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ABSTRACT 
 
A general velocity profile for a laminar flow over a flat plate with zero incidence is 
obtained by employing a new boundary condition to the other available boundary 
conditions. The general velocity profile is mathematically simple and nearest to the exact 
solution. Also other related values, boundary layer thickness, displacement thickness, 
momentum thickness and coefficient of friction are nearest to the exact solution 
compared with other corresponding values for other researchers. 

 
 الخلاصة

  
لطباقي فوق السطح المستوي مѧن خѧلال توظيѧف ظѧرف       تم ايجاد معادلة عامة للسرعة خلال الطبقة المتاخمة للجريان ا         

المعادلѧة العامѧة المستحѧصلة  ذات صѧيغة رياضѧية بѧسيطة       . محيطي جديѧد بالاضѧافة الѧى الظѧروف المحيطيѧة المتѧوفرة          
  وسѧمك الطبقѧة المتاخمѧة    ، تم استخدام المعادلة العامة للسرعة لايجاد القѧيم  ذات العلاقѧة           . واقرب ماتكون من الحل التام    

 وآانѧت النتѧائج هѧي الاقѧرب للحѧل التѧام مقارنѧة مѧع القѧيم المنѧاظرة لهѧا             معامل الاحتكاك و سمك الزخم و  الازاحة سمك
  .والمستحصلة من الباحين السابقين
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INTRODUCTION  
The boundary layer is a thin layer 
formed when a real flow passed over a 
solid surface. The velocity of the flow 
changes through this layer. At the 
surface, the velocity of the fluid relative 
to the surface is zero. The velocity of the 
flow then increases rapidly from zero 
and approaches the velocity of the main 
stream.  
 
In 1904 German engineer Ludwig 
Prandtl (Schlichting 2000) suggested 
that the flow may be considered in two 
parts, the first part is at the boundary 
layer, where the shear stress is of prime 
importance, and the second is beyond 
the boundary layer where the velocity 
gradient is small and so the effect of 
viscosity is negligible. In this part the 
flow is essentially of an ideal fluid. 
 
The boundary layer thickness (δ) is the 
value of height from the plate surface for 
which (u ≈ u∞), and the boundary layer 
velocity profile refers to the manner 
which (u) varies with (y) through the 
boundary layer, as shown in Fig.1 
(Massey 2006). 
 
The concept displacement thickness (δ*) 
(Massey 2006), allows us to consider the 
main flow as that of a frictionless fluid 
past a displaced surface instead of the 
actual flow past the actual surface. In 
other words, to reduce the total volume 
flow rate of a frictionless fluid by the 
same amount, the surface would have to 
be displaced outwards a distance (δ*). 
Fig.2 shows observation of (δ*), where 
Fig.2a shows the corresponded behavior 
of ideal flow. The shaded areas in Fig.2 
are equal and can be presented 
mathematically as: 
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By similar conception, the total 
reduction in momentum flow rate equals 
the momentum flow rate under 
frictionless condition through thickness 
(θ) which called Momentum thickness 
(Massey 2006). Mathematically: 
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The surface shear stress (τw) (Massey 
2006) may be evaluated from knowledge 
of the velocity gradient at the surface 
that is, 
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From external flow, a dimensionless 
parameter from which the surface 
frictional drag may be determined, called 
skin friction coefficient (Massey 2006). 
In mathematical form, 
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The momentum integral equation of the 
boundary layer, first derived by Von 
Karman (Eckert 1959) expresses the 
relation that must exist between the 
overall rate of flux of momentum across 
a section of the boundary layer, the 
frictional stress at the surface and the 
pressure gradient. It can be simply 
expressed as: 
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Many researchers employed different 
relations for the velocity profile through 
the boundary layer. Von Karman 
(Massey 2006) assumed that the velocity 
profile is a polynomial function of the 
vertical distance. Thus, 
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2)y(c)y(bau ++=                         (6) 
 
Where a, b and c are constants. 
The boundary conditions which are used 
to find the values of these constants are: 
 
at y=0   , u=0                            (7) 
 
at y = δ , u = u∞                                   (8) 
 
shear stress (τ) decreases linearly and 
 becomes zero when y= δ               (9) 
 
Applying these conditions yields: 
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Another velocity profile derived by Von 
Karman (Eckert 1959), by using four 
conditions. These conditions are: 
 
at y = 0, u = 0 

 
(11) 

at y = δ, u = u∞ 
 

(12) 

at y = δ, du/dy = 0  
 

(13) 

at y = 0, d2u/dy2 = 0    ( for 
constant  pressure 
condition )  
 

(14) 

 
 The simplest function used to satisfy 
these conditions is a polynomial with 
four arbitrary constants. Thus: 
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After applying these conditions, a 
velocity profile is obtained as: 
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Noting that, the forth condition in eqn.14 
which is used in deriving eqn.16 is not 
used in deriving eqn.10. 

