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ABSTRACT

Productivity estimating of a construction operation is an essential tool for the successful completion of the
construction provess. Productivity of a construction operation is defined as cutput of the system per it of
time.
In this research Artificial Meural Networks approaches are presented, The main reason for using neural
networks for construction productivity estimation is the requirement of performing complex mapping of
environment and management factors to productivity.
A generic description of the artificial neural networks model is provided, followed by summarized factors
that affect ceramic labor productivity, then neural-retwork model are developed for Estimating ceramic
walls productivity, the input data for the model based on experienced superintendents emploved by a leading
constmuction general contractor, test resuhts show that the ANN approach can produce a sufficiently accurate
estimate with & limited data-collection effort, and thus has the potential to provide an efficient lool for
construction productivity estimation.
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INTRODUCTION

Estimating is an essential tool for
suecessfiul completion of a2 construction process.
The process for a construction activity can be
broadly divided into the direct costs and the
indirect costs plus contingency and profit. The
direct costs include costs for materials, labors and
equipment. The direct costs are reached when
combining the quantitative finite factors to the
qualitative subjective factors in the estimating
process. The quantitative factors include unit
prices of materials, labor wages and equipment
depreciation. The qualitative subjective factors ame
mare difficult to determine. They melude, among
others, productivity rates and  associated
construction risks. (Gowld 2002)

Experienced estimators rely on their
personal expertize to incorporate the effect of
qualitative factors in their estimate. Less
experienced estimators could benefit from tools
that would imcorporate such effects. Neural
networks are (ools that attempt to mmic the
human bram functons. Like the brain, newral
networks learn from past treils. They attempt to
generalize on the data provided.

OBJECTIVES

The main objective of this research 15 (o
mtroduce alternative approach of uwsing newral
network for estimating prodoctivity of ceramic.
This ohjective i= to be justified through the
following procedures:

a- gathering background nformation by
reviewmyg the previous studics rclated
on the estimating the productivity of
project activities techniques.

b- adjust the factors that affect the
productivity rates of ceramic activities
and there data gathering.

¢- developing neural network model
capable of predicting the productivity

rates of ceramic for walls.

PRODUCTIVITY

One of the most contenfious areas in
construction  claims is the calculation or
estimation of lost productivity. Unlike direct
costs, lost productivity 15 oflen not tracked ar
cannot  be  discermned  scparatcly and
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contemporaneously. As a result, both capsation
and entittement concerning the recovery of lost
productivity  are  difficult 10 establish.
Compounding these situations, there is no uniform
apreement within the construction industey as o a
preferred  methodology  of  calenlating  lost
productivity. There are, in fact, numerous ways to
calcolate lost productivity. Many methods of
calculation are open to challenge with respect to
validity and applicability to particular cases --
thus making settlement of the issue on a particular
project problematic, (CLT T984)

“Productivity 15 measured penerally by
the output per hour of input. (Kavanaugh [978)

PRODUCTIVITY AND PRODUCTION

All too often 1o construction, the lerms
“productivity” mnd “production”™ are used
interchangeably. Thiz is, however, ncomect.
Production is the measure of owtput (ie., things
produced) whereas productivity iz the
measurement of the production. The followmng
two formulas can be used to calculate these two
Terms.

Productivity = Output (units completed) /
Input (work or equipment hours)

Productivity Factor = Actal
Productivity / Baseline or Planned Productivity

Given this sel of operating lerms, it 15
therefore possible for a contractor o achieve
[00%0 of its planned production but not achieve 1ts
planned productivity. That is, a contractor could
well be accomplishing the planned rate of
production of 300 Imear fect of pipe/day m the
ground but be cxpending twice the smount of
labor planned to accomplish this daily production
rate, for example. In this case, the confracior
would be accomphshmg 100% of plinned
production but operating at 50% productivity.
{AACE 2004)

THE FACTORS THAT AFFECT THE
PRODUCTIVITY
Mukherjee and sing (1973) classified
these factors inlo two groups which are:
-  External factors that we canmot
comtrol them.
- Intermal factors

comiro] them.

that we can
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Prokopenko (1987} classified these
factors into three pronps:

Work related factors,

- Input or resource related factors.
- Boundary related factors.
Burnham (1982} made the
classification which classified mto foor levels;
a- State level that contains:

1- Human recourses as general
education lewel, work
motivation  systems,  work
circumstances cooperation in
the decision making age and
experience of the laborers.
Technology and the activitics
researchers and development.

hest

2.

I
wiork

Sectors level that contains:

* Product design and quantity
engineering application.

