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ABSTRACT

The behavior of forced convection heat transfer characteristics through and over porous layer near a
heated flat plate at variable temperature has been investigated numerically. Two cases of variable wall
temperature boundary condition are studied. The first case is of linear temperature variation with position
along the flat plate and the second case is of sinusoidal temperature variation with time of heating. The flow
field in the porous region is governed by the Darcy-Brinkman-Forchheimer equation, the thermal field in the
porous region by the energy equation and the part over the porous matrix includes flow and heat transfer
equations. Solutions of the problem have been carried out using a finite difference method through the use of
a stream function-vorticity transformation. The effects of various governing dimensionless parameters,
Darcy number, Reynolds number, Prandtle number as well as the inertia parameter are thoroughly explored.
The variation of the non-dimensional period and amplitude values of the sinusoidal temperature distinction
with time was also studied. Good results were obtained and reported graphically. It was found that the local
Nusselt number on the flat plate increases with the increasing of the increasing non-dimensional values of
period and amplitude individually.

sAadAl)
a0 Clddadia Cagdide sunge (oabse Jan s Ak (358 5 SIS (5 el daally ) jall JUE Gailad Al )y Gl J sl
O Sl g)’;ﬂghk)issj\);i\hjaﬁwomh&u\)i\ Criana’ 28] oasall il g all Apaaall 48 Hhall aladiuly 3 jie 3 ) s
JSi LS sl (e A0 Al Lel dagiiall Jgha (e sl ae Lilad 5 ) pall il o sl clS W1 A ) dalosal) dagdal)
(Brinkman-) 4¢la e alaie Wl G jall ddalas abuadl o ) B3 L jall by )l Z3 5wl e S (e 3l ae (o250
da (:_'1' L;ALMLAS‘ L.m}l\ Bl u\_ua.u DAY ;)';j\ E) g.;ALw.Al\ .E.».A)S\ AAA ALl Adoles B) g.r“‘)u Osd e 3.aiuadl Forchheimer
sre A AL 0 a3 Cadl IR (Gl Aladal sall) 43l Crardind 3B 5 Baasall (5 dll A8 sk pladinly Laae aSlall ¥ alaal)
Jsh 8 sl Hils A o Q5 elly ALVl | I3 ) gealll s QIS (551 50 a8 5 ¢ 5al giy 5 a8y ¢ sy B ) e ey saalaall (40
28 5 sl il e Jseanll 5 5 Janlads IS i) S8 a8 a3l ae o sall 50l A pril Apae S A sl gl )
Bas o JS0a M A sall g i)l 5 Jsda 30l 3 2y Aaduall Jsh e raia sall s a8 ) il 228 (10 285

KEYWORDS: Porous Media, Forced Convection, Heat Transfer, Numerical Solution.

373




Luma F. Ali

Forced Convection Thermal Boundary Layer Development
In A Porous Media Near A Wall With Variable
Temperature Boundary Condition

INTRODUCTION

Forced convection heat transfer through
porous media has a major topic for various studies
during the past decades due to many engineering
applications such as thermal insulation
engineering, water movements in geothermal
reservoirs, underground spreading of chemical
waste, thermal insulation, direct-contact heat
exchangers, nuclear waste repository, grain
storage, and enhanced recovery of petroleum
reservoir. The heat transfer with forced
convection in porous media is an interesting and
challenging physical problem; therefore a
considerable attention was given to this type of
problems by accomplishing theoretical and
experimental studies.

The problem of forced convection flow
and heat transfer along a flat plate in a porous
medium was examined by Beckermann &
Viskanta [1987] including both, the inertia and
boundary effects, while porosity variations close
to the wall are not considered. They derived the
velocity and temperature profiles for the fully-
developed momentum boundary layer and from
the results they determined the wall shear stress
and the Nusselt number as functions of modified
Reynolds and Prandtle numbers. In addition,
Vafai and Thiyagaraja [1987] analytically studied
the fluid flow and heat transfer for three types of
interfaces, namely, the interface between two
different porous media, the interface separating a
porous medium from a fluid region and the
interface between a porous medium and an
impermeable medium. Another related problem is
that of Poulikakos and Kazmierczak [1987]. In
that work a fully developed forced convection in a
channel filled with a porous matrix was
investigated and the existence of a critical
thickness of the porous layer at which the value of
Nusselt number reaches a minimum was
demonstrated.

