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ABSTRACT 
Vibration of base isolated machine foundations has been studied using the Scaled 

Boundary Finite Element Method (SBFEM) and the cone model method. The 

dynamic stiffness of soil supporting rigid massless foundation was determined. This 

stiffness is of complex value. The real part represents the reflected energy of the 

restoring and inertial forces while the imaginary part represents the energy dissipated 

within the endless extent of the soil as a geometric damping. The effect of geometric 

and material properties of soil upon the real and imaginary parts of the dynamic 

stiffness was determined and represented in terms of dimensionless charts for the 

frequency range of interest. Results have shown that increasing the embedment ratio 

has a significant effect on the dynamic stiffness, it increases the dynamic stiffness 

considerably. The effect of stiffness ratio(stiffness of isolator/ stiffness of soil) was 

demonstrated for isolated machine foundations. The use of soft isolators reduces the 

dynamic response of foundation and the soil reaction. 

 

 الخلاصة

الااتمةاسليقي ااسلبح نللااقلبحا يييااسلبحا ااةة ل,لألاهتاازبزبالبحقاالة حيسلالااالبحالاالوللبحا ز حااسليتناال البحث اا 
عنللاقل.لبحا ليلسل ليقي سلبحناا ج لبحامق يالاللا تلالصلالا  لسلبحلالثسلبحةينلايلياسلحتتقثاسلت االبالالا

بحان للاسل بحتالالت ال اللال  لسلبحللثسلبحةينلايلياسلجبالةايملا  اة لياااالبحاازقلبح  ي الالانةالليلةاسلبلان  الا
ل.لبحيلةسلبحاتثةة لللالبحاةىلبحلنةلولالحتتقثسللاإقالعلباللالإحىل ضعلبحلل للثينالليااالبحازقلبحميلح

 يا لتاملب تلالصللاالاالل,لتمل للصلتأايقلبحقلالبحةنةللال عاقلبحةلللعتىلال  لسلبحللثسلاعلتغيقلبحتاقةة
لال لقلملتغليقلهجهلبحا لالالاعلبحتاقةةلثللاتمةبملامييالالالثالبحاق نسل ا لاالبحتمايةلحتتقثسلت البال

.لتثايللااللماالالبحةقبلاسلأللبحلالثسلبحةينلايلياسلتازةبةلثزيالة لعااقلبالاالا.للالث ةياسلحااةيلالبحتاقةةلبح اتياس
ااازقل)حةقبلاسلتاأايقلبح ا بزالعتاىلبلالااتالثسلبحةينلايلياسلح لالالتاملبلاتمةبملعاا بزالنلثضاسل ثلالثسلا يناسل

ل.لللللللللل تثيللبللل لق لبح زالتزةبةللتاللةتالنلثسلبحللثس(لاللللثسلبحتقثسللغيق
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INTRODUCTION 

The idealization of soil media by means of a conventional finite element method has a 

limitation, since it truncates the soil domain at pre specified artificial boundaries and this 

leads to spurious reflections at the assumed boundaries (Dominguez, 1993). The whole 

concern is to assemble the dynamic stiffness matrix of soil, this matrix is of a complex form 

, and can be  decomposed into real and imaginary parts. The imaginary part corresponds to  

the absorbed energy dissipated in the endless extent of the infinite domain, while the real part 

corresponds to the reflected energy at boundaries. The dissipation of   energy through soil is 

called radiation damping. Radiation condition states that the soil as an infinite media is an 

energy sink. (Wolf,1985). 

The foundations for machines are usually in the form of reinforced concrete blocks. Brick 

finite elements may be used to idealize the block foundations. The soil may be idealized by a 

linear elastic or linear viscoelastic material. 

