
Number 3 Volume 8 Journal of Engineering

COMPUTER VIROLOGY: TOWARD DESIGNING AN
IDEAL ANTI.VIRUS SYSTEM

Hamid M. A. Abdul-Hussain
Co:.puter Engineering Department

College of Engineering, University of Baghdad

ABSTRACT
A new systematic approach is introduced and used to define and study the basic concepts of the
anti-virus system. These basic concepts include definitions, design and analysis criteria, and

classifications. Also, the characteristics of the ideal anti-virus system are defined. To understand
how the proposed design and analysis criteria can be used in practice, the currently available anti-
virus products are analyzed using the proposed criteria to see whether they meet the requirements of
the ideal anti-virus system or not.

i,a>titt

- .ll-,-.aoll .l-Lill l+-,,l.,!l igll iJl i.*,1j3 .rJj- d k l''.",..,13 1431r-",^,1 e t+.* 4;;d. 4!JLor
rl-;^Jl fLJiiIl:**,U!t grl.--ull .(Computer Anti-Virus System) *UJiSlyl 6t,*1Jl c,L5+il

&t-,JJrri .'illl.' o t-q.i.a33 ,diJ.3ll3 iJ-.il _,1!r- r.-q_.pi :d.rLo.5 1$JJiisryl *1r..,1-=ll c.L:+il

.#1, .411,,.,1J1 crL-r_llrl .rl.-a,Jl dlLll ,tJi:Jl ot'Il,:.-l ..rl:.ll *lF: +.:s3 t cllS .el-u.,lJl

,:l-,,3;il .:lrl .:Jl ,,, lii .liL: i.si#Idlt ilJl i6jilt L)rl.:llr Jl+*Jl alrrr..1 a+S ce-

ot- 4lti..1t Lr.'r il! lil l-$ a^iJr- LFJ..I dji3 rr,'il[JlJ,-]t ,lrr',.,tr (,UJl.r 6JsJ3^Il rdr!-tJl

.crL;-LJl crL:_,r+il rt-:.Jl q,lt5."ll euaill

KEYWORDS
Computer viruses, virus execution, virus detection, virus infection, virus eradication, virus
spreading

.INTRODUCTION
The anti-virus industry is the bright side of the computer virus history. For every'virus program
there is a utility to get rid of the virus and fix the damage it causes. Once the computer virus
appeaxs, a battle begins between the bad guys "i.e. the virus designers" and the good guys "i.e. the
anti-virus designers". The effort to combat the computer virus threat has spawned an entire industry.
Over the years, the anti-virus industry has had to keep pace, as virus writers have become more
sophisticated [Garber 1 998].
Even though the anti-virus technology receives increased importance, the great burden of the
published literature about the anti-virus takes the form of a story: "Some virus (V) appear
somewhere in the world, it can cause the damage (D) to your system, hence, you must purchase the

317

@
I

o

H. M. Abdul-Hussain
COMPUTER VIROLOGY: TOWARD DESIGNING AN

IDEAL ANTI.VIRUS SYSTEM

anti-virus (A) to protect your computer from (V)". In those literatures you will find information
about how the coinputer user can purchase, install, and use the anti-virus. Also, how fast the anti-
virus is, how many viruses it can detect, and how it can be updated to cope with new viruses. Even
though these stories are more than enough to alert the computer users about the threat and motivate
them to purchase and install the anti-virus programs, it is worthless for the academic researchers,
technicians, security professionals, or 'in general' those people that are interested with designing the
anti-virus systems that can cope with viruses using systematic methods.
There is a risk that the incredible growth of the information society will be brought to a halt by the
spread of diseased programs [Fites and Johanson 1989]. Therefore, the efforts to combat the
computer virus must continue until ar^ rdeal, universal anti-virus is designed. Designing the ideal
anti-virus needs a deep understanding of the computer virus and anti-virus concepts. Therefore, a
standard scientific approach to the study of the computer virus problem is needed. The researchers
must understand the computer virus definition, characteristics, principles of operation, methods of
penetration, methods of attacks, and deception tricks so that they can define the characteristics and
requirements of the ideal anti-virus.
In part this research has been a follow-up to the paper titled "Computer Virology: Formal Analysis
of Computer Viruses" [Abdul-Hussain and Shabib 2002), but in the main it is a complement to that
paper. After defining "what we are going to fight", that is, the computer virus (see [Abdul-Hussain
and Shabib 2002)), this paper explains "how to fight it", that is, the anti-virus. The main objective
of this work is to introduce a formal systematic approach in the analysis and design of the anti-virus
systems. Before we advance to the proposed design and analysis criteria of the anti-virus system, the
following are definitions and basic concepts that will be used along this work.
The Anti-Virus is: "A utility of a predefined 'Type', designed specifically to protect every target in a
predefined 'T-group' (Target-group) against a predefined 'Viral-Attack' of every virus in a
predefined' V-group' (Virus-group)".
The T-group is: "The group of target sites and/or target cells that must be protected by the anti-
virus. And TGS (Target Group Size) is the number of targets in the T-group".
The V-group is: "The group of viruses that the anti-virus can cope with. And VGS (Virus Group
Size) is the number of viruses in the V-group".
The Viral Attack is: "Any form of infection, change, or destruction caused by the viius to the targets

of the T-group".
The anti-virus utiiities can be classified into three Types:

1- Pure-Hardware Anti-Virus: In this type the only way to cope with viruses is to use hardware.
The writ protection tab on the floppy diskette and the hard disk lock are typical examples of the
Pure-Hardware anti-virus.

2- Pure-Software Anti-Virus: In this type, the only way to cope with viruses is to use software.
3- Hardware-Based Anti-Virus: In this type, the software anti-virus programs are supported by

special hardware anti-virus utilities.
The Anti-Virus System is: "A group of cooperative anti-virus utilities each one of them is designed
to perform a predefined protection task".

PROPOSLD DESIGN AND ANALYSIS CRITERIA OF THE ANTI-VIRUS SYSTEM
Fig.(l) shows how the ant-virus should adjust the virus variables in order to minimize Virus
Detection Age (VDA) see [Abdul-Hussain and Shabib 2002]. The anti-virus can be classified
according to detection, prevention, eradication, damage control, and false alarms:
1- Detection: The anti-virus must be capable of detecting any virus that belongs to the V-group and

resides in an1, one of the T-group executables.
2- Prevention: The anti-virus must be capable of preventing any virus belonging to the V-group

from infecting any one of the T-group executable.

318

a

o

o

,

@ Number 3 Volume 8 Journal of Engineering

3- Eradication: The anti-virus must be capable of eradicating any virus belonging to the V-group
attached to any one of the T-group executables and, at the same time, repair any change caused
due to the virus infection.

4- Damage Control: The anti-virus must be capable of preventing any virus belonging to the V-
group from destroying any one of the T-group target cells.

5- Minimizing False-Alarms: The anti-virus makes a False-Alarm (or false positive), if it reports an
executable to be infected while it is not, or reports a given piece of code to be a viral-code
while it is not.