« DMachine and equipment
LSHETe.

» Training and development.

» Production volume for each
persof.

o= Work quality level.

d- Man power level.

b=

PERFORMANCE
The word performance conlains two
related concepts they are:
- Performance is the results that
imdividual can achieve in work.
= Performance 15 all that mdividual
do to affcct the work results.
(Lefion 1982}

Which means that the performance is
continues operation the action refers to the inputs
and the results are the outputs. (Feldman 1983)

On the other hend Bam (1982) found
imother defimition for  (performance) as
mathematic equaht_f, as the following:

Performance = skill + motivation
- 3kill = training + experiencs
- Moptivation = aftitde
environment

—
T

The last mentioned defmiton is so
mmportant, that we have the two performance's
clements (skill + motivation) to get a particular
performance level, so al any level there is no
copasity to compensate the lake of skill by

Increasing mativation or the reverse.
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Scientifically, it can't put a8 maximum
level for the molivation but 1t i3 possible to find
maximum man capability according to  the
indicators of mantel and physical nature of human
body.,

ARTIFICIAL NEURAL NETWORKS

(ver the past two decades there has been
an increased interest in a mew clas of
compurtational mtelligence syslems known as
Artificial Neural Networks (ANNs). This tvpe of
networks (.. ANNs) has been found to be
powerful and versatile computational tools for
organizing and correlating mformation m ways
that have proved to be useful for solving certain
types of problems which are too complex to
understand, too poorty to anakyze, or too resource-
intensive to tackle using more traditional
computational methods.

ANNs have been soccessfully used for
many lasks including pattern recogmition, function
approximation, optimization, forecasting, data
reiricval, and automatic control. As ANNs can be
useful complement to more traditional numerical
and statistical methods, their wse merits continued

investigation. (TRE, 1999)

ARTIFICIALL. NEURAL NETWORK
STRUCTURE AND OPERATION:

A typical structure of ANNs consists of a
mumber of artificial newrons variously known as
processing elements (PEs), or nodes, or units that
are usually amanged n layers: an input laver, an
output layer and one or more intcrmediate [ayvers
called hidden layers.

The input from each (PE) in the previous
layer (x;) is multiplied by an adjustable connection
weight (w;) at each PE, the weighted input sigmals
are summed, and a threshold value (8;) may be
added. This combined input (I;) is then passed
throngh a transfer {activation) function (f.)) to
produce the output of the PE (y;). The output of
one FE provides the mput to the PEs m the next
layer. This process is summarized in equations:

L= Zwﬁxi + E}
Summation

y; = (I
transfer

L1y

(2)

Whers

I; =the activation level of node j:
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W; = lhe connection weight between nodes i
and j;

L =the mput fromnodei,i=0.1.......n;

f; = the bias or threshold for node j:

¥j = the oviput of node j; and

fl.) = the transfer (activation) fanction

The propagation of information in ANNs
starts at the mput layer where (he input data are
presented. The netwaork adjusts its weights on the
presentation of a4 training data set and uses a
leaming rule to find a set of weights that will
produce the inputfoutput mapping that has the
smallest possible emor. This process is called
‘leaming” or “training’. Once the training phase of
the model has been successlully accomplished,
the performance of the trained model has to be
validated using an independent testing set.

As descoibed zbove, ANNs leam from
data examples presented to them and use these
data to adjust their weights in an attempt to
capture the relationship between the model input
varizbles and the comesponding  outputs.
Consequently, ANNs do not need any prior
knowledge about the nature of the relationship
between the input/output variables, which is one
of the benefits that ANNs as compared with most
empinical statistical methods. (Shakin 2003)

TRANSFER (ACTIVATION)
FUNCTIONS

Transfer functions can take a variety of
forms. The logistic sigmoid and hyperbolic
tangent transfer functions are the most common
functions in neural networks. The logistic sigmoid
fumction is usually used when the desired range of
ontput values 15 between 0 and 1, whereas the
hyperbolic tangent function is often used when the
desired range of output values is between —1 and
1. The logistic sigmoid and hyperbolic tangent
transfer functions are shown in figure and
equations, respectively. Usnally, the same transfer
function is used for all processing elements in a
particular layer. (§hakin 2003)
FUy=—

Tre 0 (3)
S _ )

f{f}‘—l.-.

e

{4)
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TYPES OF NEURAL NETWORKS:

FEED-FORWARD NEURAL NETWORK:
The feedforward neural network was the first and
arguably simplest type of artificial neural network
devized. In this netwark, the information moves in
only one direction, forward, from the input nodes,
through the hidden nodes (il any) and to the
output nodes, There are no cycles or loops in the
netwark. (Roman 2009)