A fundamental investigation on the
effects of employing intermittently porous cavities
for regulating and modifying the flow and
temperature fields was done by Vafai & Huang
[1994]. They used a general flow model that
accounts for the effects of the impermeable
boundary and inertial effects to describe the flow
inside the porous region and the solution of the
problem has been carried out using finite
difference method through the use of a stream
function-vorticity transformation. Also the effects
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of various governing dimensionless parameters,
such as the Darcy number, Reynolds number,
Prandtle number and the inertia parameter were
thoroughly explored. Then Huang & Vafai [1994]
presented an analytical solution for forced
convection boundary layer flow and heat transfer
through a composite porous/fluid system by
considering a layer of porous media over a flat
plat with constant temperature boundary
condition. The details of the interaction
phenomena occurring in the porous medium and
the fluid layer were systematically analyzed,
revealing the effects of wvarious parameters
governing the physics of the problem. Their
results presented a comprehensive yet easy
comparative base for numerical solutions
addressing this type of interfacial transport and
their analysis provided a rather accurate
simulation of the interfacial transport.

Furthermore a finite-volume
computational model had been developed by
Vadakkan [2001] to analyze the steady

performance of a pin fin array experiencing forced
convection in a duct. This pin fin array was
considered using transport equations of porous
media. The analysis had been done utilizing two
different approaches in solving the temperature
fields in the porous structure and indicated that
there is a significant difference between the solid
and fluid temperature at higher values of porosity
and lower values of the interstitial heat transfer
coefficient.

For an unsteady forced convection on a
flat plate embedded in the fluid-saturated porous
medium with inertia effect and thermal dispersion,
Cheng & Lin [2002] presented a precise and
rigorous method to obtain the entire solution from
one-dimensional transient conduction to steady
forced convection in porous medium under
conditions of uniform wall temperature and
uniform heat flux, respectively. In addition, the
aim of their work is to quantify the effect of
inertia force on the intermediate regime of
unsteady forced convection in a porous medium.
Huang et al. [2005] carried out a numerical study
for enhanced heat transfer from multiple heated
blocks in a channel by porous covers. The flow
field was governed by the Navier-Stokes equation
in the fluid region, the Darcy-Brinkman-
Forchheimer equation in the porous region, and
the thermal field by the energy equation. Solution
of the coupled governing equations was obtained
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using a stream function-vorticity analysis. This p v (4)
study details the effects of variations in the Darcy ot TP T

number, Reynolds number, inertial parameter, and
two pertinent geometric parameters, to illustrate
important fundamental and practical results.

In order to study the development of the
forced convection thermal boundary layer in a
definite layer of porous media near a wall with
two types of temperature boundary condition, a
flat plate of specified length and covered with
definite height of porous media and a fluid with
ambient velocity and temperature flowing over
and through the porous matrix is taken into
account in the present paper. Two cases for the
lower boundary temperature condition are used;
one is linear temperature variation with the length
of the plate and the other is the temperature
boundary condition that varies sinusoidally with
time.
MATHEMATICAL FORMULATION

The configuration of the problem under
investigation is depicted in Fig. 1. It includes a
flat plate of length L covered with a porous
media layer of height H . A fluid with constant
temperature T_ and velocity U_ is flowing

through and over this porous medium layer. In
this study, it is assumed that the flow is laminar,
incompressible, and two dimensional. In addition,
the thermo-physical properties of the fluid and the
porous matrix are assumed to be constant and the
fluid-saturated porous medium 1is considered
homogenous and isotropic and in local
thermodynamic equilibrium with the fluid. For the
fluid region the conservation equations for mass,
momentum, and energy are [Vafai & Huang
1994]:

Pt v, =0 (D
ot

oV

N, W, =——Lvp o vy, (2
ot P

orT

K‘wf VT, =a, VT, 3)

