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ABSTRACT 
 

In this study, structures damage identification method based on changes in the dynamic charac-
teristics (frequencies) of the structure are examined, stiffness as well as mass matrices of the curved 
(in and out-of-plane vibration) beam elements is formulated using Hamilton's principle. Each node 
of both of them possesses seven degrees of freedom including the warping degree of freedom. The 
curved beam element had been derived based on the Kang and Yoo’s thin-walled curved beam the-
ory in 1994. A computer program was developing to carry out free vibration analyses of the curved 
beam as well as straight beam. Comparing with the frequencies for other researchers using the gen-
eral purpose program MATLAB. Fuzzy logic system (FLS) applied in two stages to calculate the 
damage extent and location in simply in and out-of- plane curved beam, the damage deduce by re-
duction in stiffness for three levels (20%, 40%, 60%). At the first stage the output faults of the 
fuzzy system represented by four levels of damage in curved beam (undamaged, slight, moderate, 
and severe), and at second stage indicate damage location at element with two defuzzification me-
thods (centroid and middle of maximum). 
            The results show that the frequency difference method is efficient to indicate and quantify 
damage with accuracy about (99.5%) for slight and moderate damage about (100%) for severe 
damage. Consequently fuzzy logic performs well for detecting, locating and quantifying damage in 
curved beam. 
 

  الخلاصة 
  
صياغة تم ،للهيكل) الترددات(الديناميكية  الصفات في التغيير خلال فحص من الهياآل في الضرر على التعرف يتم البحث هذا في

آل عقدة . باستعمال مبدأ هاملتون) بالاتجاه الموازي والعمود على المستوي(مصفوفتي الجساءة والكتلة لعنصر العتبة المقوسة 
أشتق عنصر العتبة المقوسة بالإعتماد على ).warping(ت من الحرية مع الاخذ بنظر الاعتبار الاعوجاج تحوي على سبع درجا

ليستعمل للعتبة المقوسة ) MATLAB(وطور برنامج ماتلاب ، للعتبة المقوسة ذات الجدران الرقيقة) 1994(نظرية آانك وياو 
على  ) Fuzzy logic system(طبق نظام المنطق الضبابي.  اخرين المستخرجة مع باحثينآذلك المستقيمة مع مقارنة الترددات

يتم الاستدلال على الضرر من خلال عمل تخفيض في جساءة الهيكل وبثلاث مستويات ،مرحلتين لحساب آمية الضرر وموقعه
ات من في المرحلة الاولى نوع الضرر المستخرج من نظام المنطق الضبابي عبارة عن اربع مستوي%). 60،40%،20%(

اما في المرحلة الثانية فالقيم المستخرجة من النظام تحدد موقع الضرر في اي ، )متوسط و عالي،خفيف،غير متضرر(الضرر
  ).centroid and middle of maximum (  عنصر من العتبة وباستعمال طريقتان 

بالنسبة للضرر %) 99.5(الضرر وبدقة بحدود في تحديد آمية وموقع  النتائج المستخرجة اوضحت آفاءة طريقة الفرق في التردد
وبالنتيجة فأن نظام المنطق الضبابي أنجز وبشكل جيد في تحديد آمية . بالنسبة للضرر العالي%) 100(الخفيف والمتوسط وبحدود 

  .وموقع الضرر في العتبة المقوسة

 Keywords: curved beam; fuzzy logic; damage detection 
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1. INTRODUCTION 
 

It is easily accepted that when damage oc-
curs, a structure would suffer a decrease in 
stiffness. And as a consequence, there was a 
decrease in natural frequencies of vibration. 
For a beam structure a loss in stiffness would 
imply an increase in curvature of the elastica 
which can be used for damage detection [1]. 
In the most general terms damage can be de-
fined as changes introduced into a system that 
adversely affect the current or future perform-
ance of that system. Implicit in this definition 
is the concept that damage is not meaningful 
without a comparison between two different 
states of the system, one of which is assumed 
to represent the initial, and often undamaged, 
state. Structural damage identification based 
on change dynamic characteristics provides a 
global way to evaluate the structural condi-
tion. These methods are based on the premise 
that modal parameters (i.e., natural frequen-
cies, mode shapes, modal damping ratios, 
etc.) are a function of the physical properties 
of the structure (stiffness, damping, mass and 
boundary conditions). The approach is based 
on the fact that natural frequencies are sensi-
tive indicators of structural integrity. Thus, an 
analysis of periodical frequency measure-
ments can be used to monitor structural condi-
tion. Since frequency measurements can be 
cheaply acquired, the approach could provide 
an inexpensive structural assessment tech-
nique. Ju and Mimovich [2] used changes in 
modal frequencies to locate damage occurring 
at sections of a beam to within 3% of the 
length. It was found that the accuracy of the 
damage localization was improved to less 
than 1% of the length when the built-in end of 
the experimental beam was represented by a 
torsion spring. Cawley and Adams [3] study 
the sensitivity concept and it is based on the 
premise that the ratio of frequency changes in 
two modes is a function of the location of the 
damage only, if changes in stiffness are inde-
pendent of frequency. To locate the defect, 
theoretical frequency shifts, due to damage at 
selected positions on the structure, are calcu-
lated and compared with measured values. 