VRP Max. CVS <+ NAB

ltriEil VHA Min a

o

Fig. (l): General trends of maximizing or minimizing the virus variables from the
Anti-virus designer point of view,

Detection (Terruinatins VHA)
"The task of discovering the virus presence to terminate its Virus Hidden Age (VHA)". Detection
represents the bottleneck in the anti-virus design. Because without discovering the virus presence,
there is no way to prevent it from infecting new target sites or eradicating it from the infected ones.
In order to design an anti-virus that can cope with viruses using reliable and systematic method, a
general and trusteC rule must be formalized to be used to detect the computer virus. The detection
techniques can be classified into: Target-Based Detection, Code-Based Detection, and Behavior-
Based Detection.
1- Target-Based Detection : "The technique of detecting the computer virus by distinguishing the

clean executable from the infected executable". By definition, viruses infect other executables by
attaching themselves to the infected executable. This attachment will change the executable size
by Number of Added Bytes (NAB-bytes), contents by Number of Changed Bytes (NCB), and
execution time (by VDT). This fact can be used to derive the following detection rule:
RULEI: "IF the size, contents, and/or execution time of a given executable is changed, THEN,
the executable is infected by a cuorputer virus".
RULEI is trusted to be satisfied , absolutely, by any computer virus regardless of its generation
date and Virus Deception Capability (VDC). However, the effectiveness of the above rule
according to the number of false alarms must be considered. The number of false alarms
associated with RULE1 is minimum because of the fact: "Unlike data files, executables, such as
executable files and BPS code, normally don't change unless you re-install them [Fites and

319

NCB ++

iT Min.

a

H. M. Abdul-Hussain
COMPUTER VIROLOGY: TOWARD DESIGNING AN

IDEAL ANTI-VIRUS SYSTEM

Johanson 1989]". To be precise, unintended change to executables due to physical or system

errors may cause false alarms if RULE1 is used. In fact, detecting and fixing unintended changes

is the responsibility of the OS. Therefore, for example, CRC "Cyclical Redundancy Check" is
used by DOS to determine whether the data was transferred properly during disk read and write
operation. As general rule, DOS consider any intended change (including viral attacks) as a legal

change, and consider any unintended change as illegal change. Because, unintended executable

change can be detected and fixed by the OS or one of the traditional error detection and recovery

utilities, it will be excluded from the discussion. The following Target-Based detection methods

are based on RULEl.
A-File Comparison: File comparison programs compare two copies of the same program

to see if there ile any differcnces. If a difference is discovered, there is a possibility
that a virus has caused the change [Endrijonas 1993]. This method has the following
drawbacks:

- Since there is two copies of each file, one half of the storage will be redundant.
- It assumes that the original program disk you used to copy the progftIm to your computer

was virus-free. If your original is infected, chances are that the virus has also infected the

copy on your disk. As a result, the two will be identical when compared; leading you to
believe that no virus is present [Endrijonas 1993].

- Tire backups must be updated in case of new executables are added. Updating backups is

considered a vulnerable spot because it may give viruses the opportunity to attack the

backups.
B- Encryption: Encryption can be used to detect the infection by encrypting the executables

using conventional or public-key cryptography, or by recording a cryptographic checksum,

so that any modification can be detected prior to execution. Fig.(2) depicts the proposed

detection mechanism. The executable, E, is encrypted by the Cryptosystem to produce E'.
The run-time environment passes E' to the Cryptosystem where the decryption is performed.

The deciphered executable is passed back to the run-time environment which will attempt to
run the result. If this attempt fails, the executable has been modified since it was encrypted

and the proper authorities are modified. Thus the run-time environment detects any

modification, whether unintended or due to a viral attack lPozzo and Gray 1987]. The run-
time environment described above represent the anti-virus. The following drawbacks are

inherent to this method:
- If a virus exists in an executable prior to its encryption, its presence will not be detected by

this mechanism lPozzo and Gray 19871.

- This detection method cannot be used with another detection method based on RULE2 (see

"Code-Based Detection") at the same time. Because, if this metho{ applied, the
executables will be stored in an encrypted form and hence cannot be analyzed or searched

for viral-acuvities.

a

o

320

o

t
@ Number 3 volurne 8 Journal of Engineering

Encryption E nvironm ent:

* encryption key

Run-Time Environment:

E'+ decryption key Res u lts

Fig. (2) Detection using encryption.

C- Checksum: BCC (Block Checking Character) or CRC (cyclic redundancy check) comparison

programs can be used to firrd changes in other programs [Endrijonas 1993]. BCC is often

used to dr:tect multiple bit (byte) errors. The BCC may be computed as 2's complement sum

of all the preceding bytes in the data block. Unlike the BCC, the CRC method is not byte

oriented. Instead, the data block is thought of as a "stream" of serial data bits [Uffenbeck

19871. For more information about the BCC and CRC see [Uffenbeck 1987].

Checksum and CRC techniques are used in basically the same way. The anti-virus must

calculate a BCC/CRC for the executable and attach this checksum number into the

executable. Or calculate a BCC/CRC for each executable in the system and store the

executable rurme with its corresponding BCC/CRC in a data file. The anti-virus then

calculates the BCC/CRC of the executables either periodically or on request. If the

calculated BCC/CRC doesn't equal to zero, then the executable was changed and might be

infected by a virus. The following drawback is inherent to this method:

- If the BCC/CRC number caliulated for an infected program, it will be based on the

attached virus, therefor the detection mechanism cannot detect the existence of the virus by

checking the corresponding values of BCC or CRC.

2- Code-Based Detection: "The technique of detecting the computer virus by distinguishing the

viral code fr,om the legitimate code". All of the code-based detection methods are based on the

following rule:
RULE2: "IF a questionable piece of software includes a segment that matches a known viral-

activity, THEN, the software is infected".
Any thing the virus can do during its execution is called a viral-activity. However, not all viral-

activities can be used in detection. In general, to maximize the detection capability and, at the

same time, minimize the number of false alarms, the selected viral-activity must satisfy the

fo llowing requirements :

a) Common to all viruses of the V-group.
b) Virtualty guaranteed not to exist in any one of the T-group executables.

Satisffing'the requirements in (a) and (b) depends on the selected V-group and T-group. For

example, assuming that the V-group includes, absolutely, any computer virus (VGS: Max.),

and the T-group includes, absolutely, any target site/cell (TGS= Max.), then the following can

be concluded:

321

o

o

Run
E xecution

Error
or

ry pto -systemE

H. M. Abdul-Hussain
COMPUTER VIROLOGY: TOWARD DESIGNING AN

IDEAL ANTI-VIRU S SYSTEIVI

- Some of the viral-activities don't meet the requirements in (a) and (b), the damage routine
falls into this group. The damage activities do not meet the requirement in a) because it is
not essential to all viruses. The virus may not have a damage routine at all, but still performs
its basic task of infection and replication. Even for those viruses that have a damage routine,
there is no common nasty task for these damage routines, for example, some viruses destroy
the BPS, while the others just display a message on the screen. The damage routine doesn't
meet the requirement in b) because what is called a damage routine in the virus may exist as

a useful routine in a legitimate program. For example, formatting the hard disk is one of the
most common virus nasty tasks, on the other hand, ffiffiy legitimate programs, such as

NORTON UTILITIES, includcs special routines that are specifically designed to perform
this task. Another example is overwriting FAT or RD, which is also considered one of the
virus nasty tasks, but DOS itself overwrite the FAT and RD to add, insert, and delete new
file clusters and directory entries

- Some viral-activities meet the requirements in (a) but not in (b), the searching activities fall
into this group. The searching activities meet the requirement in (a) because they are

common and essential for all viruses. However, the searching activities do not meet the
requirement in (b) because many legitimate programs share the same characteristics with the
virus searching routine, for example, DOS DIR command search for files the same way as a
program-to-program searching type virus. Also there is many legitimate programs that search
for existing executable, for example, some executable files search for their overlies.

