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ABSTRACT

This paper presents a procedure for the free vibration analysis of stiffened conical shell by the finite
element method. The element used is a modified eight-node superparametric shell element. The
effects of the number and cross-section area of stiffeners on the conical shells were analyzed. The
results showed that increasing the number of stiffeners and their cross-sectional area tend to
increase the natural frequency of the conical shell. These results are compared with available
research results and those obtained from MSC\NASTRAN .
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INTRODUCTION

Knowledge of the free vibration characteristics of elastic shells is important to the general
understanding of the fundamental behavior of shells and to the industrial applications of these
structures. In connection with the latter, the natural frequencies of the shell must be known in order
to avoid the destructive effect of resonance with nearby rotating or oscillating equipments or other
dynamic excitations such as earthquakes. [Garnet and Kempner 1964] found, by means of
Rayleigh-Ritz procedure, the lowest axisymmetric modes of vibration of truncated conical shells.
Transverse shear deformation and rotatory inertia effects were accounted for and the results were
compared with those predicted by the classical thin-shell theory. Elemental mass matrices have
been produced by [Ross 1975] for the free vibration of conical and cylindrical shells, based on a
semi-analytical approach. Frequencies and modes of vibration have been compared with existing
solutions and also with experimental results obtained from other sources. [Irie, Yamada and Kaneko
1982] presented an analysis for free vibration of a truncated conical shell with variable thickness by
use of the transfer matrix approach. The applicability of the classical thin shell theory was assumed
and the governing equations of vibration of a conical shell were written as a coupled set of first
order differential equations by using the transfer matrix of the shell. The natural frequencies and the
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mode shapes of vibration were calculated numerically in terms of the elements of the matrix under
any combination of boundary conditions at the edge. [Ansar, Yam and lee 1985] studied the
axisymmetric and asyrametric responses to free and forced vibrations of various types of shells of
revolution through the finite element analysis utilizing curved and/or conical elements. A computer
program package was developed and it was utilized to investigate the vibration characteristics of
bells. [Mustafa and Ali 1987] presented a work in which the application of structural symmetry
techniques to the free vibration analysis of cylindrical and conical shells for the prediction of
natural frequency and mode shapes was described. Half and quarter models of the shell were
developed and analyzed using semi-loaf and facet shell finite elements. Stiffened and unstiffened
circular cylindrical and conical shells were considered. [David, Thambiratnam and Thevendran
1964] studied the optimum design of conical shells for free vibration. The lowest frequency was
considered, results indicate considerabic elevation in frequencies for the shells restrained at the base
and free at the top. A numerical procedure incorporating the optimization technique and the finite
element method was used.

The present work consists of the free vibration analysis of stiffened conical shells, taking into
consideration the effect of the number, size and shape of stiffeners on the natural frequency of
stiffened conical shells. This analysis was carried out via the finite element méthod, a special
purpose computer program was built to achieve such a task. In order to support the results obtained
from this computsr program, a comparison was made with the results of [Mustafa and Ali 1987]
and the results obtained by running MSC\NASTRAN package.

FORMULATION OF SUPERPARAMETRIC SHELL ELEMENT

This element consists of four corner and four midside nodes as shown in Fig. (1). The degrees of
freedom considered at the nodes are the three translations u, v, w of the midsurface and two
rotations o and f3 of the normal to the midsurface as shown in Fig.(2). The Cartesian coordinate of 'S
any point of the shell and the curvilinear coordinate can be written in the form:

X x/ _]l é, 13/
y =ZN,H + 2N, % m ()
& & middle Hy

Where h the thickness of element and 13;, m3; and n3; are the direction cosines. Here N; is a function
taking a value of nity at the node i and zero at all other nodes is called as “shape function
“[William Weavr and Paul R. Johnston 1987], as shown in Table.(1).

In the kinematics formulation two assumptions are imposed:

1- Nodal fiber is inextensible.

2-  Only small rotations are considered.

The displacements at any point (&, n, {) can be expressed in terms of the nodal displacements as

wl oo n [a

v :ZN‘ Vi +ZNI§—/U/ (2)
i=1 i=l 2 IB)

w w

Lt

In this formula the symbol L, denotes the following matrix:
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-1, 1
Hy=1—my m,,
n2i nl/

Column 1 in this array contains negative values of the direction cosines of the second tangential
vector Vy;, and column 2 has the direction cosines for the first tangential vector Vy;.
The assumptions devoted to the used element are:

1- The strain in the direction normal to the mid-surface is assumed to be negligible (€ .+ )

2- A normal to mid-surface of the shell element will remain normal to the mid-surface of the shell
after deformation.