Uzgider and Sanli [4] proposed a damage 
location method which uses measured natural 
frequencies to identify stiffness parameters. 
The natural frequencies of the selected modes 
are then used to identify the stiffness parame-
ters. The relative magnitudes of the differ-
ences between the identified parameters and 
prior estimates are used to indicate the pres-
ence of structural damage. H. R. z and M. 
T. Das [5] studied the in- plane vibrations of 
cracked circular curved beams, the beam is an 
Euler-Bernoulli beam. Only bending and ex-
tension effects are included, the curvature was 
in a single plane. An in-plane vibration is ana-
lyzed using FEM. In the analysis, elongation, 
bending and rotary inertia effects are in-
cluded, four degrees of freedom for in-plane 
vibrations is assumed. Increasing the crack 
depth decreases the frequencies. At the recent 
years many researchers used artificial intelli-
gence likes "neural network, genetic algo-
rithm, fuzzy logic" to detect damage for struc-
ture. Fuzzy logic systems have been widely 
used in engineering applications; because of 
the flexibility they offer designers and their 
ability to handle uncertainty and has a natural 
way of dealing with paradoxes [6] another 
important feature is that fuzzy behavior was 
shown to produce good results, even in cases 
with incompletely defined dependencies [7]. 
Finally, an important advantage of a fuzzy 
system over a “classic” expert system is that a 
fuzzy system usually has significantly fewer 
rules [8], so we take fuzzy logic in this study 
as the all below researchers use it. RANJAN 
GANGULI [9] study the rotor blade which 
modeled as an elastic beam undergoing trans-
verse (flap) and in plane (lag) bending, axial 
and torsion deformations. A finite element 
model of the rotor blade is used to calculate 
the change in blade frequencies (both rotating 
and no rotating) because of structural damage. 
The measurement deviations due to damage 
are then fuzzified and mapped to a set of 
faults using a fuzzy logic system. Prashant 
M and Ranjan [10] propose a genetic fuzzy 
system used to find the location and extent of 
damage. A finite element model of a cantile-
ver beam is used to calculate the change in 
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beam frequencies. The genetic fuzzy logic 
system in this study is proposed as a method 
for automatic rule generation in fuzzy systems 
for structural damage detection. M. 
Chandrashekhar, Ranjan Ganguli [11] a 
fuzzy logic system (FLS) with a new sliding 
window defuzzifier is developed for damage 
detection. The effect of changes in the dam-
age evaluation parameter (frequency) due to 
uncertainty in material properties is explored 
and the results of the probabilistic analysis are 
used to develop a robust FLS for damage de-
tection. The FLS also accurately classifies the 
undamaged condition in presence of the men-
tioned uncertainties reducing the possibility of 
false alarms. From an algorithmic standpoint, 
this paper connects the disparate areas of 
probability and fuzzy logic to alleviate uncer-
tainty issues in damage detection.  

 
 
In this study, it had been used a fuzzy logic 

system for damage detection and location in 
(in and out-of-plane) curved beam based on 
frequency difference, the method apply in two 
stages; the first stage used to detect the dam-
age extent along beam and the second used to 
detect the damage at any element of beam. 
 
 
 
2. INTRODUCTION TO FUZZY LOGIC 
 

Fuzzy logic deals with reasoning with in-
exact or fuzzy concepts [12].  Fuzzy logic has 
two different meanings. In a narrow sense, 
fuzzy logic is a logical system, which is an 
extension of multivalued logic. However, in a 
wider sense fuzzy logic (FL) is almost syn-
onymous with the theory of fuzzy sets, a the-
ory which relates to classes of objects with 
unsharp boundaries in which membership is a 
matter of degree [13]. 

  
2.1 Membership Function 
 

A membership function is a curve that de-
fines how each point in the input space is 

mapped to a membership value (or degree of 
membership) between 0 and 1. The input 
space is sometimes referred to as the universe 
of discourse. The simplest membership func-
tions are formed using straight lines. In this 
work three types of membership function 
were used (triangular, trapezoidal and gaus-
sian).  
 