 

 

REVIEW OF LITERATURE 

Lamb(1904) studied the response of the elastic half space subjected to oscillating vertical 

forces. Thus, he solved the two-dimensional wave propagation problem. In 1936, Reissner 

developed the first analytical solution for the vertically loaded cylindrical disk on an elastic 

half-space. His solution is considered to be the first engineering model. He reached a solution 

by integrating Lamb's solution over a circular area for the center displacement; he assumed a 

state of uniform stress under the footing. Barkan (1962) conducted some plate bearing tests   

to get an equivalent soil spring constant k. From these tests, he prepared tables and empirical 

formulas to easily estimate the design values of the subgrade reaction for several types of soil 

for each possible mode of vibration. In 1965, Lysmer in his doctoral thesis, studied the 

vertical vibration of circular footings by discretizing the circular area into concentric rings 

(Asik, 2001). Wong and Luco (1976) presented an approximate numerical procedure for 

calculation of harmonic force-displacement relationship of rigid foundations of arbitrary 

shape and placed on an elastic half-space.The first Boundary Element Method(BEM) 

application for soil problems was presented by Dominguez in (1978) who applied the BEM to 

compute the dynamic stiffness of rectangular foundations resting on, or embedded in, a 

viscoelastic half-space in frequency domain(Dominguez, 1993). The dynamic stiffness of 

rigid rectangular foundations on the halfspace was determined by (Triantafyllidis, 1986) for 

different aspect ratios of (L/B =1, 2, 5 and 10) and for Poisson's ratio (v =0.25, 0.33 and 

0.40). All modes of vibration were considered and the stiffness and damping coefficients 

were represent in dimensionless charts for dimensionless frequency up to 3.5. (Gazetas et al, 

1985, 1986a, 1986b, 1987, 1989a, 1989b, 1991a, 1991b) treated the subject in a simple 

physical manner based on an improved understanding of the physics of the problem. This has 

been enhanced by the results of the extensive rigorous parametric studies including several 

analytical results compiled from the literature. Mita and Luco (1989) had tabulated 

dimensionless impedance functions and effective input motions of square foundation 

embedded in a uniform half space. Alhussaini (1992) studied the vibration isolation of 

machine foundation using open and in-filled trenches as a wave barriers using boundary 

element method (BEM). Meek and Wolf (1992) used the cone model to idealize homogenous 

soil under base mat, they also used cone model to idealize soil layer on rigid rock.  Asik 

(1993) developed a simplified semi-analytical method, to compute the response of rigid strip 

and circular machine foundations subjected to harmonic excitation. Wolf and Song (1996) 

had developed the scaled boundary finite element method for modeling the unbounded media 

in analysis of DSSI. (Wolf, 1997) developed a spring-dashpot-mass model with frequency-

independent coefficients and a few internal degrees of freedom. Spyrakos and Xu (2004) 



Journal of Engineering Volume   16   September   2010 Number 3 
 

 

 1155 

studied the dynamic response of flexible massive strip foundations embedded in a layered soil 

using coupled FEM/BEM. Chen and Yang (2006) presented a simplified model for 

simulating unbounded soil in the vertical vibration problems of surface foundations. The 

model comprises a mass, a spring, and a dashpot without any internal degree of freedom. 

Kumar and Reddy (2006) investigated experimentally the response of a machine foundation 

subjected to vertical vibration by sandwiching a spring cushioning system between the 

machine base and its footing block.  Kumar and Boora (2008) also examined experimentally 

the effect of two different combinations of a spring mounting base and a rubber pad 

sandwiched between the machine base and its concrete footing block. Using modal analysis 

(Chen and GangHou, 2008) presented a methodology to evaluate dynamic displacements of a 

circular flexible foundation on soil media subjected to vertical vibration. 

 

MATHEMATICAL MODELS FOR MACHINE FOUNDATIONS 
The idealization of soil-foundation system is the most important task of the designer, either 

simple or complex models may be used. It depends on the degree of accuracy required and on 

the importance of the project. Simple mathematical models are frequently used by office 

designer as it needs basic knowledge to build and to run the model, these models consist of 

discrete springs with lumped masses.  

A boundary condition capable of eliminating the reflection of waves to the computational 

domain has to be applied on the artificial boundary. The boundary condition at infinity should 

be able to irreversibly transfer energy from the bounded domain to the unbounded domain 

and to eliminate the reflection of waves impinges the boundary. Such a boundary condition is 

called the radiation condition. Obtaining the radiation condition for large scale engineering 

problems is the most challenging part of the dynamic soil-structure interaction analysis. 

