not 
primarily due to thermal activation, but to 
thermal expansion, i.e. the expansion of 
free volume Vf  with increasing 
temperatures and by using an equation 
proposed by Doolittle. These authors 
derived the famous WLF equation: 
                                                                            
                                             (1)   
 

   Where Ts is the reference temperature 
(which represent material’s specific 
constant for the position of the glass 
transition of the material).  
C1 , C2 are constants relating  to the choice  
of reference temperature. 
Which will be used in the range of glass 
transition temperatures to coverage the  
Physical Aging phenomena. 
 
The finite element technique, which was 
used to calculate displacements and stress 
for the elastic case, has been extended to 
provide analysis capability for the 
viscoelastic case in this research. 
Many researcher have been used different 
methods to calculate displacement ,stress 
and strain for viscoelastic materials.  
 
(Ghasak  2008) studied the rutting problem 
for Asphalt concrete which subjected to 
repeated axle loading using both elastic and 
viscoelastic model by finite element 
software (ANSYS 9).He found that the 
difference between the two approaches 
(Elastic; Viscoelastic) is about (12%). The 
rut depth was calculated and compared with 
two considerable models (Yassoub and 
Amjad models). 
 (O.C.Zienckwiecz 1968) developed a 
completely general method of numerical 
viscoelastic stress analysis with constant or 
temperature variable properties. He proved 
that numerical methods of elastic analysis 
(and in particular the finite element 
method) can be extended to deal with wide 
range of viscoelastic problems of the quasi-
static type. 
The method is checked against some 
known solutions. Examples from the field 
of propellant technology, concrete and rock 
behaviors are included. 
The processes of numerical analysis have 
been incorporated into two- dimensional 
finite element analysis program.  
An example of propellant is taken as 
cylinder of viscoelastic material which 
represents the rocket grain, surrounded by a 
steel casing and subjected to constant 
internal pressure P. Contours of maximum 
compressive stress is plotted at various time S

S
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steps and the same contours is plotted but 
with a moving (burning up) inner 
boundary. 
 
(Lakes, 2006) formulated a viscoelastic 
problem in a way that allows to the use of 
higher order differential equation solution 
techniques. In this literature the advantages 
of using Runge-Kutta integration formulae 
are indicated. 
Examples for plane strain problem are 
developed under the assumption of: 
 
-Linear viscoelasticity with a hereditary 
integral form of the stress – strain relation. 
-Validity of the reduced time hypothesis. 
-Bulk modulus constant in time. 
-Homogeneous, isotropic material. 
 
This formulation has the advantage that the 
increase in computational effect for each 
time step using the higher order formulae 
is, generally, more than offset by the 
increase in magnitude of the time step that 
can be used. This advantage is 
demonstrated with an example. Also with 
this approach a means of estimating the 
error involved in the integration is 
available. The process described in this 
literature is valid for a more general form 
of material representation. 
An example of reinforced viscoelastic 
cylinder subject to constant internal 
pressure P is indicated here by using the 
fourth order Runge-Kutta method. 
Distribution of tangential and radial stress 
is plotted against the ratio of radius to outer 
radius for several time steps. 
(Rogers 1988) solved stress analysis 
problems for linear Viscoelastic materials 
on basis of integral operator stress – strain 
relations by using the method  of simple 
finite – difference numerical integration . 
They recommend to take the integral from 
0 to t and consider the material is 
undisturbed for t<0 .  
(Taylor and Pister 1990) developed a 
computational algorithm for the solution of 
uncoupled , quasi – static boundary value 
problem for a linear Viscoelastic solids 
undergoing thermal mechanical 
deformation, they showed that the stresses 
at a high temperature will decrease faster 
than at a lower temperature. 

 
In this research a computational method 
based on finite element technique with 
using isoparametric element and local 
coordinate (natural coordinate) will be 
applied ,viscoelastic solution is obtained 
using Laplace transform technique.  
 As an applications of the method , a 
problem which studied by Zienkiewicz is 
examined ,as well as, a comparison with 
another viscoelastic method and for Asphalt 
Concrete problem exposed to constant 
pressure (vehicles load) was done, in order 
to know the efficiency of the procedure and 
make a comparison with the other methods. 
 
MATHEMATICAL MODEL  
Material  Representation  
 
     For a viscoelastic material , a model can 
be used to relate components of strain to 
components of stress. 
     For incompressible Viscoelastic solid 
material , the more convenient famous 
model to represent is called “three 
parameter model”[ Amada 1997], 
generally, this model used to represent most 
standard linear Viscoelastic solids as shown 
in Fig1. 
 