2.2 Fuzzy Rules  
 

Fuzzy sets and fuzzy operators are the sub-
jects and verbs of fuzzy logic. Usually the 
knowledge involved in fuzzy reasoning is ex-
pressed as rules in the form: 

If   x is A   Then   y is B 
Where x and y are fuzzy variables and A and 
B are fuzzy values defined by fuzzy sets. The 
if-part of the rule "x is A" is called the ante-
cedent or premise, while the then-part of the 
rule "y is B" is called the consequent or con-
clusion. Statements in the antecedent (or con-
sequent) parts of the rules may well involve 
fuzzy logical connectives such as ‘AND’ and 
‘OR’.  
 
2.3 Fuzzy Inference System  
 

Fuzzy inference is the process of formulat-
ing the mapping from a given input to an out-
put using fuzzy logic. The fuzzy inference 
system was consisting of parts as shown in 
Fig.1 [13].  

• Fuzzification. Convert crisp set to 
fuzzy set. 

• Rule evaluation. Consist of two parts; 
fuzzy operators and conditional state-
ment. 

• Aggregation. Combine all output 
fuzzy sets from rule evaluation to a sin-
gle fuzzy set.  

• Defuzzification. Reduction of fuzzy 
set to singleton. There are five defuzzi-
fication methods as shown in Fig.2. In 
this study takes two defuzzification me-
thods (Centroid and Middle of Maxi-
mum (Mom)).  
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3. MODELING THE DAMAGED BEAM 
 

In this study the equation of motion for 
simply curved beam acquired from Kang and 
Yoo’s theory of thin- walled curved beams 
[14] to drive the element stiffness and mass 
matrices respectively. The curved beam ele-
ment is shown in Fig.3 in curvilinear coordi-
nate system. Each node of the curved beam 
element possesses seven degrees of freedom 
including the warping degree of freedom. Us-
ing Hamilton’s principle, the dynamic equi-
librium can be expressed in the variation form 
as following [15]. 

 
                      (1) 

 
Where  is the variation kinetic energy, 
 is the variation strain energy, and  is 

the variation potential energy loss due to ap-
plied loads. The symbol  means the first 
variation. For the linear elastic body, the vari-
ation of strain energy stored in the body is  
 

                                 (2) 
 

Where  refers to the components of the 
stress tensor and  to those of the strain ten-
sor. The variation in kinetic energy of a thin-
walled curved beam is 

 
                               (3) 

 
Where  is the mass density,  is the dis-

placement components of the curved beam, 
and is time. The variation potential energy 
loss due to applied loads with body forces ne-
glected is 

 
                                   (4) 

 
Where  stands for distributed loads ap-

plied on the line of shear center and  is the 
length of the element. Substituting the strain-
displacement relationship and the stress resul-
tant–displacement relationship into eqs. (1), 
(2), (3) and (4) and carrying out the conven-
tional procedure of the calculus of variation, 
the following set of equations of motion is 
obtained [15]. 

                                                                  (5a)        

Fuzzy Rule Base 

Fuzzy Inference Engine Fuzzifier Defuzzifier 
Fuzzy

Set 
Fuzzy 

Set 

Input Output 

Fig.1. Schematic representation of a fuzzy inference system 

Fig.2. Defuzzification methods 
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                                                                 (5b)    

                                                                (5c) 
 

                                                               (5d) 
Where the reference displace-

ments , , , and  are displacements of 
the centroid in the x, y, and z directions and a 
rotation of the cross-section about z-axis, re-
spectively. Displacement components  and 

 are associated with in-plane of curvature 
displacement field while displacement com-
ponents  and  are referenced with out-of 
plane of curvature displacement field. The 
linear equations of motion given in equations 
(5a), (5b), (5c), and (5d) are partially, if not 
completely, uncoupled. It is observed that  
and   appear only in eqs. (5a) and (5c) whe-
reas  and  are present only in eqs. (5b) and 
(5d), which means that two displacement 
fields related with in-plane of curvature and 
out-of-plane of curvature, respectively are 
fully separated each other. 

Only equations that are most related to the 
modeling of curved beams by straight-beam 
elements will be presented herein by consider 
a curved beam as comprising an infinitesimal 
straight beam. This assumption is consistent 
with those used by [16]. Theory of curved 
members developed can be reduced to that of 
straight beam simply by letting the radius of 
curvature approaches to infinity in eqs. (5a), 
(5b), (5c), and (5d) [15]. 