RADIAL BASIS FUNCTION (RBF)
NETWORK:

Redial Basis Functions are powerful techniques
for inforpolation in multidimensional space. A
RBF 15 a function which has built into a distance
criterion with respect to a centre. Radial basis
functions have been spplied in the area of neural
networks where they may be used as a
replacement for the sigmoid hidden layer ransfer
characteristic in Multi-Laver Perceptions. REF
networks have two layers of processing: In the
first, input is mapped onto each RBF in the
hidden' layer. The RBF chosen is usually a
(aussian. In regression problems the output layer
is then a linear combinetion of hidden layer values
representing mean  predicted output,  The
interpretation of this output layer valve is the
game as & repression model in statistics. In
classification problems the owtput laver is
typically & sigmoid fonction of a linear
combination of hidden layer values, representing a
posterior probability. Performance in both cases is
often improved by shrinkage techniques, known
as ndge regression in classical statistics and
known to correspond to 2 prior belief in small
parameter values (and therefore smouoth cutput
functions) in a Bavesian framework. (Komon
2009)

KOHONEN SELEF — ORGANIZING N
ETWORK:

" The self-organizing map (SOM) mvemed by

Teuva Kohonen performs a form of unsupervised
iceming. A set of artificial neurons leam to map
points in an input spacc to coordinates in an
cutput space. The input space can have different
dimensions and topology from the output space,
and the SOM will attempt to preserve these.
(Roman 2009)

RECURRENT NETWORK:
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Conary 1o feed forward networks, recurrent
nenral networks (RNs) are models with bi-
directional data flow. While a feed forwand
network propagates data linearly [rom input to
output, EMs also propagate data from [ater
processing slages 1o earlier slages, there are many
types of recurrent network, and these types are
{Roman 2009)

+ Simple recurrent network:

» Hopfield network:

s  FEcho state network:

« Long short term memory network:

STOCHASTIC NEURAL NETWORKS:

A stochastic neural network differs from a typical
peural network because it infroduces random
variations into the network. In a probabilistic view
of neural netwarks, such random variations can be
viewed a5 a form of statistical sampling, such as
Monte Carlo simulation, Boltzman machine,
{Roman 2009]

MODULAR NEURAL NETWORK:
Biological studies have shown that the human
brain finctions nol as a single massive network,
but as & collection of small networks. This
realization gave birth to the concept of modular
neural networks

NEURD - FUZZY NETWORKS:

A neuro-furzy network s a fuzzy infercmce
system in the hody of an artificial neural network.
Depending on the FIS type, there are saveral
layers that simulate the processes imvolved in a
fumy inference like fuzzification, infercoce,
apgregation and defuzzification. Embedding an
FIS in a general structure of an ANN has the
benefit of using available AN traning methods
ta find the parameters of a fuzzy system. (Homan
2009)

IDENTIFICATION OF ANN MODEL
VARTABLES

The neural network application for ceramic

ivity esfimation & an example of causal
forecasting, This type of forecasting considers a umber
af variables that affoct the variable to be predicted. This
type of fonecasting is more powerfil than the truditional
rrethods, The purpose of productivity estimation s (o
prodict or estimate the peoductivity from known or
assurmed values of other variables related to it One of
the most important tasks of this objective is to determime
which variables are mmportant indicators. Once the
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appropriate  varizhles bave been determined, the
productivity estimation can be performed eilher using a
neurzl network or amy other tool, such as megresson
anahysis.

This ressarch describes the development of
newral netwark models of ceramic activity productivity
based on current projocts data. The initial impetus o the
research was the paucity of dala available that can
provide Tehiable mformation sboul the productividy.
The data collection method used I this stody is the
direct data gethering from projects and the direct
interview with the concerned engineers and foremen.
‘This method faces a great difficulty nowadays because
of the unsecuned stams of the country, and the shortage
in projects.

Independent variables wore carefully selected
and well defined as follows:

V1  Ganper expesicnce.
V2 Ganger age.

W3 Mumberof assistant
laborers.

V4  Areaof ceramic tile.
V5 Sitc complication.

V6  Height level of the work
V7 Climate states (Weather)

MODEL IINPUTS AND OUTPUTS

Tt is peneralby accepted that seven parameters have
the most sipnificant impact on the productivity
estimation of coramic activity, and are thus used as the
ANN model nputs.