The scaled boundary finite-element method is a powerful semi-analytical computational 

procedure to calculate the dynamic stiffness of the unbounded soil at the structure–soil 

interface. This permits the analysis of dynamic soil–structure interaction using the 

substructure method(Wolf and Song, 1996). 

 
 

 

Fig. 1 Modeling of unbounded medium with surface finite elements  

             (section) with: (a) scaling centre outside of medium;  

             (b) extension of boundary passing through scaling centre. 
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The total boundary must be visible from a point within the medium which is called the 

scaling center O. On the doubly-curved boundary S of the medium, the displacements and 

surface tractions are prescribed on Su and St  respectively. The radial direction points from 

the scaling centre to a point on the boundary, where two circumferential directions tangential 

to the boundary are identified. The boundary is discretized with doubly-curved surface finite 

elements with any arrangement of nodes. The dynamic behavior is described by the dynamic-

stiffness matrix in the frequency domain [S(w)] relating the displacement amplitudes in the 

degrees of freedom on the boundary S to the corresponding force amplitudes. 

By scaling the boundary in the radial direction with respect to the scaling centre O with a 

scaling factor larger than 1, the whole domain is covered. The scaling corresponds to a 

transformation of the coordinates for each finite element, resulting in the two curvilinear local 

coordinates in the circumferential directions on the surface and the dimensionless radial 

coordinate representing the scaling factor. This transformation is unique due to the choice of 

the scaling centre. This transformation of the geometry involving the discretization of the 

boundary with finite elements and scaling in the radial direction leads to a system of linear 

second-order differential equations for the displacements with the dimensionless radial 

coordinate as the independent variable. 

After substituting the definition of the dynamic-stiffness matrix in the differential equations, 

it is shown that the dynamic-stiffness matrix is a function of the dimensionless frequency 

which is proportional to the product of the frequency and the dimensionless radial coordinate. 

This permits the equation for the dynamic-stiffness matrix on the boundary to be expressed as 

a system of nonlinear first-order ordinary differential equations in the frequency as the 

independent variable with constant coefficient matrices. 

 

 
 

 

Fig. 2 Scaled boundary transformation of geometry of  surface finite element .  

 

 

Denoting points on the boundary with x, y, z, the geometry is described in the local 

coordinate system 
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with the mapping functions [N)] and the coordinates of the nodes {x}, {y}, {z}. The three-

dimensional medium is defined by scaling the boundary points with the dimensionless radial 

coordinate x measured from the scaling centre with  = 1 on the boundary and is 0 at the 

scaling centre The new coordinate system is defined by  and the two circumferential 

coordinates  for an unbounded medium 1 <   < ∞ 

1. Governing Equations in Scaled boundary  Coordinates 

The differential equations of motion in the frequency domain expressed in displacement 

amplitudes: 

 

{u} = {u(x,y,z)} = [ux uy uz]
T
                                                 (2) 

 

 are formulated as 

 

L
T() + b(w)+w

2u() = 0      (3)  

with the mass density  and the amplitudes of the body loads b. 

 The stress amplitudes {}  follows from Hooke's law with the elasticity matrix [D] as  

 

{} = [x y z yz xz xy]
T
 = [D]{}     (4)  

The strain amplitudes {} are defined from the strain-displacement relationship  

{} = [x y z yz xz xy]
T
 = [L]{u}     (5)  

Where [L] is the differential operator 
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The derivatives with respect to X,Y,Z are transformed to those with respect to 
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Applying the weighted residuals method leads to the scaled boundary finite element 

equations of displacements {u()} 
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Where the coefficient matrices 
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Applying the conditions of equilibrium and compatibility at soil-structure interface, 

 getting the scaled boundary equations in dynamic stiffness matrix: 
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The dynamic stiffness matrix [S∞(ω)] at high frequency is expanded in a polynomial of 

(i)decreasing order starting at one:- 
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The first two terms on the right hand side represent the constant dashpot matrix [C∞] and the 

constant spring [K∞] (subscript ∞ for ω → ∞). Substituting Equation (13) into Equation (12), 

and setting the coefficients of terms in descending order of the power of (iω) equal to zero 
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determines analytically the unknown matrices in Equation (13) sequentially. 