Based on the Brinkman-Forchheimer-
extended Darcy model, which accounts for the
effects of the inertial and impermeable boundary,
the mass, momentum and energy equations in the
porous matrix can be expressed as [Vafai &
Huang 1994]:
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In order to express the governing
equations in dimensionless form, the following
non-dimensional quantities may be defined:
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After utilizing the above dimensionless
groups and canceling the pressure term P from
the resulted equations [Qahtan 2005], the vorticity
and temperature equations respectively for the
fluid region may be expressed as follows:
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ot oX oY Re, | ox*  oY?
a0, +a(ue), +a(\/a)f _ 1 3’0, +aza, 9)
at’ X oY Re, Pr, | oX* oY’

Whereas the vorticity and temperature
equations for the porous region may be stated as
the following two equations [Qahtan 2005]:
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06, oUe), Vo), 1 (8%, o%0,) (11)
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The governing equations above are cast in terms
of the vorticity-stream formulation. Therefore the
stream function and vorticity may be introduced

as:

U=V, y_ ¥ (12)
oY oX

M Y (13)
oxX oY

Where (w) is the vorticity component

perpendicular to the flow surface. Also the
vorticity may be related to the stream function by
using the stream function equation which may be
formulated as:

2 2
P A Y _v2y,

- (14)
ox? oy’

The applicable boundary conditions necessary to
complete the problem formulation are:

2
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In the present work two cases of boundary
conditions where taken for the temperature
condition at the lower boundary Y = 0. The first
case is taken as temperature boundary condition
which varies linearly with X and it is expressed
in non-dimensional form as:
g=X (16)

While the second case for the lower
boundary condition is the temperature that varies

sinusoidally with time and formulated in non-
dimensional form as follow:

*

19=1+asi:E27ﬂ
n)

(17)

In addition to the above boundary
conditions, the two sets of conservation equations
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are coupled by the following matching conditions
at the porous/fluid interface [Vafai & Huang
1994], [Huang & Vafai 1994]:

u‘y:H’ _u‘y:H"V y:H’:V‘ y=H"*
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and the initial conditions are:
O=y=w=0 for t =0 (19)

In the present work, an explicit finite
difference numerical technique is used in order to
solve the flow and heat equations. The finite
difference form of the fluid and porous media
regions and boundary and initial conditions are
formulated in the next section.

NUMERICAL SOLUTION

To solve the above partial differential
equations, a finite difference numerical technique
is employed. A grid of points is first established
throughout the calculation domain. However, the
uniform rectangular grid system is the same for
the fluid and porous media regions.

An explicit finite difference method is
utilized for the energy and vorticity equations
(equations  (8-11)) as recommended by
[(Anderson et al. 1984) and (Fletcher 1987)]. In
the explicit method, the vorticity and temperature
are calculated at future time (t°+at") for any
internal grid by wusing the vorticity and
temperature values at time (t") for the specified
grid and the neighbor grids which are known from
the initial conditions of the problem under
consideration. By employing this time matching
technique the values of the vorticity and
temperature for the whole domain will be known
for each time step until reaching the steady state
condition. This condition is attained when the
value of the average Nusselt number for two

. -8
consecutive runs would become less than 107°.
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On the other hand, after formulating the stream
function equation (equation (14)) in finite
difference form, the relaxation method is utilized
in order to solve the resulted algebraic equations
iteratively at each time step by employing Gauss-
Seidel iterative technique. In this method,
convergence has been achieved when the absolute
value of relative error for the whole grid points
between two successive iterations, found by trial
and error, was equal to 107*.

A computer program written in
FORTRAN was used. Once the above algebraic
flow and heat transfer equations is solved, the
temperature distribution for internal and boundary
grid points is identified. Then, when the steady
state condition for the linear variation temperature
boundary condition is reached and specified time
for the sinusoidal variation with time temperature
boundary condition is spend, the local Nusselt
number value is found by employing the
following formula [Anderson et al. 1984]:

Kt , — 303, +46(i,2) - 6(i.,3)
K, 2AY

Nuy, =-X = (20)

where K /K, is taken equal to one.