- Some viral-activities meet the requirement in (b) but not in (a).This group include those viral-
activities that are common in only one specific type of viruses but not common to all viruses
for example:
Decreasing the amount of URAM, common between all resident-searching type BPS

viruses.
Code division into VLC and VMC, common between all BPS viruses.
Nonstandard TSR installation, common between all resident-searching type viruses and

ADWA stealth type viruses.
Self encryption/decryption, common between all encrypted and polymorphic viruses.
Overwritin!'the executable code in memory, common between all BPS and COM file

viruses.
- Some viral-activities meet the requirements in (a) and (b), the infection activities fall into this

group. The infection activities meet the requirement in (a) because the infection routine must

exist in any computer virus by definifion. Because any program that contain an infection
routine is considered a virus, the infection routines will never exist in legitimate progrurms,

therefore, the infection activities meet the requirement in (b). Regardless of how their
infection routines are designed and which target site they attack, the sequence of instructions
used by these routines are, relatively, similar. These instruction sequences are used to attach

a limited number of bytes (NAB) to the executable and/or modify a limited number of bytes

(NCB) in the existing executable code or header. This process is usually called "Suspicious
File Access [TBAV 1989-96]" or more general "Suspicious Executable Access".
There is only one way to exploit RULE2, the executable code must be disassembled to see

what it is intended to do.

3- Behavior-Based Detection: "The technique of detecting the computer virus by monitoring the

computer system for a suspicious executable behavior". The Behavior-Based detection methods
are based on the following rule:
RULE3: "IF any active executable 'E' tries to change any thing in an already existing
executable 'T', THEN, oE' is infected by a virus".

o

t

322

a

a

@ Number 3 Volume 8 .Iournal of Engineering

RULE3 is trusted to be satisfied by any computer virus regardless of its generation date and
VDC. The fact that only program development applications such as "LINK.EXE" write to
existing executabies, minimizes the number of false alarms associated with RULE3.
Behavior-based detection methods detect viruses while the virus is active. Terminate-and-Stay
Resident (TSR) programs are used as Behavior-Based virus detectors. A virus-detecting TSR
monitors the behavior of the other software on the system. It might detect a virus in the act of
attempting to spread. This will be explained later.

Prevention (Minimizine VSP)
"The task of preventing the virus frorn replicating and spreading itself to minimize its VSP". The
prevention techniques can be classifi.:d into: VEP-Based Prevention, and VIP-Based Prevention.
1- VEP-Based Prevention: "The technique of minimizing VSP by avoiding the execution of the

virus and adjusting its VEP:0". Before executing any one of the T-group executables, a VEP-
based prevention anti-virus must be capable of deciding whether the executable is clean to
execute it, or it is infected to avoid executing it. Clearly, in order to decide whether the
executable is clean or infected, the anti-virus must use the detection rules. It must be clear that
the prevention capabilities of the anti-virus system depend on its detection capabilities.
Therefore, VEP-Based prevention is considered the integral part of the Target-Based detection
and Code-Based detection.

2- VIP-Based Prevention: "The technique of minimizing VSP by preventing the virus from
infecting new target sites and adjusting its VIP=O". If any active program tries to write
something into an existing executable, this program may be a virus, and the VIP-Based
prevention anti-virus must suspend its execution so that it cannot infect the executable.
Therefore, VIP-Based prevention is considered the integral part of the Behavior-Based
detection.

Eradication (Terminatine VDA)
,

"The task of eradicating the virus from the infected executables to terminate its VDA". The anti-
virus eradication capability depend on: the efficiency of the eradication method (algorithm), VET of
the virus being eradicated, and TGS. There are two possible ways to eradicate a detected virus. The
first is trivial, that is, delete or overwrite (i.e. kill) both the virus and its host. The second way is to
wipe out the virus and repair the host so that it can execute like if it was not infected at all. Clearly,
the second way is tlre only way to be considered when designing the anti-virus. The eradication
techniques can be classified into: Backup-Based Eradication, and Analysis-Based F,radication.
1- Backup-Based Eradication: "The technique of eradicating the virus by overwriting the infected

executable by a clean backup copy". In this method there must be two copies for each
executable. The first is trusted to be clean, and will be called the "Backup Copy". The second
copy is vulnerable for viral attacks, and will be called the "Vulnerable Copy". If the vulnerable
copy is infected by a virus, the virus can be eradicated and the vulnerable copy can be repaired
by overwriting the vulnerable copy by the backup copy. The availability of the backup copy is
very important and critical requirement in this method.

2- Analysis'Based Eradication: "The technique of eradicating the virus and repairing its host by
analyzing the host to separate the virus code/data from the executable code/data". Only one
copy is needed in this approach. However, the required analysis is difficult. If you have an
infected executable, then, you must decide which parts of this executable belong to the virus to
wipe them out, which parts of this executable belong to the host to leave them unchanged, and
which parts of the host was changed by the virus to repair them. Since the virus changes the
executable by mcCiffing a limited number of bytes (i.e. NCB) and/or adding a limited number

a

o

323

[I. M. Abdul-Hussain
COMPUTER VIROLOGY: TOWARD DESIGNII\G AN

IDEAL ANTI-VIRUS SYSTEM

of bytes (i.e. NAB), an analysis-based eradication anti-virus must be capable of obtaining the
following inrormation:
a- The added bytes (NAB) and their positions
b- The changed bytes (NCB) and their positions
c- The original value of any byte changed by the virus during the infection and its position.

Once the above information obtained, the virus can be eradicated as follows:
a- Load the original values of the changed bytes and store them in their comect positions

according to NCB.
b- Wipe out any added byte(s) according NAB.

Damage Control
o'The task of protecting the target cell against destruction by viral attacks". Damage makes viruses a

serious security threat, therefore, the anti-virus must control this damage. The damage control
techniques can be classified into: Backup-Based, Cell-Based, and Virus-Based Damage Control:
1- Backup-Based Damage Control: "The technique of repairing the damage caused by the virus to

the target cell by using a clean backup copy of the cell". Backup-based damage control is
similar to backup-based eradication. This method needs a backup copy of each target cell stored
in a safe place. The backup copy can be used to replace the vulnerable copy ofthe target cell
after the viral attack. The availability of the backup copy is very important and critical
requirement in this method

2- Cell-Based Damage Control: "The technique of preventing the virus fiom destroying the

target cell by preventing it from writing to this cell". Cell-Based damage control is similar to
VIP-Based Prevention. In this technique, the anti-virus must prevent the virus from destroying
the target cell, by preventing the virus from writing into or changing this cell.