The output of the mode is the total prodoctivity
of ceramic activity, A code is used i this chapler @
identify the names of the different models developed.
The code consists of two parts separsted by a lyphen.
The first pert an abbreviation of the curment
cutput (ie. Total productivity, TD). The second pert
denotes fhe model mumber. Henee, for example "TP—
1" represents Total productivity model. The available
dlata extracted from the daisbase in appendix A

PRE-PROCESSING AND DATA
DIVISION

Data processing is very importat in using
neoral networks  successfully, Rt determines  what
information is presented to create the model during the
training phase. Tt can be in the form of data scalmg
normalization and trnsformation.  Transforming the
outpit data into some known foems {eg dog,
exponential, o) may be helpful o mprove ANN

performance.
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The next sep in the development of ANN
mndels i5 the division of the available data into ther
subsets, trining, fesing and validation ssts. Trail-and-
emor process was nsad 1o sedect the best dnision, by
using Newframe software, The network that performs
best with mespect to testing emor was used in this work
{compeared with other oriteria to cvaluate the peediction
performance, traming crmor and comelation of validation
sot). Using the defalt parameters of the sfiware, a
mmber of networks with different divisions were
developed and the mesults are summarized in Table
below.

It can be secn that the best division is 60%% for
training set, 30% for testing set, and 10% for validation
set, accordling to the highest coefficient af carrelation (f)
and the low dilference between the vahies of testing
error. Thues, this division was adopted in the model

The effect of using different choices for
divisions (12, stiped, blocked, and random) was
mvestigated and shown n Table below. It can be seen
that the performance of ANN model was rlatively
meensitive o e method of division. The betisr
med

SCALING OF DATA

Once the available data have been divided indo
their subsets, the mput and outpet varishles are pre-
procesged by scalmg them to eliminate their dimension
imd 10 ensure that all varsbles reccive equal attention
during traming. Scaling has to be commensorate with
the fimits of the transfer fimetions vsed in the hidden and
ot layers (fe. —1.0 to 1.0 for tanh transfer fonction
and 0.0 o 1.0 for sigmoid transfer finction), The simple
lincar mapping of the varables' extremes to the neural
networks practical extremes is adapled for scaling, as it
is the most commonly used method, (Shaldn, 2003),
As part of this method, for each variable x with
minimum and maxdmem valoes of X and X,
respectively, the scaled valie wxn, 5 calculated s
folkras:

L
S (5)
Xpax = Xmin
MODEL ARCHITECTURE,
OPTIMIZATION AND STOPPING
CRITERIA
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One of the most important and difficult 1asks in the
development of ANN models is the determination of the
madel architecture (Le. the number and commectivity of
the hidden laver nodes). A network with one hidden
provided that sufficient commection weights are used,
{Shafin ef al 2002).

Consequently, one hidden layer is used in this
resgarch. The general strategy adopted for finding the
optimal nefwork amhitecture and intemal parameters
that control the training process is as folkows: 2 number
of trials were carried out using the default parameters of
the software used with one hidden layer and starting
with one hidden node and then slightly increasing the
number of the nodes until no significant Improvement in
the model performance, was gained.

The network: that perfonms best with respect o the
krovest testing ervor followed by training emror and high
comelation coefficient of validation set was mtmined
with different combimations of momentum  terms,
feaming rafes and transfer fimetions in an atempt ©

Consaquently, the model that has the aptimem
momentim term, kaming rate and transfer fimetion was
retrained a number of times with different initial weights
until no further improvement ccctemed,

Using the default peameters of the sofiware
(lemmng rafe =02 and momentum term = 0.8 and the
transfer fimeions in hidden and cutpat Tayver nodes are
sigmoid), a numnber of networks with different numbers
of hidden lyer nodes were developed and results are
surmmertzed m Table below for ANM model, sinee
maximum ne. of nodes equal o (21+1) where (T) the
number of inpurt nodes. (6. max nodes=13).

It can be seen from that there ame slighthy
differences in testing cmor, Therefore, one hidden node
was chosen in this model It is believed that the network
with one hidden node & considered optimal.

The cffiect of the internal parameters controlling

the hack-propagation alporithm (i.e. momentum lerm
and leaming rate) on the mode] performance was

 investigated for the mode] with one hidden laver node.