The scaled boundary finite element equation is solved numerically. To start the algorithm for 

these nonlinear first order differential equations. The dynamic stiffness matrix [S∞( ωh)] at 

high but finite ωh is calculated from the asymptotic expansion polynomials equation as the 

boundary condition. A standard numerical integration procedure then yields [S∞( ω)] for 

decreasing ω. The error introduced through the boundary condition diminishes for decreasing 

ω. The numerical implementation of the aforementioned algorithm is done using the 

computer program of Wolf (Wolf and Song, 1996) with little modifications.  

 

2. Cone Model 

The soil is idealized as a truncated semi cone of initial radius ro and apex distance zo, with an 

opening angle depends on the static stiffness of half space under rigid disk of radius ro, which 

can be exactly determined from theory of elasticity.  
2
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comparing Eq.(17) with Eq.(18) leads to, 
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Fig. 3 Disk on surface of homogeneous half-space. 

a) Truncated semi-infinite cone. b) Lumped-parameter model 

 

Solving the one dimensional wave equation for out-coming waves only 
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As →∞ the iC ›› K  i.e. K can be neglected as compared to C . knowing that the C is the 

same as that of prismatic rod with constant area , it means that wave propagation is 

perpendicular to the disk. This is the exact wave pattern of disk on a half space in the high 

frequency limits. Thus, the cone model also yields exact results for ω→∞. As the opening 

angle of the cone is calculated by matching the static stiffness coefficients, a doubly-

asymptotic approximation results for the cone, correct both for zero frequency (the static 

case) and for the high frequency limit dominated by the radiation dashpot C. Cone model 

analysis is done making use of the computer program(Conan) provided by Wolf and Deek's 

(2004). 

 

- Dynamic Stiffness of Soil under Foundation 
The vertical dynamic stiffness of soil under machine foundations is addressed here. Initially 

the dynamic stiffness of flexible foundation by the SBFEM or by the cone model is 

determined, and then it will pre and post multiplied by the vectors of rigid body motion to 

retain the dynamic stiffness for the given mode. A complex value stiffness matrix is 
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calculated for each frequency step, starting from a high but finite frequency down to zero 

frequency i.e. static stiffness. The frequency range of the dynamic stiffness should cover 

practical range of frequencies for machine foundations. Worked examples, verification 

problems and parametric studies have been achieved, to show the effects of the geometrical 

and material parameters on the dynamic stiffness of soil under foundation. 

The effects of Poisson's ratio on vertical dynamic stiffness and on damping coefficient of 

embedded foundation are sown in (Fig. 4). 

A verification example of a square foundation with (v=0.4) and with different embedment 

ratios were compiled by SBFEM, the results were compared with the cone model and with 

boundary element method of (Mita and Luco, 1989). Acceptable agreements are shown (Fig. 

4), with some deviations perhaps due to different discretization schemes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Effect of Poisson's'  Ratio (v) on Vertical Dynamic Stiffness of Rigid 

Rectangular Foundation . 
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- DATA PREPARATION, SPATIAL AND TEMPORAL DISCRETIZATION 

The soil foundation interface is discretized in a finite element manner i.e. an eight nodded 

element for general three dimensional foundations, a tabulated joint coordinates, element 

incidence and boundary conditions are specified. Material properties for each element are fed. 

These include the mass density and the elastic constants. Elastic constants may be fed using 

different options, either two modulus option of elastic shear modulus and the Poison's ratio 

for isotropic soil or lower triangle of the material constitutive matrix for general anisotropic 

material.   

The spatial discretization   of soil foundation interface depends on the wave length [λ]. 