3- Virus-Based Damage Control: "The technique of preventing the virus from destroying the a
target cell by avoiding the execution of the viruso'. Virus-Based damage control is similar to
VEP-Based prevention. The anti-virus must prevent viruses from destroying the target cells by
avoiding the execution of the virus.

CHARACTERISTICS OF THE IDEAL ANTI-VIRUS SYSTEM ACCORDING TO THE
PROPOSED CRITERIA
After defining t'he basic concepts and structure of the anti-virus system, the characteristics of the

Ideal Anti-Virus System (IAVS) must be defined and summarized.

V-qrouo and T-group
In general, the anti-virus can be designed as a special purpose anti-virus to protect a predefined

group of targets. This group usually includes secret or important data or programs. Also, the anti-
virus can be designed as a general purpose anti-virus to protect all targets within its environments.

Therefore: "For the IAVS, the T-group can include only one target (TGS:I), a group of targets

(TGS>l), or all targets (TGS= Max.) within the anti-virus environments". However, maximizing
TGS is desirable. Once the T-group defined, the IAVS must be capable of protecting it against any

viral attack at any time. Therefore: "The V-group of the IAVS must include all computer viruses
(VGS: Max.) regardless of their generation date and VDC"

Pe$ormance
With VGS= Max. and a predefirred TGS, the IAVS must be ideal with respect to detection,
prevention, eradrcation, damage control, and false alarms. Therefore, the IAVS system must be

capable of performing all of the following tasks:

a

o

324

a
@ Number 3 volume 8 Journal of Engineering

i- Detection: The IAVS must be capable of detecting any virus residing in any one of the T-group

executables.
2- Prevention: The IAVS must be capable of preventing any virus from infecting any one of the T-

group executable
3- Eiadication:.The IAVS must be capable of eradicating any virus attached to any one of the T-

group execuiables and, at the same time, repair any change due to the virus infection.

'NOTE: To terminate VDA (see [Abdul-Hussain and Shabib 2OO2)), any subsequent copy of
the detected virus must be eradicated from any disk anywhere in the world. To do this, the

anti-virus must be used in, absolutely, every computer in the world. It is clear that this is an

impractical r:quirement. Thercfcre, the anti-virus system is considered ideal if it can

eradicate, absoiutely, any virus detected within its T-group. It is clear that if every anti-virus

in the world is ideal, VDA will be terminated in short interval of time".

4- Damage Control: The IAVS must be capable of preventing any virus from destroying any one of

the T-group target cells.
5- Number of False-Alarms=0:

Type

Satisfying the requirements of ideal detection, prevention, eradication, damage control, and false

alarms depend on the anti-virus type:

l- pure-Hardware Anti-Virus: The Pure-Hardware anti-virus can satisff the requirements of ideal

prevention and damage control, because viruses cannot deceive or bypass a hardware protection

layer. However, the Pure-Hardware anti-virus has the following disadvantages:

- iu*ot satisfu the requirement of ideal detection because it cannot detect viruses that reside in

the T-group. For example, the virus may reside in a write-protected floppy diskette'

- Cannot satisfu the requirement of ideal eradication because it cannot eradicate viruses that

reside in the T-group.
- Cannot minimize the number of false alamts, because it cannot distinguish between legitimate

activities and viral activities. Therefore, for example, it prevents legitimate programs from

writing to the protected disk.

2- pure-Software Anti-Virus: The Pure-Software anti-virus can satisff the requirements of ideal

detection, eradication, and minimum false alarms. However, it can satisfy the requirement of
ideal prevention and damage control, only if: "The virus is detected and eradicated without

getting any opportunity to ixecute". Because, if the virus gets an opportunity to execute in a
pure-Software anti-virus system, then, it may deceive the protection system or bypass it by

using the direct hardware alcdss method. Therefore, a Pure-Software anti-virus can satisff all of
the requirements of the IAVS system only by using:

- Target-Based or Code-Based detection.
- VEP-Based prevention.
- Virus-Based damage control.

3- Hardware-Based Anti]Virus: The Hardware-Based anti-virus combine the good characteristics

of pure- Hat'd*are and Pure-Software types, therefore, it can satisff the requirements of

ideal detection, prevention, eradication, damage control, and minimum false alarms

regardless of wheiher the virus get the opportunity to executed or not. Consequently, all of
th- techniques of detection, prevention, eradication, and damage control can be used to

implement an ideal Hardware-Based anti-virus system.

CLASSIFICATION OF ANTI.VIRUS SYSTEMS USING THE PROPOSED CRITERIA

As a case study, some of the currently available anti-virus systems will be studied and their

efficier,cy will be'analyzed with respect t; DOS machines. There is no known Hardware-Based anti-

325

o

o

H. M. Abdul-Hussain ' t COMPUTER VTROLOCiY: TOWARD DESIGNING AN
IDEAL ANTI-VIRUS SYSTEM

virus system for DOS machines, because of the lack of hardware protection levels in Real-Mode
PCs.

Pure-Hardware anti-virus product exist in practice: "To reduce the risk of viruses entering a pC in
the first place, Corporate Management Group of Austin, Texas, sells a series of floppy-disk-drive
locks that the company characterizes as 'chastity belts' for computers. Thunder Byte PC Immunizer,
from Glynn International of Brookline, Mass., is a circuit board that plugs into an lBM-compatible
PC and attaches via a cable to system's hard-disk controller board. This connection physically
prevents viruses from modifring program files or start up areas of a hard disk. Virus Trap, a board
from JAS Technology of Warrenton, Va., offers similarprotection [O'mally 1993]".
Pure-Software anti-virus systems are './€ry widely used in practice. Examples of these systems are
Dr. Solomon's Anti-Virus, F-Prot Prciessional, McAfee VirusScan, PC-cillin, TBAV, Norton Anti-
Virus, ViruSweep, and IBM's Immune System for Cyberspace ([Garber 1998], [Enclrijonas 1993]).
To protect your PC aqainst viruses you must purchase one of these systems and install it in your pC.
For sirnplicity, th.ese Pure-Software anti-virus systems will be referred to as the "Dependent-
Defence System (DDS)". This name used because: "The executables in the T-group 'Depend' on an
external anti-virus to protect them against the attacks of the V-group viruses". The operation and
performance of these systems will be explained in what follow.