The effect of the momentm term on model
perlomumes s summarized n Tahle below:

It can be seen from that the performance of the
AMNs mode] 15 relatively msensitive to the variation of
the momentum term, particnlardy in the moge 001 to
0.5. Then the test errors slightly decrease at the range
0.55 to 0.95. Thus, the: oblumed optimum vale for the
muomentum term is .9 which have the lowest vales of
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testing emor (888%0) and traning emor {33454 and
i comelation coefficient () (57.68%0), hence it
was used in this model, In addition, the effect of the
leaming e on the model performance was mvestigated
{omentum team = (0.9, The results are summarzred
Tuble bekow. The optimum valie for lexming rate 5 0.6
witich has the kowest prediction emor, hence it used m
this model,

It can be seen from that the performance of the
ANN model is relatively insensitive to the varation of
the learning rate, Thus, the obtamed optimum value for
the Jeaming rate s 0.6, which has the low value of
lesing ermor, low value talming emor and high
coefficiont of comrelation (86.33%); hence il was used m
this model.

The elfect of using different transfer finctions (Le.
siarnoid and tank) was investigated and il was shown m
Table bekow. It can be seen that the performance of
ANN model was relatively insensitive 1o the type of the
tranefer finction. The better perfoemeance was obtained
when the sigmoid transfer fimetion was used for both
hidden and output layers.

To ensure the data that were camied out by
Neuheme software for taining, testing, and validation
sefs to mepresent the same swtistical population, 2
satistical perameters cslimation was caried out,
mehuding the mean, standard deviation, rrininwm,
ruaxirmumn, and range, as shown in Table:

The results indicated that the treining, testing, and
validation sets are penerally statistically consistent.

SENSITIVITY ANALYSIS OF THE ANN
MODEL INPUTS

In an atempt to idenify which of the mput
variables have the most significant impact on the oufpat
predictions, 4 scnsifivity analysis was camied out o the
ANN model, A simple and innovative technique
proposed by Garsen (1991) [AS Mentioned in
Shakin etal, 2002] was wed fo inferpret the

redafive importamnce of the nput variables by examining

the conmection weights of the frained network. For a
netevork with o hidden laver, the technique invobves 2
process of partiioning the hidden ouiput conmection
weights ito components associaled with cach input
node. For this model, the method i illustrated as
fllowws. The model has seven mput nodes, cae hidden
node, and ane cutput ode with connection welghls as
shown in Table:
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The computational process proposed by Garson (1991
is as follows:

e For each hidden node i, obtain the products Py
(where | represents the column mumber of the
weiphts mentioned ahove) by multiphying the
absolrte value of the hiddencupur Tayer
connection weight by the shsolute valus of the
hidden-input layer connection weight of cach
input variable j.

« For cach hidden node, divide P by the sum of all
input variables to obtwn Q. For cach mpt
nedes, sum Q5 to obtain 5. in this case the Oy
will be equal o 5;

= Divide §; by the sum for all input variables o zet
the relative importance of all oulput weights
atmibuted 1o the given iopeg vanable The
results of the above technique were presenled
m Table:

These resulls indicate that the variable (V&) have
the meet significant effect on the prodicted wial
productivity with a relative importence (Z7593%). The
results also indicate that (V1, V2 and V3) hvc a
moderste impact on prodicion with a relanve
importance equals to 117, 1897 and 1531%
respectively, while the variables (V3, V4 and VT) have
the smallest impact on prediction with the relative
smpartance of £51%, 997 and 7.53% respectively. The
results are also presented in the figore:

ANN MODEL EQUATION:

The small number of commection weights obtained
by Nesframe for the optimal ANNs mode] enables the
network o be transkated into relatively simple formala,
While a5 conmection weights and threshold Jevels (bias)
are summarized i Table below:

Using the connection weights and the threshold
lovels shown in Teble abowve, the prediction of the
equation total productivity for wall ceramic cm be
expressed as {ollows:

TP= 1 (&)
] 4 338044862 2]
Where:
X= [t (Was V1) + (We*V2) + (Wes"VI) + Wy
VA H(Wer V) + (Wis*VE)
+H(We VT (7
And it can be wnitlen as:
TP= FO94  (8)

| + 33T A )
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Tt can be noted that, before using Equation (2), all input
variables (Le. VI V2 .. V7 need to be scaled
between 0.0 and 1.0 =nd the data ranpes in the ANN
meodel training. 1 should also be noled thet the predicled
valee of the total productivity oblained from Equation
{11 scaled between 0.0 and 1.0,

CONCLUSIONS

Throwgh the rescarch work, there are groups of
conclusions that can be summarized by the
following points:

#  The study shows that neural networks are
able to model the complex relationships
between the job conditions and the
productivity of an operation and achieve
an acceptable accuracy m cstimation.

* The presented approach agrees well with
the way in which a confractor makes an
intnitive estimate, based on developed
experience that comes from chservation.
However, the superionity of the approach
over & pure empirical method s that it
generalizes the cause-effect relationships
and provides a binding mechanism to
maintain the consistency of an estimate.

