() Number 5 Volume 17 October 2011 Journal of Engineering

A GENERAL VELOCITY PROFILE FOR
A LAMINAR BOUNDARY LAYER
OVER FLAT PLATE WITH ZERO

INCIDENCE

Qussai J. Abdul-Ghafour*
Department of Machines and Equipment, University of Technology, Baghdad, Iraq

ABSTRACT

A general velocity profile for a laminar flow over a flat plate with zero incidence is
obtained by employing a new boundary condition to the other available boundary
conditions. The general velocity profile is mathematically simple and nearest to the exact
solution. Also other related values, boundary layer thickness, displacement thickness,
momentum thickness and coefficient of friction are nearest to the exact solution
compared with other corresponding values for other researchers.
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INTRODUCTION

The boundary layer is a thin layer
formed when a real flow passed over a
solid surface. The velocity of the flow
changes through this layer. At the
surface, the velocity of the fluid relative
to the surface is zero. The velocity of the
flow then increases rapidly from zero
and approaches the velocity of the main
stream.

In 1904 German engineer Ludwig
Prandtl (Schlichting 2000) suggested
that the flow may be considered in two
parts, the first part is at the boundary
layer, where the shear stress is of prime
importance, and the second is beyond
the boundary layer where the velocity
gradient is small and so the effect of
viscosity is negligible. In this part the
flow is essentially of an ideal fluid.

The boundary layer thickness (9) is the
value of height from the plate surface for
which (u = u), and the boundary layer
velocity profile refers to the manner
which (u) varies with (y) through the
boundary layer, as shown in Fig.1
(Massey 2006).

The concept displacement thickness (6*)
(Massey 2006), allows us to consider the
main flow as that of a frictionless fluid
past a displaced surface instead of the
actual flow past the actual surface. In
other words, to reduce the total volume
flow rate of a frictionless fluid by the
same amount, the surface would have to
be displaced outwards a distance (6*).
Fig.2 shows observation of (6*), where
Fig.2a shows the corresponded behavior
of ideal flow. The shaded areas in Fig.2
are equal and can be presented
mathematically as:

(1)

)
5% =[(1-—)dy
0 u

0
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By similar conception, the total
reduction in momentum flow rate equals
the momentum flow rate under
frictionless condition through thickness
(0) which called Momentum thickness
(Massey 2006). Mathematically:

(2)

S
e=£(l)(1—i)dy

0 0

The surface shear stress (1) (Massey
2006) may be evaluated from knowledge
of the velocity gradient at the surface
that is,

)

From external flow, a dimensionless
parameter from which the surface
frictional drag may be determined, called
skin friction coefficient (Massey 2006).
In mathematical form,

4

The momentum integral equation of the
boundary layer, first derived by Von
Karman (Eckert 1959) expresses the
relation that must exist between the
overall rate of flux of momentum across
a section of the boundary layer, the
frictional stress at the surface and the
pressure gradient. It can be simply
expressed as:

@_t
dx

= )

2
(S

Many researchers employed different
relations for the velocity profile through
the boundary layer. Von Karman
(Massey 2006) assumed that the velocity
profile is a polynomial function of the
vertical distance. Thus,
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(6)

u=a+b(y)+ (:(y)2

Where a, b and ¢ are constants.
The boundary conditions which are used
to find the values of these constants are:

(7)
(8)

shear stress (t) decreases linearly and
becomes zero when y= § 9)

aty=0 ,u=0

aty =9, u=u,

Applying these conditions yields:
u Y Y\2
B, TR ANRA
( 8) ( 6)

0

(10)

Another velocity profile derived by Von
Karman (Eckert 1959), by using four
conditions. These conditions are:

aty=0, u=0 (11)
aty =9, U=Ux (12)
aty=9, du/dy=0 (13)

d*u/dy*=0 (for
constant  pressure
condition )

aty =0,

(14)

The simplest function used to satisfy
these conditions is a polynomial with
four arbitrary constants. Thus:

u=a+b(y)+e(y)’ +d(y)’ (15)

After applying these conditions, a
velocity profile is obtained as:

u 3y
=&

o0

1 (X)3

55 (16)

Noting that, the forth condition in eqn.14
which is used in deriving eqn.16 is not
used in deriving eqn.10.
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(Pohlhausen 1921), suggested that the
velocity profile is a polynomial of forth
order. The profile is changed due to the
variation in pressure gradient along the
flat plate. For zero incidence case, the
velocity profile becomes:

LI AN TRAC IR AL
257257+ (%) (17)

u

0

The most famous solution for the
laminar boundary layer is obtained by
(Blasius 1908), which is called the exact
solution. This solution depends on
obtaining  new  dependent  and
independent variables. A non-linear third
order ordinary differential equation
formed due to these variables then the
solution achieved without the need of
mathematical expression for the velocity
profile. The result of this solution is
agreed, and the results of other solutions
are compared with it. Table 1 shows the
comparison between these solutions.