       (6a) 
 

       (6b) 
 

                                  (6c) 
 

                                                                (6d) 
 

Where every displacement fields, , 
and , are not coupled with one an-

other hence can be formulated separately. In 
the present study, the third order Hermit 
polynomials are employed as shape functions 
about , and . The axial displace-
ment  is represented by a linear function.  

A linear stiffness matrix and a consistent 
mass matrix are developed so that various 
analyses such as linear and free vibration ana-
lyses can be performed. Using shape func-
tions, the dynamic equilibrium given in eq. 
(1) yields a set of simultaneous equations 

 
  (7) 

 
From which one obtains by letting f equal ze-
ro. 
 

                                             (8) 
 

Where K, M, d, and f are the linear stiff-
ness matrix, the consistent mass matrix, the 
nodal displacement vector, and the applied 

force vector of a global structural system, 
respectively. The nodal forces and the corre-
sponding nodal displacements are shown in 
Fig.3 in the positive senses. The nodal forces 
are seven components 

.The corre-
sponding nodal displacements are   

where  and  
are defined as 

 
                                                        (9a) 

 
                                                        (9b) 

 
, , and  describe the in-plane dis-

placements whereas , - , , and -  are the 
out-of-plane displacements. These two parts 
of displacement fields are not coupled with 
each other and can be formulated separately. 
Then, the displacement fields can be ex-
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pressed in terms of nodal displacements as 
following [15]. 

     (10) 

 
Where the shapes function, N is defined as. 
 

                                                               (11a) 
 

                                                              (11b) 
                               (11c) 

 
Where    
  Where the nodal displacement, d is repre-
sented 
 

               (12a) 
 

         (12b) 
 

                            (12c) 
 

            (12d) 
 

From the variation of strain energy pre-
sented in eq. (2) and the shape function in eqs. 
(11a), (11b), and (11c) the element stiffness 
matrix for curved beam is derived as shown 
[15]. 

 

    (13) 

 
From the variation kinetic energy presented in 
eq. (3) and following the similar procedure as 
used for the element stiffness matrix for 
curved beam formulation, the mass matrix is 
derived [15]. 
 

          (14) 

Where   represented undamaged 
stiffness and mass matrices respectively, but 
for damage cases it had been taken reduction 
for stiffness matrix at any element of curved 
beam. 
4. FREQUENCY DIFFERENCE 
 

The difference between the frequency of 
the damaged and undamaged for simply 
curved beam is that used as the system indica-
tor for damage and is referred to as a ‘‘sum-
mation deltas’’ since the reduction in stiffness 
for a damaged simply supported curved beam 
decreases the frequency. The summation del-
tas is expressed as follow. 
 
                    (15) 

Where 
∑∆ω: summation delta. 
i: mode number (i=1,2,3,….,m)                

: Frequency undamaged. 
: Frequency damage. 

A finite element approach is used to calcu-
late the natural frequencies of the simply 
curved beam. Each beam finite element has 
seven degrees of freedom. Damage is mod-
eled as a reduction in element stiffness of (20, 
40 and 60%) respectively. These damage siz-
es are classified as ‘‘slight damage’’, ‘‘mod-
erate damage’’ and ‘‘severe damage’’, respec-
tively. Damage sizes below ‘‘slight damage’’ 
are classified as undamaged. Damage sizes 
greater than ‘‘severe damage’’ are classified 
as ‘‘catastrophic damage’’. 
 
5. FORMULATION OF FUZZY LOGIC 

SYSTEM  
5.1. Input and Output  
 

Inputs to the FLS are summation deltas, at 
the first stage; it has been taken the least 
number of modes which realize minimum in-
terference between damage extent values, so 
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the chosen number of modes is fifteen for in-
plane and twenty-six for out-of-plane with use 
eq. (15), and outputs are structural damage 
faults (SLD,MOD and SVD). We have three 
summation deltas represented by y and five 
fault quantity represented by x. The objective 
is to find a functional mapping between y and 
x. mathematically this can be represented as: 
 
x= f (y)                                                      (16) 
 
Where  x= {damage extent}    and 

.  
At second stage represents the FLS input is 

frequency difference for eight modes for in-
plane and nine modes for out-of-plane, and 
the damage element  indicator   as  output, 
here x  represented element number 
x={damage at element}   and   y  represented 
frequency difference y= . 
 