®  The model was never designed to replace
the estimator, only to be another tool o
formulate final labor productivity for an
estimate. An estimator's judgment would
always be the final approval before a
labar productivity estimate is completed.

» The productivity rate models derived
in this rescarch enable planners and
construction  operation  researchers
studying the ceramic productivity
more  accurately than  previous
approaches.

o The sensitivity analysis indicated the
following:

*  The resulis obtained using this model indicate
that the varizble (V6) have the most sismificant
cffect on the predicted toeal productivity with a
refative importancs (27.95%).
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*  The results also indicate that (V1, V2 and V)
have a moderate impact on prediction with a
reiative importance equals to 11.77%, 1897%
and 1531% respectively,

»  while the varisbles (V3, V4 and V7) have the
smalkest mmpect on prediction with the relative
importance  of 851%. 997% and 75%

RECOMMENDATIONS:

The construction management should also be
fomiliar with powerful estimate tools such as
ANN. This invitation is not optional, but rather
inevitable, if the challenges of the forthcoming
period, which Iraq is marching towards, are to be
faced and overcome.
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Figure (1) Typical structure and operation of ANNs (Shahin 2003).
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(a) The logistic sigmoid fumction

fin)

'

bolic tangent function

L () Thohyperbolic tangent function =
Figure (2) The logistic sigmoid and hyperbolic tangent transfer functions. (Shakin 2003)

Table (1) Divisions developed and results.

Data Division % Traiming | Testing | Coefficient
Training | Testing | Querying | Error % | Ermor % of
| Correlation
T I () %o
70 10 20 038 72.53
58 12 20 14.28 76.34
66 14 | @0 5.70 73,50
| 65 | 15 | 20 9.04 78.52
B - I 11.94 76.57 |
a0 | 2o 20 1106 | 7752 |
&0 25 | 15 9.23 66.57
= SEfpAT o e 0.5] I 800 :._':' EE-E?* y
3.11 1031 75.80
081 [BERGEE 7194
9.81 7.09 63.64 |
55 9 81 7.09 -79.43
50 | 30 20 8.56 9.31 TL17_|
56 | 35 15 8.79 9.24 77.07
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Table (2) Effect of using different choices of divisions.

Dhata Division % chuicesof | training | lesting coefficient
: ; division error¥e | emor?a correlation(r)®o
Tranming | Testng | Chemang
| 60 30 10 8.99 £8.23
60 30 10 8.99 65624
50 30 10 9.73 3434

Table (3) ), Effect on networks with different numbers of hidden Layer nodes .

No. of Nodes Traiming Emor %6 Testing Emmor % | Coefficicnt of
{  Comelation (r) %
o 9.51 5.99 88.23
2 054 9.17 2825
3 9.58 9.11 8837
4 965 9.15 BO.07
5 0.74 926 89.41
== é | 967 5.08 :. 88.63
7 9,75 9.15 B
4 98 9.05 F9.3 |
' 9 992 £.56 38.65
10 973 898 T
11 & 'E?'_’il.‘]' ; o0 Bois
2 979 956 [
3 | 981 310 Y
14 968 0.62 031
is 977 910 P |
1

Table (4) effect of the mo

mentum term on mode] performance.

Parameters Effect

MMomentu
m Term

Train.

ing Error

%o

Testi
nf [rror
Yo

Coefficient

Correlation{r)%
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[ Model No. 1 0.01 380 902 | 8540
Chaoices of division i
(striped) 0.05 931 | 9,02 28 4%
Learning Rate 0.1 9.80 0.2 88.49
(0.2) 0.2 9.78 9.02 8§49
No. of Nodes 0.3 o7 o2 £ B84
(1 0.4 072 9.02 38 48
Transfer function 05 | 9,71 9.2 8847
in hidden layer 0.55 967 9.0 8843 |
! (sigmoid) 0.6 9.66 9.01 | 844 |
T'ransfer function | 0.7 9.59 901 8836
in output layer 0.3 951 | 800 8823
(sigmoid) P gET. 034 |BleE Ban R7.68
0.93 S 9,08 %725
Table (5) Effect of the learning rate on the model performance .
Parameters Effect Learning Traini Testin Coefficient
| Rate ng Error % | g Error % Correlation(r)%
~ Model No, 1 0.02 12.47 11.34 82.01
' Choices of division el iF
L (striped) 0.05 9.65 899 SUERan - |
Momiiinm Toom 0.1 0.50 §95 | 88.19
(0.9} 015 .41 B.86 E7o4
No. of Nodes 02 034 8.58 B7.68
(1) 03 028 8.70 8734
Transfer function in 0.4 9.24 852 Bt
hidden layer s ] 921 g 86,60
(sigmoid) | (.55 921 . 898 86,53
Transfer function in [T e G [ Rl .63 86.33
output layer 0.7 922 841 85.80
(sigmoid) 0.8 078 [ ¢ 8590
1 - - =