The displacement shape functions m2y be cast into the matrix form:

[Ni]=[Nai]+C [Nmi] (i=1,2...8) 3)
Where
10000 000 -1, I
[Nai]=|0 1 0 0 0] Ni and [Ng]=/0 0 0 -m, m, %Ni (4)
00100 000 -n, n
The 3 X 3 Jacobian matrix required in this formulation is:
XE »e 26
Ul=|xn y»n zn|. )
X6 WG 24
The derivatives in matrix [J] can be found from eq.(1)
X, ~ZSN,$x,+}§;N,S,ChZZ;,
1;] !;l
X, = Z wa, - Z N,,”g’ 1’2'—13, and so on

g, U,
gy v-)'
£ w
7xy u,y + v.,\'
}/y: v,: +w )
_}/zx i L + u,
The stress-resultant vector in the local coordinate system is,
{N’}Z{N x' N y' N X'y Qy' Qx‘ Mx‘ M y' Mx'y' }T (7)
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The relationship between the stress resultants and the generalized strains can be stated as follows,
{N'}=[D"){e"} (8)

Where [D'] is the rigidity matrix. A typical rigidity matrix is given by,

lLv 0 0 0 0 0 0
v 1.0 0 0 0 0 0
005 0 0 0 0 0
[D']= Eh |0 O 0 % 0 0 0 0 ©
1-v/0 0 0 0 % 0 0 0
00 0 0 0 & =z
00 0 0 0 & £ ¢
00 0 0 0 0 0 2¢n]

where, k =shea_r correction factor (assumed k=1.2) [William Weavr and Paul R. Johnston 1987].

STIFFENED CONICAL SHELLS

If the spacing of the stiffeners is uniform and they lie along the natural coordinate directions,
equivalent shell rigidities can be obtained by merging the stiffener rigidities with those of the shell.
Fig. (3) shows a shell of thickness t with eccentric stiffeners in & and n directions at intervals s; and
sy respectively and Fig.(4) shows the geometry of conical shell with stiffeners [D. N. Buragdhain
and A. S. Patil 1985]. Fig.(5) shows seven types of stiffeners which used in this work.

The kinematics relations between the displacements at the rib centroidal axis and those at the shell
midsurface are given in eq. (10), in which all the displacements are along the coordinate system
x'y',z' defined at the point under consideration, with z' along the thickness of the shell, x’ tangential
to the stiffener along the & direction, and y' tangential to the stiffener along 1 direction.

For £rib: wy=w' , u=u'+e¢(0u'/0z') (10a)
For nrib: wy=w' , vy =v'+e ,(0v'/0zZ') (10b)

Here u',v',w’ are the displacement at the shell midsurface and e ; , e ,
are the eccentricities of the stiffeners.
The stress resultants and strains ot the & directional rib are,

{extr =Vh {&x Yxz Xx OOr/OX'}.
in which Ny ,Qn .My and Tiy
moment respectively.

The relation between stiffener strains and shell strains are given by,

Erx' =E€x'0 € Yx' . o
Xox =X
Yrx'z =Yz'x'0 ( 1 2)

OB 10X =1/2 3 xy

Similar expressions can be written for mn directional stiffeners. These relations for both sets of
stiffeners may be expressed in matrix form as,

(11)

axial force, shear force, bending moment and torsional

{Nx’}r =1/h {er' er M Trx’}T }
ar

e =[THe' (13)
The stress resultants in terms of strains can be written for both sets of stiffeners together as,
N} =[D']:{e'}: (14)
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The various matrices in eqs. (13) and (14) are given by,

{ehr={ex &y Yoy Yryz Yrow Yox Xry' er'y’}T - (15)
{N}={Nix Niy Nixy' Qiy Qre M’ Mry Mgy} (16)
where,
1.0 000 e 0 0]
01000 0 ¢ O
000000 0 0
[T]:ooo 1 0 0 0 0 a7
00001 0 0 0
00000 T1 0 0
00000 TO0O 1 0
00000 0 0 K4
and, )
[EAE 0 0 0 0 0 0 0 ]
0 EAp0 0 0 0 0 0
0 0 0 0 0 0 0 0
0] - 0 0 0GS 0 0 0 0 e
0 0 00 GS 0 0 0
0 0 00 0 EL 0 0
0 000 0 0 E 0
00 00 0 0 0 GL+GY]

Ineq. (18), E, G, A, S,Iand J denote Young’s modulus, shear modulus, cross sectional area, shear
area, moment of inertia and torsional inertia respectively, of the &, or  directional stiffener as
indicated by the subscript. In egs. (16), the quantity My give the sum of the torsional moments of
both stiffeners.

If the stiffener rigidities are uniformly distributed over the spacing of the stiffeners to obtain
equivalent rigidities over the shell midsurface, then from €q.(13) and (14), the strain energy of the
stiffeners can be obtained as,

U =5 [l [T oL e} as 19)

in which [D]; is obtained by dividing the rigidity terms corresponding to & ribs by s: and those
corresponding to m ribs by s, in [D']; .
The total strain energy of the stiffened shell is then given by,

U=3 [l e+ oY T o) Ir e 20

This is equivalent to the behavior of a homogeneous shell with equivalent rigidity matrix [Deg]
given by. :

D, J= [0+ [1] [P [r] 2 @)

The stiffened shell then can be analyzed as a homogeneous shell using the element described
earlier.
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To automate the stiffener spacing calculations, the following method can be implemented. Let ng
be the number of & directional stiffeners and ny is the number of 1 directional stiffeners within
the element. At a Gauss point, the following two values are computed