(Pohlhausen 1921), suggested that the 
velocity profile is a polynomial of forth 
order. The profile is changed due to the 
variation in pressure gradient along the 
flat plate. For zero incidence case, the 
velocity profile becomes: 
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The most famous solution for the 
laminar boundary layer is obtained by 
(Blasius 1908), which is called the exact 
solution. This solution depends on 
obtaining new dependent and 
independent variables. A non-linear third 
order ordinary differential equation 
formed due to these variables then the 
solution achieved without the need of 
mathematical expression for the velocity 
profile. The result of this solution is 
agreed, and the results of other solutions 
are compared with it. Table 1 shows the 
comparison between these solutions. 
 
EVALUATION OF THE GENERAL 
VELOCITY PROFILE 
 
The approach used in present work is a 
modified approach used by Von Karman 
(Eckert 1959). A new condition is 
employed in addition to the other four 
conditions described in eqn.11 to eqn.14. 
The new condition is, 
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So the function which can be chosen to 
satisfy the five boundary conditions is a 
fifth order polynomial with five arbitrary 
constants. Thus, 
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Applying boundary conditions yields: 
 
C1 = 0 (20) 
 

C2 = 
µ
τw  (21) 

 
C3 = 0 (22) 
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Substitute in eqn.19, yields: 
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For the assumed velocity profile in 
eqn.19, the first term is equal to zero (C1 
= 0). The velocity gradient at the wall 
can be expressed as; 
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Where, (A) is the proportionality 
constant. 
Substitute eqn.26 in eqn.3, to get: 
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Substitute eqn.27 in eqn.25, to get: 
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This equation is the general equation for 
the velocity profile for laminar boundary 
layer over a flat plate with zero 
incidence. 
In order to find an expression for 
boundary layer thickness (δ) we must 
use the momentum integral equation 
(eqn.5). Thus; 
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Substitute eqn.27 and eqn.28 in eqn.29, 
integrate, to get: 
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Eqn.30 is a differential equation, which 
can be solved by separating variables. 
The solution is: 
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VALIDATION 
Eqn.28 is an original and a general 
equation for the velocity profile. It can 
be reduces to many profiles obtained by 
other researchers. 
Von Karman (Eckert 1959) suggested 
that the velocity profile is a polynomial 
of third order. Equating the coefficient 
of the forth power term in eqn.28 to 
zero, yields. 
 
2A - 3 = 0 
 
Or, 
A = 3/2                                          (32) 
 
Substituting this value in eqn.28, to get, 
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Pohlhausen (Pohlhausen 1921) 
suggested that the velocity profile is a 
polynomial of forth order. It is clear that 
the coefficient of the forth power term in 
eqn.17 is equal to one. Equating the 
coefficient of the forth power term in 
eqn.17 and eqn.28, yields. 
 
 2A - 3 = 1 
 
Or, 
A = 2                                               (32) 
 
Substituting this value in eqn.28, to get, 
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This is exactly the velocity profile 
obtained by Pohlhausen (eqn.17) 
 
EVALUATING OF BLASIUS 
VELOCITY PROFILE 
In the exact solution, Blasius (Blasius 
1908) found a numerical expression for 
(δ), (δ*), (θ) and (Cf), with no explicit  

 
mathematical expression for the velocity 
profile. One of the consequences of 
Blasius solution is, 

5
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The result of the present work could be 
used for obtaining velocity profile agrees 
with exact solution. By comparing 
eqn.31 with eqn.33, simply result 
obtained: 
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Solving eqn.21 for (A), yields: 
 
A = 1.67326                                   (35) 
 
 
Substituting the value of (A) in eqn.28 to 
get the velocity profile for the exact 
solution, 
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Fig.3 shows the velocity profile for the 
present work and other profiles. It is 
clear that the profile of eqn.36 is the 
nearest one to the exact profile. 
 
CONCLUTIONS 
The result of this work is a new velocity 
profile for laminar boundary layer over a 
flat plate with zero incidence. This 
profile is nearest to the exact solution 
obtained by Blasius (Blasius 1908). Also 
the consequences of using the new 
profile in calculating (δ), (δ*), (θ) and 
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(Cf) are mostly nearest to the 
corresponding values of the exact 
solution as shown in table 1. 
The new profile is mathematically 
simple, accurate and including most 
conditions bounded the laminar 
boundary layer. Therefore it can be used 
in fluid mechanics and convective heat 
transfer fields. 
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Figure 1: Velocity variation inside the boundary layer region 

 

 
Figure 2: Observation of the displacement thickness (δ*) 
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Figure 3: Velocity Profiles for the Present Work and Previous Studies 

Compared with Blasius Solution 
 
 
 
 

Table 1: Results of δ, δ*, θ and Cf for Number of Obtained Velocity Profiles 
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43 )y()y(2)y(2
δ

+
δ

−
δ

 5.84 1.752 0.686 0.343 

Blasius solution 5 1.721 0.664 0.332 

Present work 5 1.745 0.667 0.334 
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Nomenclatures 
Symbol Meaning  Unit 
Cf Coefficient of friction - 
Re Reynolds number - 
u Flow velocity m/s 
u∞ Free stream velocity m/s 
y Vertical distance m 
ρ  Flow density kg/m3 
δ Boundary layer thickness m 
δ* Displacement thickness m 
θ Momentum thickness m 
µ Dynamic viscosity N.s/m2 

τw Wall sheer stress N/m2 

 