5.2 Fuzzification 

Here the structural damages are crisp num-
bers. To get a degree of resolution of the ex-
tent of damage, each of this damage extent is 
allowed several levels of damage and split 
into linguistic variables. For example, at first 
stage consider ‘‘beam" as a linguistic vari-
able. Then it can be decomposed into a set of 
terms T(beam) = {Undam-
aged,Slight.Damage,Moderate Damage, Se-
vere Damage, Catastrophic Damage}.where 
each term in T(beam) is characterized by a 
fuzzy set in the universe of discourse 
U(beam)={0, 70} as shown in Fig.4. The 
summation deltas ∑∆ω also treated as fuzzy 
variables. For example, at first stage consider 
∑∆ω as a linguistic variable. It can be decom-
posed into a set of terms 
T(∑∆ω)={Negligible, Low,Medium, High, 
Very High}.where each term in T(∑∆ω) is 
characterized by a fuzzy set in the. uni-
verse.of.discourse.U (∑∆ω)= {0,max} as 
shown in Fig.5 for in-plane and Fig.6 for out-
of-plane. The other two summation deltas are 
defined using the same set of terms. Summa-
tion deltas larger than covered by the universe 
of discourse will represent an extensive struc-
tural damage indicative of a catastrophic fail-
ure. Fuzzy sets with Trapezoidal membership 
functions are used for the first stage input va-

riables and triangular membership functions 
are used for the first stage output variables. 
Tables (1) and (2) give the linguistic measure 
and rules associated with each fuzzy set at 
first stage. The values mentioned in the Ta-
bles (1) and (2) were indicate by substituting 
summation deltas ∑∆ω for each element 
along curved beam in three damaged extent 
and then using fuzzy logic tool box to con-
struct membership functions and rules. 
The second stage FLS is the same manner as 
previous, fuzzy sets with gaussian member-
ship functions are used for the second stage 
input variables. These fuzzy sets can be de-
fined using the following equation [13]. 

 
                                (17)                       

 
Where   is the midpoint of the fuzzy set 

and  is standard deviation associated with 
the variable. Fig. 7 and Fig.8 represent the 

input fuzzy sets for in and out-of-plane re-
spectively at second stage which consist of 
ten gaussian membership functions 
(N=negligible, VVL=very very low, VL=very 
low, L=low, LM=low medium, M=medium, 
MH=medium high, H=high, VH=very high 
and VVH=very very high) where each term in 
T(∆ω) is characterized by a fuzzy set in the 
universe of discourse U(∆ω) ={-68.75,550}, 
and output represented by thirteen triangular 
membership functions for in-plane and fifteen 
triangular membership functions for out-of-
plane which represent element number as 
shown in Fig. 9 and Fig.10  respectively 
where each term in T(damage at element) is 
characterized by a fuzzy set in the universe of 
discourse U(damage at element) 
={0,1,2,…,15} 
5.3 Rules Generation 
 

Rules for the fuzzy system are obtained by 
fuzzification of the numerical values obtained 
from the finite element analysis using the fol-
lowing procedure. 

1. A set of summation deltas and fre-
quency difference corresponding to a 
given structural fault is input to the 
FLS and the degrees of membership of 
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the elements of (∑∆ω) and (∆ω) are 
obtained.  

 
2. Therefore, each summation deltas has 

five degrees of memberships for first 
stage and each frequency difference 
has ten degrees of memberships for 
second stage. 

3. Each summation deltas and frequency 
difference is then assigned to the 
fuzzy set with the maximum degree of 
membership. 

4. One rule is obtained for each fault by 
relating the summation deltas and fre-
quency difference with a fault.  

 
These rules can be read as follows for the first 
stage: 
IF    Σ∆ω   Is Low THEN Slight Damage. 
IF    Σ∆ω Is Medium THEN Moderate Dam-
age. 
IF   Σ∆ω   Is High THEN Severe Damage. 

Then for example at second stage the rule 
for in-plane of "Severe Damage" fault is 
shown below,  
IF 

  Is Very Very Low AND 
  Is Very Very Low AND  
  Is Low                  AND 
  Is Low                  AND 
  Is Very Very Low AND  
  Is Low                  AND 
  Is Medium            AND 
  Is Medium High  

Then damage at element No.5. 
The same procedure applies to slight and 

moderate damage except the rules are differ-
ent. These rules are tabulated in Tables (3) 
and (4) (these rules were indicate to damage 
extent 20%, 40% and 60% at second stage 
and results represented damage location at 
any element along the curved beam) 

 
6. NUMERICAL RESULTS 
 

In the present work we consider a simply 
(in and out-of-plane) curved beam for illus-
trating the fuzzy logic system for the damage 

detection problem; the fuzzy rules are auto-
matically generated. Dimensions and material 
properties for the simply supported in and 
out-of-plane curved beam are shown in Ta-
bles (5) and (6) respectively 