While the average Nusselt number is
found by integrating the local Nusselt number
along the plate length by employing the Simpson

numerical integration rule as given in the
following expression:
— 1k
Nu:—J'Nux dx 210
L 0
RESULTS AND DISCUSSION

In the present paper, the numerical values
for the case under consideration was taken for a
porous media layer of height H/L=0.02 and

porosity equal to 0.92. The metal foams was
used as a porous medium and the material was
Aluminum (606 -T6) with thermal conductivity

of 200W/m.K . Two cases of the temperature

boundary condition at the lower boundary of the
porous matrix are studied. The first case is the
linear temperature variation with position until
reaching steady state condition and the second
case is the sinusoidal temperature variation with
time for a specified period of time. Several values
of dimensionless parameters were taken in order
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to study their effects on the heat transfer behavior.
The Reynolds number values were verified within
the laminar and transition regions
(1%*10° —5%10°), the Prandtle number values were
taken for three most utilized fluids (air 0.7, water
7, and engine oil 100), three Darcy number
values were considered (8x10°°, 2x10°, and
9x107"), and the effect of three inertial parameter
values (0.001076,0.0025,0.00323) were studied.
Finally, the wvariation effect of the non-
dimensional values of the sinusoidal temperature
variation with time boundary condition was also
investigated. These constant values were the non-
dimensional amplitude a (0.2, 0.4, and 0.8) and
the non-dimensional period 77 (0.005,0.01, and

0.02).

A testing for the optimum distance
between grid points in X direction was done and
the relation between the average Nusselt number
and the number of grid points was sketched in
Fig. 2 for the linear temperature variation with
position and sinusoidal temperature variation with
time cases. From this figure, it is shown that a 75
grid point in X direction is suitable to choose for
the present case study. As well, similar test was
made for the number of grid points in Y direction
and it was found that the 75 grid point is
appropriate.

The propagation of the temperature
through and over the porous media for five
instances is demonstrated in Fig. 3 for the linear
temperature variation case and in Fig. 4 for the
sinusoidal temperature variation case. It is clear
from these figures that the temperature values
through the porous matrix are high in the
beginning because of the small thermal boundary
layer effect. But after a period of time this layer is
grown up and then the temperature decreases.

Effect of the Reynolds Number

The wvariation of the average Nusselt
number versus time for three values of Reynolds
number for linear temperature variation case is
presented in Fig. 5. It is clear from this figure that
the time required to reach steady state condition
decreases with increasing Reynolds number
values. The increasing of Reynolds number causes
a bigger value of the inertia force with respect to
the viscosity force and then increasing in the
velocity gradient followed by decreasing of the
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time required for steady state condition. The same
behavior was obtained for the sinusoidal case for
specific non-dimensional time (equal to two) as
illustrated in Fig. 6. In this figure, only one value
of Reynolds number is drawn because, in the
sinusoidal temperature case, there is not any
significant effect of Reynolds number variation on
the average Nusselt number.

By referring to Fig. 7 and Fig. 8 it can be
observed that the temperature gradient increases
with the increasing of the Reynolds number. As a
result, this increase in temperature gradient causes
an increase in the local Nusselt number value as
exposed in Fig. 9 and Fig. 10 for the linear and
sinusoidal temperature variation respectively.
Furthermore, the effect of the Reynolds number
on the thermal boundary layer thickness for the
two cases under study can be noticed from Fig. 11
and Fig. 12. From these two figures, it can be
deduced that the thermal boundary layer is grown
inside the porous matrix only because of the
solid structure of the porous media which causes a
loss in the heat energy. As well, from these two
figures it can be noticed that the thermal boundary
layer thickness decreases with the Reynolds
number increasing. This decreasing of the layer
thickness is due to the sharp decreasing in the
temperature gradient in the Y -direction because
of the diffusion term small value.

Effect of the Darcy Number

Results for the effect of Darcy number
variation are presented in several figures. In Fig.
13 the relation between the average Nusselt
number versus time for the linear temperature
variation case is sketched. From this figure, it is
clear that the time required for steady state
condition decreases with the decreasing of the
Darcy number values. This behavior is due to the
increasing of the velocity gradient in Y -direction
with the Darcy number decreasing values.
Moreover, the decrease in Darcy number value
means an increase in the flow uniformity and
reduces vorticity and this leads to the reduction in
the time required for steady state condition.
Similar figure is presented for the sinusoidal
temperature variation case for specific non-
dimensional time value in Fig. 14. There is no
significant change in Nusselt number values when
the Darcy number is varied therefore only two
cases were sketched in this figure.
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The effect of Darcy number variation on
the local Nusselt number along the flat plate is
presented in Fig. 15 and Fig. 16. From these
figures, it is clear that the local Nusselt number
increases with the decreasing of the Darcy
number. This decrease in Darcy number with
constant porosity cause a decreasing in the solid
fraction volume and increasing in the heat transfer
exposed area. As a result, a rising in the
temperature slop in Y-direction is occurred as
shown in Fig. 17 and Fig. 18 and consequently an
increasing in the local and average Nusselt
number values. Fig. 19 and Fig. 20 is adapted to
the non-dimensional temperature distribution and
the thermal boundary layer thickness. These two
figures show that any reduction in Darcy number
yields a decreasing in the thermal boundary
thickness because of the enlarging in the velocity
slop in Y -direction.