This model which is consistently used in 
subsequent applications, it is useful to 
establish systematically its relaxation 
modules G and creep compliance J using 
Laplace transform techniques [Gibiansky 
1997] as following in Table 1 : 
 
  
                            (2) 
                                                         
                                                         (3) 
                                   
    
 
 
                                                                     
 
 
 

(4)    
 
Where: ε -strain σ -stress E -elasticity 
modulus µ -viscosity   s- Laplace 
transform factor. 
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Applying the inverse Laplace transform 
and simplifying eqn (3),(4) can be reduced 
to :  
 
                                                                                               

                     (5) 
                      
                       
                                                                                           

(6)                                                                                                             
     
METHOD OF SOLUTION 
      The displacement based finite element 
method is one such numerical procedure 
,the effectiveness of the method is due to its 
conceptual simplicity, assuming that the 
nodal point displacement of the finite 
element mesh completely specify the 
displacement in the body.  
     This finite element technique , which 
has demonstrated to provide an excellent 
analysis method for elastic case , has been 
extended to provide analysis capability for 
the Viscoelastic case in this research . 
  The relation of stress- strain for plane 
strain case are [Hughes 1987] :  
 
     
                                                      (7) 
    
                                                      (8)                                          
                                                       
                                                      (9) 
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Then the stress matrix {D}(matrix of 
properties) can be obtained from eqns (7), 
(8),(9) in term of relaxation G and bulk K 
moduli.  
      
                                                    (12)  
                                                                                                     

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+−

−+

=

G             0                      0

0        
3
4      

3
2

0         
3
2      

3
4

][ GKGK

GKGK

D  (13)  

 
 The global coordinate {X} of the node in 
terms of local coordinate (ξ, η) and 
displacement field  {δ } in isoparametric 
element is [Zienkiewcz 1989] :  
 
{ X} = [ N] {Xiί } =                   (14)                            
   
 
 
{δ } =  [N] {δi} =                     (15)                                    
 
{N} is a matrix of shape function, which is 
a function of local coordinate ξ and η. 
     By differentiation of shape function with 
respect to global coordinate we can obtain 
strain quantities. This can be done by a 
transformation using Jacobian matrix{J}  
which can be obtained by differentiate Eqn 
14 using chain rule. 
 
  
  
{ J }=                                                     
 
 

     (16) 
                                                                                           

 
Then local coordinates can be obtained 
as:  
   
 
              =                                     (17)        
 
For plane strain case the relation 
between strain and displacement is 
[Hughes 1987] 
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      εxy =          +                   (20)       
      
Then the strain matrix {B} is obtained 
by writing eqns (18),(19),(20) in terms 
of matrix notation and using  the 
following relations [Saabye 2000]: 
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It is incorrect to vary only stress matrix 
{D} with time (the Quasi – static solution) 
since properties of viscoelastic material 
varies with time, but it is convenient to 
differentiate this matrix with respect to time 
depending on the superposition theory of 
linear viscoelasticity :  
So that :  
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                                                        (24)   
 
τ τ ′− is the current and past shifted time 
respectively which can be calculated 
from WLF eqn No.1.  
 
     From the chosen model in Fig.1 and 
for the incompressible linear 
viscoelastic material undergoes 
environmental temperature change, the 
total stress will expected to be as: 

thermalicviscoelastelastictotal σσσσ ++=     
         (25) 

      So that:      

( ){ } ( ){ } ( ){ } ( ) ( )1 1
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t

t D t D t dt K T x t T xσ ε ε α= + − −∫

                                                         (26) 
α - thermal expansion which is constant 
in time . 
     By minimizing the equation of 
potential energy we can solve Eqn.- 26  
     The minimum potential energy M 
can be expressed as [Bath 1995]:  
    

1 [ ( )] ( ) v [ ]  v [ ]
2
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v v s

M t t d Fv d Fsdsσ ε δ δ= − −∫ ∫ ∫
                                                          (27)     
Fv : is the body force  per unit volume   
Fs : is the load of surface traction  
     By substituting Eqns 26 , 14 into 
Eqn 27 and minimization  with respect 
to nodal displacements the total 
potential energy can be written as :  