The simply in-plane curved beam is di-
vided into 25 finite elements of equal length 
and out-of-plane is divided into 30 finite ele-
ments. The selection of number of element is 
justified in Fig. 11 and Fig.12 respectively to 
minimize FEM modeling error, in this figure 
the ratio of the eighth mode   which   is the 
highest mode used in the numerical results for 
in-plane and nine for out-of-plane with the 
first mode are shown. From the graph, it ap-
pears that 25 elements for in-plane and 30 
elements for out-of-plane give a good resolu-
tion. The undamaged beam is uniform. There-
fore, the frequency predictions from the FEM 
model of undamaged beam are validated by 
comparing with other researchers as shown in 
Tables (7) and (8) respectively 

The generated rules are selected for first 
stage of summation deltas; by taking the ap-
propriate modes here in this study take fifteen 
modes for in-plane and twenty-six modes for 
out-of-plane (the selected modes chosen ac-
cording to minimize interference between 
damage extent for three cases)   . At the sec-
ond stage of frequency difference will be 
taken the eight input deltas for in-plane and 
nine input deltas for out-of-plane represent 
the highest natural frequencies used (these 
values were taking as mention in Fig. 11 and 
Fig. 12 which declare the difference be-
tween). The linguistic forms will remain con-
stant for different structure but the numerical 
values of midpoints and standard deviation 
will change. 
 
7. RESULTS AND DISCUSSION 
 

After construct the fuzzy engine and check 
all damage elements under the test it could be 
calculated the error between proposed and 
predict values for all elements using two de-
fuzzification methods (Centroid and Middle 
of Maximum) to compare and evaluate results 
product from fuzzy logic system. We chose 
these two methods because they had been al-
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ready approval that they represent damage 
with the least error percentage, and this didn’t 
mean we compare between them.       

For in-plane curved beam as shown in the 
Fig.13, from charts it could be seen the mid-
dle of maximum defuzzification method is the 
best for detect slight (D=20%) and moderate 
(D=40%) damage but at severe (D=60%) 
damage the centroid defuzzification method is 
the best.  

For out-of-plane curved beam as shown in 
the Fig.14, from charts it could be seen the 
middle of maximum defuzzification method is 
the best for detect slight (D=20%) and mod-
erate (D=40%) damage but at severe 
(D=60%) damage the centroid defuzzification 
method is the best. Each value in Fig. 13 and 
Fig. 14 represented damage location because 
input and output values to fuzzy engine repre-
sent crisp set,  referring that this study has 
been used theoretical results (FEM) as input 
data instead of experimental data.  

The accuracy for detection damage at in 
and out-of-plane curved beam tabulated in 
Table (9) it could be seen the accuracy ap-
proach to (99.4%) for slight damage, 
(99.52%) for moderate damage and (100%) 
for severe damage. 
8. CONCLUSIONS 
 
             The present study declares that a 
fuzzy logic depends on one of the well-known 
methods for damage detection as a base to 
generate rules, but here we use frequency dif-
ference as a new application as a base for 
fuzzy logic system.  The results show that the 
fuzzy logic system presented in this paper 
provided a reliable and accurate outcome in 
recognition of different damage extent and 
appear more efficient when using summation 
for frequency difference once taking the fif-
teen modes for in-plane and twenty-six modes 
for out-of-plane at first stage, and taking the 
eight modes for in-plane and nine modes for 
out-of-plane at second stage. This method 
were used to detect damage at one location in 
beam but when we want to locate multi dam-
age in beam we need to apply anther methods 
together like "strain energy, sensitivity, etc". 
The other advantage of this method is used to 

detect damage at low extent (less than 20%) 
with a good accuracy. 
 
NOTATION  
 
A       Sectional area (m2) 

       Bimoment (N .m) 
        Young modulus (N/m 2 ) 
        Shear modulus (N/m 2 ) 
       Area moment of inertia about y-axis 

(m4) 
       Area moment of inertia about x-axis 

(m4) 
       Warping moment of inertia (m6) 

         Area polar moment of inertia (m4) 
    St Venant constant of a straight mem-

ber(m4) 
        Length of the finite element (m, cm) 

  Uniform distributed moments 
about  x-, y-, and z-axis 

    Uniform distributed bimoment 
  Moment about x- and y-axis (N.m) 

    Uniform distributed forces about  
x-, y-, and z-directions 
R      Radius of initial curvature (m) 

     Kinetic energy (N.m) 
     Strain energy (N.m) 

 Displacement components of the shear 
center in x- and y- directions, respectively 
V    Volume of body (m3) 

   Transverse shear forces (N) 
    Average longitudinal displacement of 

cross-section 
 
GREEK LETTERS 
 

      Mass density (Kg/m 3 ) 
      Rotation of the cross-section about z-

axis 
      Subtended angle (degree) 
    Components of strain tensor 

       Variation 
    Nodal displacements 

     Components of stress tensor 
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. 