Inertial Effects

In order to study the inertia effect several
figures are sketched. In Fig. 21, the relation
between the average Nusselt number with time is
illustrated. From this figure, it is clear that the
time required to reach steady state condition
decreases with the inertia effect increase. This
behavior is due to the increasing in the velocity
slop with inertia effect rising and then leads to a
reduction in the time required for steady state
condition. Similar figure is presented for the
sinusoidal temperature variation but for specific
value of time in Fig. 22. In addition, it can be
noticed that the inertia is less effective than the
Darcy number on the required time for steady
state and this is because of the velocity slop value.

In Fig. 23 and Fig. 24, the inertia effect
on the local Nusselt number along the flat plate is
illustrated for the linear and sinusoidal
temperature variation. From these two figures it is
shown that any increase in the inertia effect leads
to a small reduction in local Nusselt number. This
behavior is because of the small reduction in the
temperature slope in Y -direction, as shown in
Fig. 25 and Fig. 26, and this slope reduction
causes a small decreasing in the local and Average
Nusselt number values. For the same reason, the
thermal boundary layer thickness decreases with
the inertia effect rising as depicted in Fig. 27 and
Fig. 28.

Effect of the Prandtle Number
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To study the effects of the Prandtl number
on the flow and temperature fields, three different
Prandtle numbers were chosen such that they will
cover a wide range of thermo-physical fluid
properties such as the kinematics viscosity. The
variation of the average Nusselt number versus
time is shown in Fig. 29 for linear temperature
variation. From this figure, it is clear that
whenever the kinematics viscosity is lower, the
time required for steady state condition is higher.
The reason of this trend is that, at specific
Reynolds number, lower value of viscosity leads
to smaller viscosity force and then smaller inertia
and this needs more time to reach steady state. On
the other hand, Fig. 30 is sketched for the
sinusoidal temperature variation and for specific
time. It can be seen that the time required to reach
a complete periodic behavior (vanishing of
transient period) raises with the Prandtle number
increasing. The reason of this manner is that the
inertia force increases with the viscosity force
increasing which depends on fluid type.

Obviously, the Prandtle number variations
have no effect on the flow field. Whereas, the
variation of Prandtle number has significant effect
on heat transfer as it is presented in several
figures. In Fig. 31 and Fig. 32, it can be observed
that the local Nusselt number increases with the
increasing of the Prandtle number because of the
rate of temperature change with respect to the Y -
direction high value. This high rate of change
value is clearly shown in Fig. 35 and Fig. 36 for
linear and sinusoidal temperature variation
correspondingly. For the same reason the thermal
boundary layer thickness decreases with
increasing Prandtle number values as illustrated in
Fig. 33 and Fig. 34.

Finally, an attempt was made to study the
effect of the non-dimensional period and
amplitude variation for the sinusoidal temperature
boundary condition at the lower boundary near the
flat plate. Results for this attempt are presented in
several figures. The effect of the non-dimensional
period on the variation of the local Nusselt
number at the end of the flat plate is illustrated in
Fig. 37. From this figure, it is clear that the local
Nusselt number increases slightly with the rising
of the non-dimensional period increasing. While
there is not any difference in the temperature rate
of change with respect to Y -direction as it is
noticed from Fig. 38. Similar figures are sketched
in order to demonstrate the effect of the non-
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dimensional amplitude. The same trends of curves
are obtained when sketching these figures in order
to express the effect of non-dimensional
amplitude variation in Fig. 39 and Fig. 40. From
these two figures, it can be observed that the local
Nusselt number increases with increasing
amplitude and also there is not any significant
change in the temperature rate of change with
increasing amplitude. The reason of the increasing
in local Nusselt number is due to the direct
relation with the temperature.