Table (6) Effect of using different transfer functions.
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Parameters Transfer Function Trainin Testing Coefficient
Effect ] g Error % Error % Correlation{r)%a
n Layer ut Layer
ModelNo.1 |  Sigmo Sizmo 920 §.65 8633
- Choices of id id
fivics
(striped)
No. of Nodes Sigmo Tanh 62.14 66.76 =
) -
Momentum
Term
(0.9 . .
Learning Rate Tanh _Stlgmu 926 ) 7947
(06) x
Temh Tanh 62.14 66.76 —
Tab[e{'?}ﬂ'ammﬁsﬁ@m
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MAY 107 13 46 2 0l 1 2 |
MIN 09 3 % 1 006 0 o | o
RANGE | 217 12 n | 1 004 1 i | I
|
| MEAN 1866667 | 10 | 37 | 156es67 | oose | osamm | 08 333333
.. 5D 0440623 | 399137 | 722066 | 0504007 | 0019931 | 0507416 0723974 | 0.4?9-153-!
. Veiddos
| 312 15 45 ...1 | 0l 7 1 1
|
MV 133 3 % 1| e 0 0 0
RANGE | 179 12 20 1 | 0.4 1 1 1
m 2021 01 | 3 16 1 o8t | 0 04 01
3 I
SD | 0519154 | 3984693 | 7340148 | 0516398 ; 020656 | 0527046 | 0516398 | 0316228
|

I 1
[ 1
u

-

e

Table (8) Ouiput nodes with connection weights
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| l@l Nuomber2
e Table (9) Technique resulis. i
e | Wegs | |Hos|  Wess [Oma) B | Q0B | STO | RW
I‘v’mahk:s {fom it nede | fhom bddmio ok
abschile : : -
V1| 09299283 77880479 419172 | 011721Es | oNTeE | 1T |
| w2 | 1408830855284 | ema1se27 | 0180730083 | 0goTioess | 1897 |
V3| DET2650849930533 . 3017280 | 0085152097 | 085152097 | B51%
1| 4482833213507 | 1
V4 | O7RTETR01833E4 1534644013 | 0099738914 | D099T3EG14 | 997
VS | 120967140631394 | 5426008654 | 0133134508 | 0153134508 | 1531%
|
Ve | 220604800076063 QROGOSETES | 0270267640 | 0270267640 | 2793%
V7 | 05M304TRSGRS0TE 2666673413 | 0075245519 | 0075245519 | 753%
YR | 3543896613 TS| 1 100.00%
i 3“ -
§ 25% S8
1=
= 20%
= —
£ 15% Rl
B . -
2 10% £
2 sl '.
0%

Figure (3) Relative importance of the input variables for the Maodel
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Chaiprut Layer

Trput Layer

Figure (4) Structure of the ANNs optimal model
Tnme 0) Connection weights s and threshold levels (f levels (f modele. X

ﬁﬂmm@ﬁ“ “i 'Lmﬁwﬁ%&lﬁﬁ%ﬁ” Eiﬂd‘én

.c\.-\.-\.-l- . T AT

=1 =z i=3

59199 14933 06726 | 07878 : n:i,ma'

Wi E“ﬂghtﬁ'nmmd-:imﬂﬁhlddeﬂa}-tnt}mde_} mﬂlmm;:
- e xS R

44862 |

APPINDIX A: INPUTS AND {}UTPUT VARIABLES USED FOR MODEL

| Productiviny l'ﬁmghr complication || Tabors | Age - Experience: "%“  Weather - A!'E'.ELI}ftEIHIMI:J
1.64 0 1 2 1S 10 0 0.06 ,
0.9 1 1 2 35 10 0 006 |
| 194 0 i 2 35 10 0 0.06 |
1.82 0 1 2 35 10 0 g
2.1 I 0 0 2 35 10 - 0 0.06
122 1 1 2 33 10 0 0.06
1.2 2 1 2 35 10 0 0.06
1.36 | 1 2 35 10 0 0.06
1.32 0 1 2 35 10 0 0.06
.44 0 1 2 35 10 0 {.06
I} 1 1 2 35 10 0 0.06 .
I 1 ;. 1 e 10 i (.06 |
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1.9 0 0 2 35 10 i 0.06
1.6 i i . 33 10 it 0.0
1.49 0 1 1 33 10 0 0.06
Ak 0 1 J (e 3 15 . (] 0 0.06
094 2 1 1 35 10 0 0.06
| 68 | D 1 1 35 10 0 0.06
R I 1 35 10 0 0.06
1.63 | 1 1 ] s 10 i 0.06
1.86 | 0 0 1 46 15 0 0.06
1.84 0 0 1 45 15 0 0.06