Scanners
Scanners are the generic name of the virus detection programs used in DDS. This name is used
because the anti-virus scans the T-group searching for viruses (see [Gralla 1997)). Almost all
scanners are designed to detect the virus in any target site, therefore, they are designed with TGS=
Max. In general, to satisff the requirement of ideal detection, scanners must solve a seriously
difficult problem, that is, the "Lack of Knowledge" problem that can be explained as follows: the
scanner must detect the presence of the virus 'V' in the executable 'E' without any previous
knowledge about the contents of 'E' or 'V'. Therefore, deciding whether 'E' is infected by 'V' or
not, as well as, distinguishing the code of 'E' from the code of 'V', will be a very difficult task.
1- Target-Based Detection Scanners: Target-based detection scanners tries to solve the "lack of

knowledge" problem by storing some information (a backup copy, encrypted image, or
checksum number) about the protected executable once installed in the system. Some
scanners store a backup copy of each file and then detect viruses using the 'File
Comparison' method. Some scanners store the protected executables in an encrypted form
and detect viruses using the 'Encryption' method. Other scanners calculate and store a
checksum number (BCC or CRC) for each protected executable and detect viruses using the
'Checksum' method. In general, scanners used by the DDS cannot satisfy the requirement
of ideal Target-Based detection because of the following:

- The scanner must ensure that the executable is clean before storing the backup copy, preparing
the encrypted image, or calculating the checksum number. Because otherwise, no one of the
three methods can detect the virus presence. Clearly, there is no way to do this because of the
lack of knowledge problem described above. Therefore: o'Target-Based detection scanners
cannot detect viruses that reside in the T-group prior to their installation".

- Standard Protection Problem: In general, the scanner must use a standard metirbd to store the
backups, encrypVdecrypt executables, or calculate the checksum numbers. Using a different
method for each executable increase the code and execution time of the scanner.
Viruses can deceive or escape detection by the scanner if they know the standard protection
method used by the scanner. This problem considered as a vulnerable spot from the virus
designer point of view. Knowing the standard method used by the scanner is not a difficult task
in practice. Because the scanner can be purchased and used by any computer user. The virus
designer can obtain a copy of this scanner and analyze its code to see how it works. For

326

a

a

a

a

@ Number 3 Volume 8 Journal of Engineering

example, if the scanner store the checksum in a special data file, then, the virus can modifu the
entry (in the 6lata file) of the executable after infecting it so that every thing seems to be correct.
If the scanner embeds the checksum number inside the executable, the virus can avoid detection
easily by knowing which method (BCC or CRC) is used. If the 2's complement BCC method is
used, the summation of all bytes must be zero. The virus can, after infection, calculate a 2's
complement BCC and embeds it inside the executable. In this case, the summation of all bytes
will be zero, even though the executable is infected. This explains why the virus strains
designed after the releasing of the scanner can escape detection by this scanner, therefore, the
scanner must be updated periodically.

As a summary, the scanner detecticn capability depends on the virus generation date and VDC.
This means that scanners cilorir.rt maximize VGS, therefore: "scanners cannot satisfy the
requirement of ideal Target-Based detection',.

2- Code'Based Detection Scanners: The well Known Code-Based Detection Scanners are Heuristic
Scan and neural Network Scanners:

A- Heuristic Scan: Heuristic scanners search for "certain inevitable code" that all.viruses exhibit
in their attempts to infect files. The developers of this method have formulated a list of basic
rules that all viruses, regardless of the strain, follow when attempting to spread infection
(See [Endrijonas 1993]). In other word, they search for evidence of a viral activity rather
than relying on any signature (V-Marker). However, the viral-activities used by these
scanners vary from one to the other. In general, all the viral-activities explained in the
context of RULE2 above are applied. The traditional method used by such scanners is to
disassemble the executable program and then find out what this program is intended to do,
during the search a special flag is set for each viral activity found. Depending on the flags
state at the end of the search the scanner can decide whether the current program is capable
of infecting another program or not. Even though the heuristic scan techniqueis considered a
sophisticated enhancement"in the design of the detection methods it has the following
disadvantages:
- It has increased number of false alarms.
- Its detection capability depend on the virus generation date and VDC, because professional

virus designers can design new strains of viruses that can escape detection by itre heuristic
scanners using special tricks. This means that heuristic scanners cannot maximize VGS.
Thereforp: "Heuristic scanners cannot satisfu the requirement of ideal Code-Based
detection".
To understand how heuristic scanners can be deceived, some of the heuristic flags used by
TBAV "Thunder Anti-Virus" will be asa

For example, the standard entry point of COM program is (PSP-SEG:OI00H), where PSP-
SEG is the segment address of the PSP. TBAV will set the heuristic flag "B" if it finds
within a COM file a JMP instruction that transfer control to (PSP-SEG:0100H). For
example, if TBAV find the instruction "JMP BX" within a COM file then it will set the

if BX contain the value l00H and cs: PSP-SEG

a

o

Back to The toSCEMSentry somexecute e afterand that backflagi program code, thetoJ urnps
nt of the Nentry-po th is INresults endan ESSIprogram. thewhen alsoormally exceptloop, program
sornemodifies itsof ni structions Th IS u ite common vbeha or for V rnlses Inq computer

withcombination other TB VA a v irus IV 9any flag, reports ITBA 8e-e6l.

Trick- I

;BX - Offset of the first byte after the relative jump instruction
MOV BX,OFFSET BACK

,BP- Virus Base Address
ADD BX,BP

66Br)

327

H. M. Abdul-Hussain
COMPUTER VIROLOGY: TOWARD DESIGNING AN

IDEAL ANTI.VIRUS SYSTEM

;Subtract I 00H-byes (PSP-S ize)
SUB BX, IOOH

;BX: 2's complement of BX
NEG BX

;Store the 2's complement displacement of the relative jump instruction
MOV CS:[BP+RJP],BX
DB 0E9H ;Relative JMP instruction Op-Code

RJP DW (0);Relative JMP instruction displacement
BACK DB 90H ;The first after the JMP instruction

Viruses can avoid this flag by using the piece of code shown in "Trick-I", in w'hich the JMP
instruction is not stored in l',s legal form in the virus code, instead, the virus store the
instruction Op-Code (E9H), and generate the required displacement (OFFSET) during its
execution. When TBAV scan this piece of code, it will find the instruction (JMP 0000), and
therefore does not set the hcuristic flag o'Bo'.

O: Code Overwrite flag3 This flag appears if TBAV detects that the program overwrites some of its
instructions. However, it does not seem to have a complete (de)cryptor routine[TBAv 1989-961.

Most shell tyoe COM file viruses set this flag, because, they overwrite the first three bytes

"at (PSP-SEG:0100H)" of the COM progftrm before executing it by using, for example, the
following two instructions "assuming that DS= PSP-SEG":

If TBAV encounter these two instructions, or even one of them, it will set the heuristic flag
"O". However, viruses can use Trick-2 to avoid this. The piece of code in Trick-2 will
overwrite the three bytes started at PSP-SEG:[0100H] using the fact: "(PSP-SEG:0100H) Is

Equivalent To (PSP-SEG + 10H:0000H)". When TBAV scan this piece of code it will find
that the program writes something to segment whose address stored in DS, TBAV will check
the content of DS to find that it is not equal to PSP-SEG, and therefore, do not set "O".