 Faults Summation Deltas (Σ∆ω) Numeric value 
SLD Low 351 - 687 
MOD Moderate 900 - 1657 
SVD High 1900 - 3137 

Faults Summation Deltas (Σ∆ω) Numeric value 
SLD Low 162.5 - 356 
MOD Moderate 427 – 848.5 
SVD High 925 - 1580 

 

 

  z
x

y

Table 1 Rules for fuzzy system in-plane curved 
beam (first stage) 

Fig.3. Curved beam element 

Table 2 Rules for fuzzy system out-of-plane 
curved beam (first stage) 
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Fig.5. Input Fuzzy sets representing summation deltas for in-plane 
curved beam (first stage) 

ω∆Σ  

Fig.6. Input Fuzzy sets representing summation deltas for out-of-
plane curved beam (first stage)
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Fig.4. Input fuzzy sets representing damage levels (first stage) 
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Fig.8. Input fuzzy sets for out-of-plane curved beam (second stage) 
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Fig.9. Output fuzzy sets for in-plane curved beam (second stage) 

  µ
 (D

am
ag

e 
L

oc
at

io
n)

 

Fig.7.  Input fuzzy sets for in-plane curved beam (second stage) 
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Damaged at 
element No. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 

D=0.2               

∆ω1 N VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL 

∆ω2 N VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL 

∆ω3 N VVL VVL VL VL VVL VVL VVL VVL VL VL VVL VVL VVL 

∆ω4 N VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL 

∆ω5 N VVL VL VL VL VVL VVL VL VL VL VVL VL VVL VL 

∆ω6 N VL VL VL VVL VVL VL VL VVL VVL VL VVL VVL VVL 

∆ω7 N VL VL VL VL VL VL VL VL VVL VVL VVL VVL VVL 

∆ω8 N VVL L VL VVL VL L VL VVL L VL VVL VL L 

D=0.4               

∆ω1 N VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL 

∆ω2 N VVL VVL VL VL VL VL VVL VVL VVL VVL VVL VL VL 

∆ω3 N VVL VL VL VL VL VVL VVL VL VL VL VL VVL VVL 

∆ω4 N VL VL VL VL VL VL VL VL VL VL VL VL VL 

∆ω5 N VVL L L L VVL VVL L L L VVL VVL L L 

∆ω6 N L LM LM VL VL L LM VL VVL L L VL VVL 

∆ω7 N LM M M LM L L L L VL VL VL VVL VVL 

∆ω8 N VL M LM VVL LM M VL VL M LM VVL L M 

D=0.6               

∆ω1 N VVL VVL VVL VVL VL VL VL VL VVL VVL VVL VVL VVL 

∆ω2 N VVL VL VL L VL VL VL VVL VVL VVL VL VL L 

∆ω3 N VVL L LM LM L VVL VVL VL LM LM L VL VVL 

∆ω4 N L L L L L L L L L L L L L 

∆ω5 N VL M MH LM VL VL LM M LM VL VL LM M 

∆ω6 N M H MH LM L MH MH L VL LM MH L VVL 

∆ω7 N H VVH VH H M MH MH LM L L L VL VVL 

∆ω8 N LM VVH MH VL MH VH LM L VH H VL M VVH 
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Fig.10. Output fuzzy sets for out-of-plane curved beam (second stage) 

Table 3 Rules for fuzzy system of in-plane curved beam damaged cases (second stage)   
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Damaged at 
element No. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