AR 1 0 1 46 15 0 0.06
_1.76 o 0 2 -} 46 1 ]3 0 0.06
208 0 0 R 13 0 0.06
2.12 0 0 2 46 15 | 0 0.06
1.} 0 0 2 45 15 I 0 0.06
1. 0 1 2 | 45 | 15 0 0.06
137 0 | 2 46 | 15 0 0.06
1.42 0 1 1 46 15 0 0.06
1.33 1 1 1 46 15 0 0.06
1.6 2 | 0 2 46 15 ] 0.06
| 88 - 0 2 46 15 | 0.06
1.49 1 0 2 46 15 1 0.06
= | 0 1 46 15 ! 0.06
1.92 0 0 | 46 15 1 0.06
Y 0 0 P& | %5 15 1 0.06
1.52 0 0 2 42 12 1 0.1
215 0 A 42 12 1 0.1
1.67 1 0 Y=bi 42 12 1 0.1
137 a | e | 2 | a4 12 0 0.1

2.08 f 0 2 42 12 0 L.
1.57 | 0 0 1 437 12 0 0.1
1.9 | 0 I 1 42 12 0 0.1
176 1 o |11 | 4 12 0 0.1
1.59 i) 0 1 42 12 0 0.1
L 0 B | 1 | % 12 | w© 0.1
L.76 0 0 1 | 4 2| 0 0.1
2402 0 0 1 | 4 12 | 0 0.1
1.87 0 0 1 | 4 2 | e 0.1
156 1 0 1 2 12 1 0.1
276 i) ) 2 42 12 1 0.1
307 0 - SRR [ ) LSSy v 12 g <= 0.1
1.76 0 i} 1 42 | 12 | 0.1

Sl . S S 1 | 42 12 1 0.1
2.05 0 | i) 2 42 12 0 0.1
.69 o | 0 1 4] i3 1 0.1
2.17 P 0 | 0 2 41 12 2 0.1
.78 0| L | 1 41 . 72 _E 0.1
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| 143 | 0 1 41 12 0
| 23] 0 0 | 41 12 [ 0.1
| i35 0 1 2 4 12 0 0.1
| 213 | 1 i 2 1 12 0 0.1
| 19 | o | 1 I 12 0 01
e 1 1 41 12 0 0.1
| 1w 0 1 1 41 12 0 0.1
| 3.3 0 1 2 4] 12 0 0.1
R 1 ] 1 41 12 0 | 0.1
T 1 L 29 6 0 0.1
2.33 0 1 1 29 E 0 0.1
| 23 1 1 2 29 6 0 0.1
1.95 1 1 | 2 6 1 0.1
239 |1 1 1 2 & 0 0.1
| 213 1 1 1 2 6 1 0.1
B | 1 1 29 6 1 1
2,86 1 1 1 9 6 0 0.1
2.31 1 I 1 29 6 1 0.1
1.88 2 1 1 29 6 0 0.1
2.46 1 0 1 25 6 0 0.1
2.46 1 1 % 29 6 1 0.1
3.12 0 0 2 29 & | 0 0.1
- 0 1 1 25 6 1 0.1
1.94 2 1 1 29 6 0 0.1
oy | 1 0 2 26 3 1 0.1
219 0 0 2 26 3 0 0.1
367 0 0 2 26 3 1 0.1
2.73 0 1 2 26 3 1 0.1
| 208 1 1 2 26 3 0 0.1
3.7 0 0 o 3 0 |
|1 2 1 2 26 3 0 0.1
2.9 I 1 2 26 3 0 0.1
1 1 1 2 2 3 0 0.1
123 2 1 1 20 3 1 0.1
1.76 a i 1 26 3 1 0.1
3.08 0 0 1 26 3 0 0.1
343 0 0 | 26 3 0 0.1
245 1 0 1 26 3 0 0.1
268 0 0 1 26 3 0 0.1
T 0 1 26 3 1 0.1
226 | 0 1 1 26 3 | 0 0.1 -
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