{ } ( ){ }

( )
v v 0 v

v

0 v v v

                     3 ( ( , ) ,0 ) v                                                                  

t
T e T T T

Te
e e e se

T

e

M B DBd B D t dt d N Fvd N Fsds

K B T X t T X d

δ ε
δ

α

⎡ ⎤∂
= = + − − −⎢ ⎥

⎡ ⎤∂ ⎣ ⎦⎣ ⎦

−

∫ ∫ ∫ ∫ ∫

∫

        
     Solving Eqn 25 will give the values 
of displacements for all nodes in the 
structure of interest.  
     Then stresses can be obtained by 
solving Eqn 26.  
      For incompressibility conditions it 
is more convenient to separate the stress 
matrix {D} into two components (shear 
and bulk) [Amada 1997] as:  
[ ] [ ] [ ]bs DDD +=                        (29) 
       And by  applying a selective 
integration procedure [Saabye 2000] , 
which is third order Gauss rule for shear 
components and second order Gauss 
rule for bulk components.  
     This will make some equilibrium 
between shear and bulk components. 
 

RESULTS AND DISCUSSION  
The first step is obviously to test the rate of 
convergence and the other features of the   
process.The process of numerical analysis 
described in this research is applied into 
two problems which was solved by 
Zienkiewicz and Ghasak respectively. 
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The first problem shown in Fig 2 is a 
cylinder of Viscoelastic material 
surrounded by a case of steel and subjected 
to an internal pressure suddenly applied at t 
= 0 and maintained thereafter at a 
magnitude Po.  
 
The Viscoelastic material is assumed  to be 
isotropic with the following properties 
[Zienckwiecz 1968]: 

01
=

Kcreep
  

Go = 2584.125 * 105      N/m2  
K= 6891* 105  N/m2  

G(t) = 2584.125*105 + 3* 105 e -0.57τ     
Ts=75 C 
     The properties of steel case is taken as :  
E= 206.73 GPa  
ν = 0.3015  
     The results obtained by applying the 
method of Viscoelastic technique which 
compared with the solution by Zienckwiecz 
as shown  in Figs 3 and 4, where the 
variation of radial and circumferential 
stresses with time is shown. 
There are very small differences from the 
values of the solution by Zienkiewicz.  
The points from finite element solution are 
obtained by averaging stresses across the 
element boundaries .  
     The curves presented are obtained by 
taking a time step of ∆ t = 0.5  
 
It can be shown that the main 
computational advantage of this method 
over others lies in the fact that larger time 
steps can be taken.  For example in the 
Quasi-Elastic solution (Zienkiewicz 1968) 
to obtain the curve in Fig3 atτ = 3,a thirty 
time steps is used, and this required thirty 
solutions of a set of equations, the same 
curve is obtained by the method of this 
research using six time steps, as well as, the 
method can cover the environmental 
phenomenon like aging and temperature 
effects. 
The second problem shown in Fig 5 is a 
pavement subjected to constant pressure 
load with tire print diameter=300 
mm(actual contact area) and tire 

load=80 KN, Pressure=550 KPa for the 
Single tire. 
 
Data input in software of Asphalt concrete 
are exhibit in Table (3), the elastic solution 
is used for subbase and subgrade layers 
except asphalt material will be treat as a 
viscoelastic material . 
 
The elastic properties for Subbase is E=350 
MPa, υ=0.3and Subgrade is E=100 MPa 
υ=0.4 respectively, The mesh is shown in 
Figure 4 (1518 element-4-node).The results 
of rutting vs. number of load repetitions are 
shown in Figure 6 
 
Figure 7 shows the comparison of rut depth 
for various number of axle load repetitions 
between the proposed technique and 
Ghasak method (Ghasak 2008). It can be 
seen that generally there is a small 
difference between the two techniques 
ranges from 5% to 7%. 
 
Also this finite element model can be used 
for both the thermal and stress analysis 
(thermo-mechanical analysis) , the both 
thermal and force equilibrium are satisfied 
in each increment before the analysis 
proceeds to the next increment.    
     To capture the transient phenomenon for 
temperature displacements and applied 
loads , the time steps was taken small 
enough.  
     Using of the shifted time τ  in 
Viscoelastic solution enables us to include 
the thermal effect by using WLF equation ,  
as well as, using isoparametric element 
with local coordinates (ξ, η) enable us to 
use an element with curvilinear shape and 
cover the change in displacements with 
time.  
    