Extreme minimum value of λ is retained by dividing the shear wave velocity by the highest 

frequency. The recommended element length or node to node distance is [λ/4 to λ/6] (Wolf, 

2003). The solution of the nonlinear differential equation of SBFE in dynamic stiffness is in 

the form of power series. The solution starts with expansion of dynamic stiffness into power 

series at high but finite frequency. This high valued frequency should be fed by analyst to 

start the numerical solution. The dynamic stiffness matrix is calculated for each frequency 

step from the high frequency down to low or zero frequency value corresponding to the static 
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stiffness matrix. The initial decrement of frequency is fed, and a minimum frequency step 

should be specified to terminate the solution algorithm.  

 For cone model, the spatial discretization i.e. the distances between disks should not be more 

than [λ/5] (Wolf and Deek's, 2004), where λ is the shear wave length. There is no restriction 

on the selection of the upper or lower frequency, and any frequency may be used.  

 

 

APPLICATIONS 

For a given frequency, the dynamic stiffness of soil supporting a rigid foundation is 

determined using the scaled boundary finite element method, or cone model. The equivalent 

springs and dampers coefficients for each nodal degree of freedom are calculated. Each node 

assumes its share of stiffness and damping due its tributary area. The springs and dampers 

form the boundary conditions for the finite element model of the foundation mass. 

A parametric study shows the effect of mass ratio (bz) (mass of foundation plus machine/ b

) 

upon the dynamic response, resonant frequency and damping ratios, for an embedded 

rectangular foundation of (e/b=0.5) with aspect ratio of length to width of (L/b=3) in (Figs. 6 

and 7). 

Interpretation  of these graphs indicates that as the mass ratio increases the resonant 

frequency decreases and the damping ratio decreases and the dynamic response increases at 

distinct peaks. For low mass ratio no peaks seam distinct and the dynamic response always 

decreases.   

The next parametric study shows the effect of stiffness ratio (K (isolator) /K (soil)) of a square 

embedded foundation on the forces transmitted to soil. This is the dynamic soil reaction as a 

fraction of the driving dynamic force, or in a conventional form it is the isolation efficiency 

as seen in (Fig. 8). The effect of stiffness ratio on the fundamental frequency is shown in 

(Fig. 9). It is clear that isolation effectiveness increases with the decrease in the stiffness ratio 

i.e. when using more flexible isolator sandwiched between the base and machine. Noting that 

an increase in the displacement of the machine itself, however, can be controlled by 

enhancing the isolation system with an energy dissipation devices i.e. dampers. The use of 

more flexible isolators decreases the fundamental frequency considerably , down to the rigid 

body mode of  lowest frequency when one can get the best isolation effectiveness at the so 

called isolation frequency.    

 

Fig. 6 Effect of Mass Ratio on Dynamic Response of Embedded 

          Rectangular Foundations (E/B=0.5), (L/B=3.0). 

Cone model 
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Fig. 7 Effect of Mass Ratio on Damping Ratio of Embedded Rectangular  

          Foundations (E/B=0.5), (L/B=3.0). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 Effect of Stiffness Ratio on 

Isolation Efficiency. 

 

 

 

 

Fig. 9 Effect of Stiffness Ratio on 

Resonant Frequency. 
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Fig. 10 Effect of Stiffness Ratio on Vertical Dynamic Response of    Machine and           

Foundation. 
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The presence of isolation between the machine and its base forms a discrete system of two 

degrees of freedom. The effect of the stiffness ratio on the vertical dynamic displacements of 

the machine and its supporting foundation is shown in (Fig.10). The uncoupled motion 

maintained at high isolation effectiveness leads some designers to design the isolated 

foundation under static loads only. This is a major advantage of using effective  base isolation 

it will not only reduce the dynamic problem into static one  but it will make it possible to 

place the machine even on a tenth floor of a multi story building or in/on soil with uncertain 

dynamic properties. In addition there is no need for a thorough sophisticated soil dynamics 

investigations.  