D= 20%                 

∆ω1 N VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL 

∆ω2 N VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL 

∆ω3 N VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL 

∆ω4 N VVL VVL VVL VL VL VVL VVL VVL VVL VVL VL VL VVL VVL VVL 

∆ω5 N VVL VL VL VL VL VVL VVL VL VL VL VL VVL VVL VL VL 

∆ω6 N VVL VVL VVL VVL VVL VVL VL VL VL VL VL VL VL VL VL 

∆ω7 N VVL VVL VVL VL VL VL VL VL VL VL VL VL VVL VVL VVL 

∆ω8 N VVL VVL VL VL L L VL VL VVL VVL VVL VVL VL VL L 

∆ω9 N VVL VL L VL VVL VL VL L VL VVL VVL VL L VL VVL 

D= 40%                 

∆ω1 N VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL 

∆ω2 N VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL 

∆ω3 N VVL VVL VVL VL VL VL VVL VVL VVL VVL VVL VVL VVL VL VL 

∆ω4 N VVL VL VL VL VL VL VVL VVL VVL VL VL VL VL VL VVL 

∆ω5 N VL L LM LM L VL VL L LM LM L L L L LM 

∆ω6 N VVL VVL VVL VL VL VL L L L LM LM L L LM LM 

∆ω7 N VVL VVL VL L L LM LM LM LM L L VL VL VVL VVL 

∆ω8 N VVL VL L LM M M LM L VL VVL VVL VL L LM M 

∆ω9 N VL LM M LM VL VL LM M LM VL VL LM M LM VL 

D= 40%                 

∆ω1 N VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL 

∆ω2 N VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL VVL 

∆ω3 N VVL VVL VL VL VL VL VL VL VVL VVL VVL VVL VL VL VL 

∆ω4 N VL VL LM LM LM L VL VVL VL L LM LM L VL VVL 

∆ω5 N VL LM MH MH LM LM MH H VH VH VH VH VH VH VVH 

∆ω6 N VVL VVL VL L LM L L M MH MH M L L M H 

∆ω7 N VVL VL L M MH MH MH MH M M LM L VL VL VVL 

∆ω8 N VVL L MH VH VVH VH MH LM L VVL VVL L M H VH 

∆ω9 N L VH VVH MH VL L H VVH MH VL L H VVH MH L 

Area of cross section (A)  
Radius of the arch (R) 2.438 m 

Mass density    ( ) 

Subtended angle ( ) 97° 

Modules of Elasticity (E) 206.8 GPa 

Modules of Rigidity (G) 77.9 GPa 
Moment of inertia (І)  

Table 5 Material properties of the in-plane curved beam 
 

Table 4 Rules for fuzzy system of out-of-plane curved beam damaged cases (second stage)   
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Area of cross section (A)   

Length (L) 10.16 m 

Mass density    ( ) 

 
Subtended angle ( ) 89° 

Modules of Elasticity (E) 200 GPa 

Modules of Rigidity (G)  77.2 GPa 

Moment of inertia (Іx)  

Moment of inertia (Іy)  

Warping moment of in-
ertia (І ) 

 

Venant constant ( )  

10 15  20 25 30 35 40 14.14 

14.16 
14.18 

14.2 

14.22 
14.24 

14.26 
14.28 

14.3 

14.32 

Number of Element   

  FE solution in MATLAB 

 

Table 6 Material properties of the out-of- plane 
curved beam 

Fig.11. Convergence test for in-plane curved beam  
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        Natural Frequency (rad/sec) Subtended 
Angle 

(degree) 
Analytical  
Results[17] 

Numerical 
 Results[17] 

Present Numerical  
Results 

Error 
(%) 

0 53.3000 53.3000 53.266 0.06379 
10 31.8648 31.8669 31.863 0.0056 
20 19.9616 19.9614 19.9592 0.01202 
30 13.9944 13.9931 13.9915 0.0207 
40 10.5386 10.5372 10.5343 0.0408 
50 8.2946 8.2888 8.28753 0.08523 
60 6.7121 6.7012 6.70043 0.1739 
70 5.5270 5.5090 5.50836 0.33725 
80 4.5991 4.5707 4.57020 0.62838 
90 3.8479 3.8048 3.87485 0.70038 

 
 

 

 

 

 

 
 
 

Natural Frequency(Hz) Mode  
No. [Ki. Young et al] 

Results[17] 
Present Numerical 

Results 

Error  
(%) 

1 63.18 63.22 0.0633 
2 148.21 148.38 0.1147 
3 286.05 286.19 0.0489 

Accuracy (%) 
In-plane Out-of-plane Damage Extent (D) Centroid Mom Centroid Mom 

SLD 71.01 99.40 88.8 99.27 
MOD 99.42 99.52 99.34 99.47 
SVD 100 99.33 99.74 99,15 

Fig.12. Convergence test for out-of-plane curved beam 

 

Table 7 Comparisons of modal frequencies for in-plane curved 

Table 8 First natural frequencies for the simply supported out-of- plane 
curved beam

Table 9 Accuracy for in and out-of-plane curved beam (second stage) 
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Fig.13. Error between proposed and predict damage at each 
element   for in-plane curved beam 
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Fig.14. Error between proposed and predict damage at each 

element   for out-of-plane curved beam