TBAV set the flag 'S' if the string "*.COM" or "*.EXE" exist in any executable, to avoid
this, viruses do not store this string in its legal form in their permanent parts, instead, they
create this string during their execution. In fact a voiding this flag is similar to avoiding the
flag ooB" above,

3Zg

a

o

MOV WORD PTR DS:[0100H], xX
MOV BYTE PTR DS:[0102H],YY

;XX: The first two bytes

iYY- The last byte

Trick-2
;Set DS= PgP 5;16 + l0H

MOV BX,DS
ADD BX,IOH
MOV DS,BX

;Store 3-bytes at DS:[0000H], DS:[0001H], and DS:[0002H]
MOV BX,ES:BUFW[BP] ;BX= first word
MOV DS:[0000H],BX ;Store BX at DS:[0000H]
MOV BL,ES:BUFB[BP] ;BL= Last bYe
MOV DS:[002H],BL ;Store BL at DS:[0002HJ

S: Search for executables flag: The program searches for *.COM or *.EXE files. This by
itself does not indicate a virus, but it is an ingredient of most viruses, since they have to
search for suitable files to spread themselves. If accompanied by other flags, TBAV assumes

the file is infected by a virus [TBAV 1989-96].

o

o

o

@ Number 3 Volume 8 Journal of Engineering

F: Suspicious file access: TBAV has found instruction sequences common to infection
schemes that viruses use. 'Ihis flag appears with those programs that are able to create or
modify cxisting file ITBAV 1989-96]

The DOS system interrupt (INT 21H) is used to access files. If TBAV find the instruction
(INT 2lH), it will check its input arguments in the CPU registers, and then it can decide
whether the accesses is a suspicious file access or not. Viruses can avoid this flag, if they
avoid using the instruction INT 2lH. To do this, viruses can use Trick-3. In Trick-3, vector
68H of the rrser intemrpt'.INT 68H" is redirected to point to the same intemrpt service routine
"i.e. DOS-API" as vector 2lH, in this case, the instruction INT 68H can be used to access

DOS-API. When TBAV scan ti.: virus code, it will never find the instruction INT 21H,
it will think that this executable "the virus" does not access file at all

All of the above tricks are used successfully in practice. Even though heuristic scanners can

be modified to avoid these tricks, the virus designers may use many other tricks, and then

heuristic scanners should be modified again and so on.
B- Neural Network Scanners: IBM now uses neural networks to detect boot sector viruses. The so-

called neural network computer programs trained to detect patterns to spot newly hatched

viruses that have not been seen before. Neural networks are a form of artificial intelligence in
which a computer simulates.the way in which human brains process information. A neural
network learns pretty much the way a human being does. Neural network designed to detect a
new virus that share subtle features with known viruses but does not necessarily match them
line for line. The neural network starts with no rules built in. The rules evolve, you show the net

a series of key measurements from an infected piece of software then the measurements for a
piece of clean software, now here's another infected piece of code, now another clean one, on
its own the neu':al network will pick up a pattern. The problem in this method is that the
number of training examples has to be far greater than the number of measurements being
assessed. In 1995 Virus Bulletin Conference in Boston, a researcher presents a paper on why
neural network could not be used to detect computer viruses "There weren't enough samples to
train them". In 1988, Gerald Tesauro, found a way to use neural nets on viruses nonetheless,
there aren't enough samples to train the net?. His solution: "Don't feed entire viruses to the net,

feed virus particles". Tesauro digested computer code into sequences of three bytes and

extracted those likely to be presented in viruses but not in legitimate programs. These triplets
then became the bases of a neural network. There tumed out to be just enough examples to train
a neural network using this approach. The net told Tesauro how many demerits to give for each
of the different suspect triplets found on a questionable boot sector. Enough demerits and you
put the questioned piece of code in quarantine. The IBM neural network have only three false

Trick-3
;Set DS:0 "Segment address of the interrupt vector table"

MOV BX,O
MOV DS,BX

;DI= Offset address of the vector 68H
MOV DI,OIAOH

;BX= Of&et address of the vector 2lH
MOV 8X,0084H

;Set the vector 68H equal to the vector 2lH, by coping the double word at DS:BX ;to ;the double
word at DS:DI

MOV DX,[BX]
MOV rDI],DX
MCV DX,[BX+2]
MOV [DI+2 ,DX

o

329

H. M. Abdul-Hussain COMPUTER VIROLOGY: TOWARD DESIGNING AN
IDEAL ANTI-VIRUS SYSTEM

positives, and all of these were security programs whose codes share many similarities with
viruses [Rao 1996].
As a summary this method, just like heuristic scan method, is based on RULE2. Therefore, this
method can be tricked using the tricks explained in heuristic scanners or some other tricks. Note
that, by using these tricks, viruses perform their infection tasks without using the traditional
straightforward techniques on which the neural network was trained. The neural network cannot
detect'the tricky virus because it is not trained to detect this type of viruses, the tricky virus
should be detected using another technique and then train the neural network to detect it. This
means that, neural network detection depends on the virus generation date and VDC, hence, it
cannot maximize VGS. Therefore: 'Neural Networks cannot satisfu the requirement of ideal
Code-Based detection".

3- Behavior-Based Detection Scanners: The well known Behavior-Based Detection Scanners are
TSR Monitors and CPU-Emulated Generic Decryption:
A- TSR Monitors: TSR programs are used for virus detection in DOS machines. Once installed,

the TSR monitor must redirect some intenupt vectors to point to its own code so that it can
intercept any call to this intemrpt. Typical intemrpts that are usually redirected by TSR
monitors are the BIOS disk intemrpt (INT l3H), and DOS intemrpt (INT 2lH). For
example, the TSR monitor can detect viruses that infect their target sites using DOS services
by redirecting vector 21H to point to its own handler and, then, monitoring calls to INT 21H.
The future for the effec(iveness of the TSR as a virus detector is further limited by the fact
that viruses can (and probably will) be written to evade the TSRs detection methods
[Endrijonas 1993). In fact viruses can bypass the TSR monitor in the following three
situations:
- A TSR Virus Installed Before the TSR Monitor: If a TSR virus and TSR monitor installed

in the system, and both redirect the same intemrpt vector, then: "The TSR monitors can
detect the viral activity of a TSR virus only if it was installed before the TSR virus
because any virus access to the vector will pass through the TSR monitor. But if the TSR
virus installed before the TSR monitor then the TSR monitor can see only normal
activities passing through the vector. The virus resides in the vector list after the TSR
monitor, so the TSR monitor will never see any activity generated by the virus. The TSR
monitor thinks that things are progressing well, while, in reality, the virus is either
spreading or doing damage behind the TSR monitor's back [R.,G. 1989]".
For this reason TSR monitors cannot be used to detect BPS viruses, since these viruses
will run and install themselves before loading the OS, and hence before the TSR monitor
(see [R.,G. 1989]). To solve this problem most TSR monitors modifo the BPS code by
another one, the last one will install the TSR monitor during the booting sequence. In
fact, even if they have done this they may fail to be the first installed TSR if, for example,
the partition sector code of the hard disk was designed to install the TSR monitor and the
system booted from a floppy diskette which is infected by a TSR type BPS virus. Clearly,
the TSR virus will be the first TSR installed. Further more, if the virus in the floppy
diskette infect the partition code of the hard disk, the TSR virus will run and install itself
before ttrre TSR monitor in the next booting from the hard disk.