 

- CASE STUDY 

A turbine machine of (762,000 kg )mass rests on a reinforced concrete foundation block of 

dimensions (24.0mx 8.0m x4.0m) and of (1,920,000 kg) mass (Fig.11) The operational 

frequencies are 50 Hz, 314 rad/sec. The corresponding vertical stiffness and damping of soil 

obtained from the scaled boundary finite element  method are (76 x 10
8
 N/m) and (15 x 10

10
 

N/m) respectively. The mass of foundation block and machine is (2.592 x 10
6
 kg) and the 

damping ratio is more than 100% , however , 25% of critical damping will be used , 

according to (DIN 4024, after ACI 351.3R-04) the corresponding damping coefficient is 

(0.70 x 10
8
 N.sec/m). The amplitude of harmonic  dynamic force of (1.344 10

6
 N) was 

assumed, which is 20% of the weight of the machine(F(t)=1.344x10
6
sin(314t)). 

For isolated rigid mass model a spring isolator with stiffness of one tenth of that of soil was 

used, results in two degrees of freedom system. The results of  vibration analysis of both 

isolated and non-isolated foundations are listed in (Table 1) 

Several finite element models were used for analyzing this case with different element sizes. 

 One element model of 24 x 8 x 4 m element size, 

 12-element model with 4 x 4 x 4 m element size, 

 96-element model with 2 x 2 x 2 m element size, 

 768-element model with 1 x 1 x 1 m element size. 

 Two cases of isolated finite element model with stiffness ratio of ten percent, 

these are one-element and 12-element models were investigated.  (Table 2) 

lists the results of the finite element models of vertical vibration of block 

foundations with and without isolation. 

 

Fig. 11 Finite Element Idealization of Machine Foundations 
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Table 1 Vertical Dynamic Responses Of Rigid Mass Foundation. 

case Natural 

frequency 

(rad/sec)  

Displacements Transmissibility 

Ratio % 
micron (10

-6
meter) 

foundation machine 

Non-

isolated 

54 5.3 3 

isolated 32 1.8 20 1.0 

 

Table 2 Vertical Dynamic Responses Of Block Foundation Using Finite  Element 

Method. 

 

case Natural 

frequency 

(rad/sec)  

Displacements Transmissibility 

Ratio %  

micron (10
-6

meter) 

foundation machine 

One element 53.7 5.25 3.2 

12-element 53.69 5.24 3 

96-element 53.6 5.2 2.96 

768-element 52.8 5.07 2.85 

Isolated one-

element model 

32 2.6 20 1.5 

Isolated 12-

element model 

31 2.32 20 1.3 

 

Examination of (Table 1) and (Table 2) leads to the following non surprising conclusions: 

Resonant frequency decreases considerably with the use of isolators, the vertical 
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displacement and the dynamic soil reaction of foundation decrease, while the displacement of 

machine increases with the use of isolators;  Resonant frequency decreases slightly with the 

use of finite element model and as the number of element increases, this result is not 

surprising because increasing of  element numbers means the use of more flexible (less 

stiffness) system keeping the mass(s) not changed. The use of isolators in the finite element 

model results in the same response for foundation and machines with slight reduction in 

foundation response (displacements and dynamic soil reactions )with the increasing of 

element number. 

Both dynamic responses of machine and foundation in non-isolated and in isolated systems 

are within acceptable limits(section 3.3). As the non-isolated natural frequency(54 rad/sec) is 

sufficiently far away from the driving frequency(314 rad/sec). The use of isolators has no 

practical values if it is not detrimental. However it may be beneficial when the machine 

assumes unusual frequencies when turn on/off conditions or emergency shutdown.  

 

CONCLUSIONS 

Comparing the SBFEM  and the cone model results with the published boundary element, the 

applicability of these models are demonstrated. The important observations of the effect of 

the geometrical and material properties of soil under foundation upon the dynamic stiffness 

and dynamic response are presented separately in the following paragraphs. The vertical 

vibration of rectangular foundations have been studied by the SBFEM and by the cone model, 

some conclusions may be drawn as follows:- 

 

 The results for the vertical dynamic stiffness of rectangular foundations indicate that 

the real part for the spring coefficient decreases by (0% to 80%) and may posses 

negative values and the damping coefficient increases up to (50%) as Poisson's ratio 

increases from (0.25) to (0.45). The frequency effect on spring and damping 

coefficients of embedded foundations with different embedment ratios (e/b= 

0.5,1.0,1.5,2.0)has been found. Both spring and damping coefficients increase with 

the increasing of  embedment ratio. 