The heat transfer characteristics of the
present issue for the linear temperature variation
with position and sinusoidal temperature variation
with time cases are sketched in the following two
figures. These figures include the heat transfer
characteristics of previous work [Qahtan 2005]
with constant temperature condition for the lower
boundary. In Fig. 41, it is found that the
temperature gradient in Y -direction for the
sinusoidal temperature case is identical to that of
Qahtan. However, the temperature gradient for the
linear temperature case has a little distinction in
magnitudes but the same trend of curves. This
behavior leads to a similar trend of curves for the
local Nusselt number variation for Qahtan's work
and sinusoidal temperature case as shown in Fig.
42.

CONCLUSIONS

The main focus of this research is to study
the development of forced convection thermal
boundary layer development in a porous media
near a flat plate with variable temperature
boundary condition by using the finite difference
numerical technique. It may be concluded that the
rate of heat transfer increases with the Reynolds
number and Prandtle number increasing. In
addition this rate increases with the inertia effect
and Darcy number decreasing. Furthermore, the
same trend of curves is obtained for the two cases
of temperature boundary condition; the first case
is of linear temperature variation with X-direction
and the second is of sinusoidal temperature
variation with time. It can be deduced that the
time required vanishing the transient behavior of
the sinusoidal temperature variation and reach a
complete periodic behavior increases with the
Prandtle number rising. Finally, the increasing of
the non-dimensional period and amplitude of the
sinusoidal  temperature  variation boundary
condition case yields an increase in the local
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Nusselt number. This increasing in Nusselt
number leads to an increase in the rate of heat
transfer.
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NOMENCLATURE

Symbols
a : Non-dimensional amplitude.

AL : Inertial parameter for porous medium.

Cp : Specific heat [ J/kg.K ].

Da : Darcy number.

F : A function used in expressing inertia terms.

H : Height of porous medium [m ].

K : Thermal conductivity of the porous media.

K : Permeability of the porous medium [ M ].

L : Plate length [m ].

NU : Nusselt number.

P : Pressure N/m?.

P : Non-dimensional pressure.

Pr : Prandtl number.

Re: Reynolds number.

t: Time[s].

t* : Non-dimensional time.

T : Temperature [°C ].

U: X— Component velocity [m/s].

U: X —Component non-dimensional velocity
u/u, .

V: Yy —Component velocity [m/s].

V : Y —Component non-dimensional velocity
v/u,, .
V .

. Mean value of X and Y —velocity

components.
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X : Horizontal coordinates.
X : Non-dimensional horizontal coordinate.
Yy : Vertical coordinates.

Y : Non-dimensional vertical coordinate.

Greek Symbols

a : Thermal diffusivity [m? / s].
& : Porosity.

1 . Non-dimensional period.

¥ . Non-dimensional stream function.
@ : Non-dimensional vorticity.

¥ Non-dimensional temperature.

8

(o
—

Fluid media

Porous media

VYVYYYYYYY

Fig. (1): The Schematic Diagram of the
Physical Model.

o : Thermal capacity ratio.
p : Density [kg/m”® 1.
4 : Dynamic viscosity of fluid [ N.s/m? ].

Subscript

oo : Free stream.
f : Fluid.

P : Fluid inside porous media.
eff : Effective.
w: Wall.

S: Solid.
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Fig. (16): Effect of Darc§f Number on the local
Nusselt Number along the Flat Plate (Sinusoidal).
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Fig. (21): Effect of Inertia on the Average Nusselt Number with Non-Dimensional Time (Linear).
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Fig. (22): Effect of Inertia on the Average Nusselt Number with Time (Sinusoidal).
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Fig. (27): Effect of Inertia on the Temperature Distribution at Specific Reynolds Number (Linear).
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Fig. (28): Effect of Inertia on the Temp. Distribution at Specific Reynolds Number (Sinusoidal).
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Fig. (30): Effect of Prandtle Number on the Average Nusselt Number Variation with Time at Specific Reynolds
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Fig. (33): Effect of Prandtle Number on the Temperature Distribution (Linear).
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Fig. (34): Effect of Prandtle Number on the Non-Dimensional Temp. Variation (Sinusoidal).
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