- A Virus Uses (CALL FAR) Instructions: Viruses can directly transfer control to the
interrupt handler using a far call instruction (CALL FAR) if the start address of the
intemrpt handler in memory is known. Far call instruction will transfer control directly to
the original intemrpt handler, any installed TSR handler will be bypassed and hence the
virus can accomplish its task without any interception by the TSR monitor. For example,
some viruses check things like ROM version number, and know the absolute addresses in
the ROMs of the functions they want. By using those addresses, they can bypass

330

O

o

o

a

@ Number 3 Volume 8 .fournal of Engineering

subsequent links (i.e. TSRs) in the vector list, and still do their dirty work. They can also
refuse to install themselves if the addresses or version numbers do not correspond to the
environment they want [R.,G. 1989].

- A Virus Uses Direct Hardware Access: Just like any other Pure-Software anti-virus, the
software TSR monitors cannot prevent the virus from accessing the disks by using the
direct hardware access method.

As a summary, some viruses can bypass or deceive the TSR monitor. This means that the
effectiveness of the TSR monitor depends on the virus generation date and VDC, hence, it
cannot maximize VGS. Therefor: "Pure-Software TSR monitors cannot satisS the
requirement of ideal Behavior-Based detection',.

B- CPu-Emulated Generic per'ryption: This technique is used to detect the polymorphic
viruses, by executing the programs in a "virtual computer" in which the viruses can be
tricked to deliver their payloads, they are then detected, analyzed,, and zapped [Rao 1996].
The CPU-Ernulated Generic Decryption scanner loads any new executable file into a
"virtual eomputer" it creates, and runs the program. If the file is infected the virus executes
its decryption routine and is detected by the CPU-Emulated Generic Decryption scanner
without any harm because the program is running in a virtual and contained environment.
Detected viruses are analyzed and added to scanner database. But some viruses can avoid
detection by a CPU-Emulated Generic Decryption scanner and virus writers are likely to
find more ways to subvert CPU-Emulated Generic Decryption weaknesses in the future
[Whalley 1996].
As a summary, the detection capability of the CPU-Emulated Generic Decryption Scanners
depend on the virus generation date and VDC, hence, it cannot maximize VGS. Therefore:
"CPU-Emulated Generic Decryption Scanners cannot satisfi the requirement of ideal
Behavior-B ased detection".

Ingculators

Inoculators are the generic name of all the anti-virus programs that are designed specifically to
prevent the infection, and damage. Inoculators must be active (i.e. resident) in the system at any
instance of time so that it can monitor and prevent viruses [Gralla 1997]. TSR programs are used as
inoculators in DOS machines. TSR monitors can be used in prevention and damage control as
follows:
1- VEP-Based Prevention & Virus-Based Damage Control: TSR monitors can function as

VEP-Based prevention and Virus-Based damage control anti-virus. Before executing any
executable, the TSR monitor can check if it is infected to avoid executing it. The TSR
monitor must use a scanner, either as integral part of the TSR monitor or as independent
progrElm, to scan the executable for viruses. As shown above, there is no ideal scanner,
consequently: "TSR monitors cannot satisfr the requirement of ideal VEP-Based prevention
and Virus-Based damage control".

2- VIP-Based Prevention & Cell-Based Damage Control: TSR monitors can function as VIP-Based
prevention anti-virus. If the TSR monitor, for example, intercept system calls to INT l3H then
it can prevent viruses from infecting the BPS, and if it intercepts INT zllH it can prevent viruses
from infecting executable files. Some TSR monitors prevent any other program from installing
itself as a TSR ptogram in the system, or at least alert the user about that. This may increase
VRP of any TSR type virus.
TSR monitors can function as a Cell-Based damage control anti-virus by preventing viruses
from destroying a predefined target cell such as FAf, RD, or BPS. To prevent a virus from
destroying the FAT, the anti-virus must test any write+o-FAT activity to see whether it is legal
to pass it on, or it is a viral-activity to prevent it. Distinguishing between legal and illegal write-

o

O

331

H. M. Abdul-Hussain COMPUTER VIROLOGY: TOWARD DESIGNING AN
IDEAL ANTI-VIRUS SYSTEM

to-FAT activities is a difficult or impossible task. Because, DOS itself wite to the FAT many
times during its operation to add or delete file clusters
As mentioneci "Behavior-Based Detection Scannerso' , the effectiveness of the TSR monitor
depend on the virus generation date and VDC, hence, it cannot maximize VGS. Therefor:
"Pure-Software TSR monitors cannot satisff the requirement of ideal VIP-Based prevention
and Cell-Based damage control",

3- Backup-Based Damage Control: Some inoculators keep backups of the BpS, FAT, RD, and
CMOS in special backup disk usually called the "Rescue Disk". Since the FAT and RD
changed when files added or deleted, the rescue disk must be updated. Updating the rescue disk
is a vulnerable spot because there is a possibility that the virus will get the opportunity to access
the rescue disk. Therefore: "lno:ulators cannot satisS the requirement of ideal Backup-Based
damage controlo'.

Eradication Programs
In general, backup-based eradication can be used only if a clean backup copy of the infected
executable exist. Therefore, almost all of the eradication programs use the Analysis-Based
eradication. Even though, determining NAB, NCB, and the required information about their
positions is adequate to eradicate the virus from one specific executable. The fact that the
eradication program must eradicate any subsequent copy of the virus from any executable in the T-
group, suggests that additional information about the detected virus must be obtained. The
eradication programs obtain the following information about the detected virus.
- Unique Virus Identifier (VID): "A special string of characters or piece of code which is guaranteed

to exist in any copy of the virus, therefore, it can be used to find any subsequent copy of the
virus".

- The NAB with a standard rule to determine their positions in any subsequent infected executable.
- The NCB with a standard rule to determine their positions in any subsequent infected executable.
- The original value of any byte changed by the virus during the infection with a standard rule to

determine its position in any subsequent infected executable.
The process of obtaining the above information is called "Identification". Identification can be
defined as: "The process of obtaining the necessary information needed to eradicate any subsequent
copy of one specific virus from any infected executable within the T-group; where lTGS>l)". The
identified virus is commonly known as a "known virus". The eradication programs are designed to
find any subsequent copy of the known virus by using the unique VID, and then eradicate the virus
by using the identification information. Note that the eradication programs uses a special detection
method, usually called "Signature Scan method", in which the following general detection rule is
used: IF (The VID of the known virus "V" exist in the executable "E") THEN ("E" is infected by
"v").
Obtaining the constant values (NAB, NCB, and VID) is relatively simple. Such information added
as constants into the eradication program database. However, formalizing a standard rule to
determine the "position" of VID, NAB, and NCB relative to any executable within the T-group is a
difficult task. This type of information is variable and depends, in general, on the size and type of
the infected executable and the method of infection used. Therefore, this type of information is
added to the eradication program as rules rather than constants. The difficulty of deriving these rules
is a consequence of the lack of previous knowledge about how the detected virus infects the target
site. There are two general methods to obtain the identification information:
l- Backup-Based Identification: Like Backup-based eradication, the identification information can

be obtained by comparing a clean backup copy with the infected vulnerable copy. Unlike
backup-based'eradication, the backup copy is not necessarily available for every executable in
the T-group. Instead, some systems use special purpose decoy programs. For example, the

332

o

a

o

a

o

@ Number 3 Volume 8 Journal of Engineering

IBM's Immune System for Cyberspace, which is linked to customers computer networks via
the lnternet. In this system, once an infection has been identified, a copy of the infected
program is sent to a central IBM computer. The computer's software provokes a virus into
action on a decoy program so that it can be analyzed. The system then comparcs infected and
uninfected decoy.programs, using pattern-matching algorithms, to determine the virus structure
and the way it causes infections [Garber 1998], Determining the constants is trivial by using
this method. But, formalizing the required rules for variables may need to repeat the
comparison on more than one infected executable. Also, this method cannot be used to
completely ar'ralyze a DCV, because, only the VLC will be attached to the decoy program.