The problem of incompressibility is 
distinguished  by testing the ratio of bulk to 
shear modulus as following 
 

( ) 2(1 )
( ) 3(1 2 )

Bulk mudulus K
Shear mudulus G

ν
ν

+
=

−
 

For incompressible material  ν  approach 
0.5 and bulk modulus becomes large 
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relative to shear modulus. It is note that the 
use of these values in the finite element 
codes have not been tailored for 
incompressibility analysis and lead to very 
serious numerical errors caused by the ill-
conditioning resulting from the division by 
a value which is nearly zero, and more 
importantly," mesh locking" may occur 
,this refers to the inability to of an element 
to perform accurately in an incompressible 
analysis, regardless how refined the mesh is 
due to an over-constrained condition and 
insufficient active degree of freedom. 
It is noted that the element lock despite  the 
fact that its area has remained constant 
,resulting in the prediction of too small of a 
displacement and too large of stress.    
Using of selective integration and 
separation of bulk from shear components 
will improve the values of results for all 
permissible values of Poisson's ratio(ν ). 
 
CONCLUSIONS: 
 
Within the limitations of the present work 
and depending on the results of applying 
the proposed techniques the following 
conclusions can be inferred : 
• It can be use more time steps with an 
accurate results in this procedure compare 
with other                                                                                             
method. 
• It can coverage the aging phenomena and 
temperature effects. 
• It can coverage the incompressibility 
phenomena and make a solution for it. 
• It can be extend the procedure for most 
types of viscoelastic materials 
(compressible, incompressible, linear, non-
linear ,…..etc.)   
 
• It is recommended to extend the 
procedure for non-linear viscoelastic 
materials and using the procedure for 
rubber like materials. 
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NOMENCLATURE 

Symbol Definition Units 

aT 
C1 
C2 
E 
G 
J 
K 
P 
Ts 
t 
u 
v 
 

WLF shift factor 
WLF eqn. constant 
WLF eqn. constant 
Elasticity modulus 
Relaxation modulus 
Creep compliance 
Bulk modulus 
Pressure 
Reference temperature 
Current time 
Horizontal displacement 
Vertical displacement 
 

- 
- 

oc 
N/m2 
N/m2 
m2/N 
N/m2 
N/m2 

oc 
hr 

mm 
m 
 

Greeks letters 
Definition 

Units 

ε 
σ  
µ 
ρ 
τ 
υ 
ξ 
η 
 

Strain 
Stress 
Viscosity 
Density 
Current shifted time 
Poisson ratio 
Local horizontal coordinate 
Local vertical coordinate 
 

m/m  
N/m2 
N.hr/m2 
kg/m3 
hr. 
- 
m 
m 
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Matrices Definition 

[B] 
[δ ] 
[D] 
[F] 
[J] 
[N] 
[T] 
[X] 

Strain matrix 
Displacements matrix 
Stress matrix 
Elastic load vector 
Jacobian matrix 
Shape function  matrix 
Thermal load vector 
Coordinate matrixP 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table1 : The Laplace transform technique 
 

Constitutive equation. Laplace transform 
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Fig 1. The three parameter model 
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Fig 2: Viscoelastic cylinder surrounded by Elastic metal. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

_______Solution by Zienckwicks 
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Table 2 : Comparison of results with the solution by Zienckwiecz at 1τ =  

       

r/ro  

Viscoelastic 

Solution FEM 
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Solution 

by Zienkwiecz 

r
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σ
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Viscoelastic 

Solution FEM 

P
θσ−  

Solution by 

Zienkwiecz 

P
θσ−  

  

0.5 0.96 0.97 0.12 0.125 

0.6 0.87 0.875 0.24 0.247 

0.7 0.79 0.80 0.33 0.34 

0.8 0.77 0.78 0.41 0.415 

0.9 0.75 0.756 0.45 0.452 

1 0.74 0.748 0.48 0.49 
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Fig. 5  : Pavement Layer configuration . 
 
 
 

Table 2: Viscoelastic Material Properties for Asphalt Layer under Temperature 
Ts= 23 C 0(Ghasak 2008).  

. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Time of loading Creep 
compliance J(t) 

(1/MPa) 

Relaxation 
modulus G(t) 

(MPa) 

Bulk  
modulus 
K(t)MPa 

0.1 0.0048 208.43 231.6 
0.25 0.0063 158.1 175.7 
0.5 0.0084 118.12 131.25 
1 0.0092 108.47 120.5 
2 0.01 94.63 105.14 
4 0.012 83.5 92.78 
8 0.0132 75.5 83.9 
15 0.017 58.37 64.9 
30 0.0198 50.34 55.9 
45 0.021 46.75 52 

Asphalt Concrete 

Subbase 

Subgrade

8" 
20 cm 

12" 
30 cm 

40" 
100 cm 

Applied Load 

8",20.56cm 
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Fig 6 :Finite Element mesh for pavement layers configuration. 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig 7 : Comparison  between the Proposed procedure and Ghasak method.  
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APPENDIX 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Flow Chart 
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solving Viscoelastic 

problem  
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