EVALUATION OF THE GENERAL
VELOCITY PROFILE

The approach used in present work is a
modified approach used by Von Karman
(Eckert 1959). A new condition is
employed in addition to the other four
conditions described in eqn.11 to eqn.14.
The new condition is,

At y=0 ‘_wz(@] (18)
p y=0

oy

So the function which can be chosen to
satisfy the five boundary conditions is a
fifth order polynomial with five arbitrary
constants. Thus,

Uu=¢ + Cz(Y)"' C3(Y)2 +

19
C,(y)’ +Cy)* (19
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Applying boundary conditions yields:

Ci=0 (20)
o T (21)
u
C3=0 (22)
4 31, 23
C4 = 8_31100 —6—27 ( )
3 28 T, 24
Cs = —8—4(1100 —?—) (24)
Substitute in eqn.19, yields:
3 2
U=y - Sy ey
pooon 0 (25)

Y3 Y4
4u (%) = 3u, (=
oo(&) m(5)

For the assumed velocity profile in
eqn.19, the first term is equal to zero (C1
= 0). The velocity gradient at the wall
can be expressed as;

du

u

— )y = A= 26
dy)y—O (8) (26)
Where, (A) 1is the proportionality
constant.

Substitute eqn.26 in eqn.3, to get:

Tw

u

- A(‘%O) (27)

Substitute eqn.27 in eqn.25, to get:
u y Y\ Y4
—=AE)-3=2) +2(5)" |+
u, [(6) (5) (5) )

4(%)3 . 3(%)“
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Or

U _ Y EEYNYEAY

U——A(5)+(4 3A)(5) +

” (28)
EEWAAY

(2A 3)(5)

This equation is the general equation for
the velocity profile for laminar boundary
layer over a flat plate with zero
incidence.

In order to find an expression for
boundary layer thickness (8) we must
use the momentum integral equation
(eqn.5). Thus;

u u
;)1 =—)dy =
qu) qu)
o 4 du

pu’ (dy)y:()

d

X (29)

Substitute eqn.27 and eqn.28 in eqn.29,
integrate, to get:

(0.11428 +0.06187A —0.03015A2)2—5 =
X

7

2

puzo

A

(30)

Eqn.30 is a differential equation, which
can be solved by separating variables.
The solution is:

oRe,

X

2A 0.5
(0.11428 +.06187A — .03015A%)

€2y
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VALIDATION

Eqn.28 is an original and a general
equation for the velocity profile. It can
be reduces to many profiles obtained by
other researchers.

Von Karman (Eckert 1959) suggested
that the velocity profile is a polynomial
of third order. Equating the coefficient
of the forth power term in eqn.28 to
zero, yields.

2A-3=0
Or,
A=3/2 (32)

Substituting this value in eqn.28, to get,

U3y Ly
u, 2 ( ) ) 2 ( ) )
Pohlhausen (Pohlhausen 1921)

suggested that the velocity profile is a
polynomial of forth order. It is clear that
the coefficient of the forth power term in
eqn.17 is equal to one. Equating the
coefficient of the forth power term in
eqn.17 and eqn.28, yields.

2A-3=1

Or,
A=2 (32)

Substituting this value in eqn.28, to get,

Yoy oy o (Y
0 2(5) 2(5) +(5)

o0

This is exactly the velocity profile
obtained by Pohlhausen (eqn.17)

EVALUATING OF
VELOCITY PROFILE
In the exact solution, Blasius (Blasius
1908) found a numerical expression for

(0), (8%*), (0) and (C¢), with no explicit

BLASIUS
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mathematical expression for the velocity
profile. One of the consequences of
Blasius solution is,

0+/Re

X

= x5 (33)

The result of the present work could be
used for obtaining velocity profile agrees

with exact solution. By comparing
eqn.31  with eqn.33, simply result
obtained:

2A 0.5
((O.l 1428+ 0.06187A — 0.03015A2)j
=5
(34)

Solving eqn.21 for (A), yields:

A =1.67326 (35)

Substituting the value of (A) in eqn.28 to
get the velocity profile for the exact
solution,

u y Y3
—=1.67326(=) —1.01978(=)" +
" (5) (5)

0

0.34652(%)4
(36)

Fig.3 shows the velocity profile for the
present work and other profiles. It is
clear that the profile of eqn.36 is the
nearest one to the exact profile.

CONCLUTIONS

The result of this work is a new velocity
profile for laminar boundary layer over a
flat plate with zero incidence. This
profile is nearest to the exact solution
obtained by Blasius (Blasius 1908). Also
the consequences of using the new
profile in calculating (3), (6*), (0) and
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the
exact

(Cf) are mostly nearest to
corresponding values of the
solution as shown in table 1.

The new profile is mathematically
simple, accurate and including most
conditions  bounded the laminar
boundary layer. Therefore it can be used
in fluid mechanics and convective heat
transfer fields.
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Figure 1: Velocity variation inside the boundary layer region
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Figure 2: Observation of the displacement thickness (6*)
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Figure 3: Velocity Profiles for the Present Work and Previous Studies
Compared with Blasius Solution

Table 1: Results of 6, 6*, 0 and C; for Number of Obtained Velocity Profiles

l 6 Rex 6* Rex e Rex Cf VRex
U, X X X 2
3 1
SASANLNR AT 4.64 1.74 0.646 0.323
2°8 28
20— 22 + (D 5.84 1.752 0.686 0.343
S 8 8
Blasius solution 5 1.721 0.664 0.332
Present work 5 1.745 0.667 0.334
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Nomenclatures

Symbol | Meaning Unit
Cr Coefficient of friction -

Re Reynolds number -

u Flow velocity m/s
Uso Free stream velocity m/s

y Vertical distance m

P Flow density kg/m’
) Boundary layer thickness m

o* Displacement thickness m

0 Momentum thickness m

u Dynamic viscosity N.s/m”
Ty Wall sheer stress N/m’
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