2- Analysis-Based Identification: In this method one of the traditional program debugging utilities,
such as DOS DEBUG utility o'l\iicrosoft Code View (CV.EXE) Debugger, can be used to
trace the virus execution in the single step mode to see what this virus is designed to do. This
method need the infected executable disk copy only, and can be used to formalize a trusted
rules for the variables during a single analysis. Also, it can be used to completely analyze,
absolutely, any computer virus. However, this method is very lengthy, tedious, and complex to
use. Also, determining the constants is difficult using this method.
As a summary, the eradication programs used in the DDS can eradicate only 'Known Viruses',
therefore: "The eradication programs used in the DDS cannot satisfy the requirement of ideal
eradication because they cannot maximize VGS".

CONCLUSIONS,q.NO DISCUSSION
This paper introduced the basic concepts of the anti-virus systems that include:
l- Definition: A clear definition of the anti-virus and the anti-virus system.
2- Design and Analysis Criteria: A new design and analysis criteria is proposed. This criteria is

represented by a group of precisely defined constants, variables, rules, and requirements. The
proposed criteria can be used to analyze the efficiency of a given anti-virus system or to compare
two anti-virus systems.

3- Characteristics of the ideal anti-virus system: I'he characteristics of the ideal anti-virus system
"according to the proposed criteria" are introduced and explained. Such information is greatly
helpful for the anti-virus designers to know what they should do to arrive at the level of the ideal
anti-virus.

4- Classification: Almost all of the possible classifications of the anti-virus are introduced. Each
class of anti-virus is analyzed by using the proposed criteria, to identiff the characteristics of the
most efficient anti-virus.

The analysis presented in this paper suggests that DDS anti-virus systems cannot satisfr the
requirements of the IAVS. In general, DDS suffer from the following problems:
1- Lack of Knowledge: Explained in sub-heading "Scanners".
2- Standard Protection: Explained in sub-heading "Scanners".
3- Intended Vulnerability: Some peoples claims that the anti-virus developers are themselves the

developers of the computer virus. This seems to be believable in case of DDS by knowing that
the computer user must pay to the anti-virus developers monthly to update the anti-virus. The
anti-virus developers may leave secret vulnerable spots in their anti-virus systems. Later, they
can design new strains of viruses that are undetectable by the anti-virus system. Consequently,
they can sell new products.

4- User Responsibility: In case ot DDS the computer user, with its limited experience, must be
responsible tor selecting the most suitable anti-virus. The computer user must read a book, a
paper, or any other document to know what is the computer virus, how a given anti-virus work,
how to use a given anti-virus, which anti-virus is better than others, ..., etc. Other than that many
users cannot even understand what is the computer virus or how it is work. Reading about the

333

a

H. M. Abdul-Hussain COMPUTER VIROLOGY: TOWARD DESIGNING AN
IDEAL ANTI-VIRUS SYSTEIVI

computer virus seems to be a difficult, tedious, or worthless for many computer users. It is
difficult because the user will find complicated, strange, and new terms related to computer
security. It is tedious because new viruses appear in, almost, every day. Most of the new viruses
cannot be detected by the old or the current anti-virus. The user must know about the new viruses
and how he can upgrade the anti-virus or replace it with new ones that can cope with the new
strains of viruses. Finally, it is worthless because many of the computer users have specified
goals when using the computer. Some of them need to know how to use a'specific word
processor, others need to know how to use a graphic tool, others need to know how to play a
game, and so one. Clearly, understanding the computer virus is worthless for such peoples. In
fact, the study of the computer virus must be the task of the security professionals or, in the worst
case, the professional application progiam developers.

The present study developed a new concept to overcome most of the DDS problems. This concept is
based on building a "Self-Defence System" in which every target site 'executable' must be capable
of protecting itself against viral attacks. In this system each executable will be vaccinated by a
special self-defence anti-virus so that it can protect itself against viral attacks.

REFERNCES
Endrijonas,J. (1993), "Rx PC: THE ANTI-VIRUS HANDBOCK", WINDCREST/McGRAW-
HILL.

Fites, P., Johnston,P. ,Kratz.M. (1989), "The Computer Virus Crises", Van Nourtrand

Reinhold.Garber,L. (1998), "Antivirus Technology Offers New Cures', IEEE Computer Magazine.
February.

Gralla,P. (1997), "How the Internet Works", Macmillan Computer Publishing USA.

Abdul-Hussain H. M. A. and Shabib H. M.(2002) , "Computer Virology: Formal Analysis of
Computer Viruses". Journal of Engineering, College of Engineering, University of Baghdad, No.l,
Vol 8, March, PP. 103-121.

Kaspersky,E. (1992-1997), "AVP Virus Encyclopedia", Version 1.3.

O' mally,C.(I 993), "STALKING STEALTH VIRUSES", Popular Science, January.

Pozzo,M.,M. and Gray,T.,E.(1987), "An Approach to Containing Computer Viruses", Computer &
Security, June.

Rao,S.,S. (1996), *THE HOT ZONE", Forbes, Vol. 158 Issue 12,p252,November.

R.,G. (1989), "Virus 101- Chapters 1,2,3,4", Woodside@ttidca.TTl.COM .

"TBAV 1989-1996 (Thunder Byte Anti-Virus) User Manual".

Tischer,M. (1992), "PCINTERN SYSTEM PROGRAMING", Abacus,.

Uffenbeck,J. (1987), " THE 8088/8086 FAMILY: DESIGN, PROGRAMING, AND
INTERFACING", Prentice-Hall, Inc..

t

o

334

o

a

@ Number 3 Volume 8 Journal of Engineering

Whalley,I. (1996), "VIRUS DEFENCE FOR THE FUTURE", Security Management, Vol.40lssue
11, p60, November.

List of Symbols
Max. : Maximum Min.: Minimum
e: Not Affected

t

List of Abbreviations
ADWA_ Avoid Detection While Active URAM- Ijsable RAM
ADWI: Avoid Detection While Inacti VC VDA- Virus Detected Age
BPS: Boot or Partition Sector VDC: Virus Deception Capability
CVS: Virus Size VDT: Virus Delay Time
DCV= Divisible C Virus VEP : Virus Execution Probabi lity
DDS- Defence VET: Virus Eradication Time
IAVS- Ideal Anti-Virus S VHA: Virus Hidden Age
NAB: Number of Added VIP: Virus Infection Probability
NCB: Number of VLC: Virus Loader Code
NWE- Number of Wake Events VMC: Virus Main Code
OS: VRP: Virus eRror Probability
PWE: Wake Event VSD- Virus Searching Domain
SWE: Wake Event VSP: Virus Spreading Probability

a

335