 

 The mass ratio(Mf/b
3
) of foundation has a significant role in the dynamic response. 

As the mass ratio increases from(5) to (20) the resonant frequency decreases by 

(70%), damping ratio decreases by (50%) and the dynamic response increases by 

(100%) with a distinct peaks. For low mass ratio (less than 5) no peaks seem distinct 

and the dynamic response always decreases.   

 The effect of stiffness ratio (K(isolator)/K(soil)) on the isolation efficiency or on tuning of 

fundamental frequency. It seems that isolation effectiveness increases from(50%) to 

(80%) with decreasing in stiffness ratio from(0.20) to (0.05). The use of more flexible 

isolators decreases the fundamental frequency by(50%) when the stiffness ratio 

decreases from(0.20) to (0.05). 

 The presence of isolation between machine and its base forms a system of two 

degrees of freedom at each mass of both the machine and the foundation. These two 

degrees of freedom systems seem to be gradually uncoupled as much as the isolation 

stiffness being more flexible (stiffness ratio less than 0.05). The major advantage of 

base isolation, not only reduces the dynamic problem into static one but also it 

reduces the need for a thorough sophisticated soil dynamic investigations.  

 For vertical mode, the use of finite element model affects the response slightly (less 

than 10%) due to the flexibility of finite element model as compared with rigid mass 

model. Resonant frequency decreases slightly(less than 1%) with the use of finite 

element model and as the number of elements increases. This result is not surprising 
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because  increasing of  element numbers means the use of more flexible (less 

stiffness) system keeping the mass(s) not changed. 
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NOMENCLATURE 

 

The major symbols used in this paper are listed below; others are indicated with their 

equations where they first appear. 

 

A Plan area of foundation 

ao 
Dimensionless frequency

s

o
C

b
a


  

Au Side face with pre-specified displacements 

At Side face with pre-specified forces 

b Half width of foundation (characteristic length) 

][],[],[ 321 bbb  Scaled boundary finite element differential operators 

bz Mass ratio 

C Wave velocity 

C Damping coefficient 

[C] Damping matrix 

[C∞] Damping matrix of unbounded media 

E Modulus of elasticity 

][],[],[ 21 EEEo  Elastic Matrices of Scaled boundary finite element 

][],[],[ *2*1* EEEo  Complex Elastic Matrices of Scaled boundary finite  

element involving material damping 

e Volumetric strain 

e/b Embedment ratio  

f(t) Incident wave 

G Shear modulus of elasticity 

[G()] Dynamic flexibility matrix 

g(t) reflected wave 

h(t) refracted wave 

I Moment of inertia of plan of foundation 

i Imaginary part 1  

J Jacobean matrix  

k Stiffness coefficient 

[K] Stiffness Matrix 

[K∞] Stiffness Matrix of unbounded media 
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L Half length of foundation 

[L] Differential operator 

m Lumped Mass  

[M] Mass matrix 

[M
o
] Mass matrix of Scaled boundary finite element 

N(z,t) Normal force 

O Similarity centre 

r Radial coordinates 

ro Characteristic length of foundation 

S() Dynamic stiffness 

[S()] Dynamic stiffness matrix 

it  Traction forces 

ui Component of displacement 

iu  Component of velocity 

iu  Component of acceleration 

v Poisson's ratio 

x, y, z Cartesian's coordinates  

 Reflection coefficient of waves 

m Material hysteretic damping 

 Frequency ratio 

i Normal strain component 

ij Shear strain component 

 Wave length 

 Lame' constants 

 Mass density 

i Normal stress component 

ij Shear stress component 

 Frequency 

ij Rotational strain 

 Damping ratio 

 Natural coordinates 

 