By = 2(‘]221 +J222 + J223)V2
S, = Z(lex + lez + ‘]123)]/2
in which I’s are the coefficients of the Jacobian matrix. Effectively S; gives the dimension of the

element along the | direction and S, gives the dimension along the & direction at that Gauss
point. Thus,

S, = S/

¢ n;
(23)

S =S/

n n,]

(22)

SOLUTION OF EQUATION

The equation of motion for a zero external force vector R can be presented as,

MI{ U }+K]{U}=0 (24)
For harmonic displacements,

U; =@, sin(o; t+o;)  i=1,2,....DOF (25)

In this harmonic expression, ®@; is a vector of nodal amplitudes (mode shape) for the ith mode of
vibration. The symbol w; represents the angular frequency of mode i, and «; denotes the phase
angle. By differentiating eq. (25) twice with respect to time t ,

Substitution of eq.(26) and eq.(27) into eq.(24) allows cancellation of the term sin(w; t+a;) , which
leaves,

(K- o M)¢; =0 @7)

Eq. (27) has the form of the algebraic eigenvalue problem.
The most efficient form of eq. (27) for structural vibrations accept the eigenvalue problem only in
the following standard,

(A - DXX; =0 (28)

In which (A) is a symmetric matrix (dynamic matrix) and (I ) is an identity matrix. the symbol A
denotes the ith eigenvalue, and XX; is the corresponding eigenvector for a new system of
homogeneous equations. Eq.(27) can be written in the form of eq.(28) by factoring either matrix [K]
or matrix [M], using the Cholesky square root method, which makes use of the fact that any square
matrix [A] can be expressed as the product of an upper and lower triangular matrix.

RESULTS AND DISCUSSIONS ‘

The vibration characteristics of a conical shell is important to understand the fundamental behavior
of shells and the industrial applications of these structures. According to [Mustafa B. A., Ali R.
1987], one quarter of the model has been analyzed. The shape of stiffened (ring and string) conical
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shell and material properties are shown in Fig.(6). The boundary condition was zero translation at
ends i.e. (shear diaphragm ends).

A convergence test was made in order to select a suitable mesh size. Fig.(7) shows the variation of
natural frequency with total degrees of freedom. It was notice that the natural frequencies were
stabilized after 100 degrees of freedom.

The results of the present work were compared with the theoretical results of [Mustafa B. A., Ali R.
1987] and with those obtained from MSC\NASTRAN as shown in Table (2).

The percentage errors were computed between the present work ,MSC\NASTRAN, and [Mustafa
B. A., Ali R. 1987], and recorded in Table (2). It was noted that these percentage errors were small
because the special shell element (i.e. superparametric shell element) was used, which have 40
degrees of freedom. The natural frequency increases when the conical shell thickness increase as
shown in Fig.(8). The conical sh¢ll becomes less stiff and hence the frequency decreases. It was
noted from Fig.(9) that when the shell was stiffened the natural frequency was increased according
to the number of stiffeners (string) i.e. ( natural frequency increases when increasing number of
stiffeners). And the same results were obtained for ring stiffeners as shown in Fig.(10). In general,
the stiffeners were required to increase the bending stiffness of such thin walled members
(shells and plates). Consequently, stiffened shells were often used in aircraft and launch vehicles to
obtain lightweight structures with high bending stiffness and decreasing in the mode shape. So, the
suitable numbers of stiffeners were 3 for rings and 3 for strings. Table (3) shows the results of
natural frequencies for each shape in Fig.(6) but with constant cross-sectional area. These stiffeners
have a great effect on results, for which the maximum resistance stresses of each stiffener, due to
bending, were proportional to the distances of the most remote fibers from the neutral axis of the
cross section. In order to obtain the maximum resistance to bending, sections with large area far
away from the neutral axis are implemented. It was noted that the natural frequency increases with
increasing the cross- sectional area as shown in Fig.(11). The increase in cross-sectional area caused
an increase in the structure stiffness. From Fig.(12) it was recognized that the natural frequency
increases with decreasing the angle of the conical shell. Thus decreasing the cone angle caused a
decrease in the structure stiffness .

CONCLUSIONS:

The conclusions obtained from the present analysis can be summarized as follows:

1- The effect of the thickness on the natural frequency is studied and it is noted that the smallest
natural frequency occur when the thickness of conical shells was small.

2- Stiffeners and their shapes have a great effect on natural frequencies, where the natural
frequency increases with increasing the number of stiffeners and their cross-sectional area.

3- Increasing the cone angle tends to reduce the natural frequency.

4- It can be seen that the superparametric shell element gives good results in such vibrational
analysis of stiffened conical shell.
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Table (1) Shape Function for Midsurface Interpolation of Shell Elements

Serendipity 8-node element:

Corner nodes: N, = (1 £,)(1+ 11 )(E&, + 7, ~1)

Midside nodes: N =%é?(l+aai)(1—n2)+%n?(1+nni)(l—az)

Table (2) Verification Test for vibration case

Natural Frequency (Hz)
Present work 1352.181
MSC\NASTRAN 1361,54
[Mustafa B. A., Ali R. 1987] 1333
Percentage Error 1.425%

Table (3) Type of different stiffeners for vibration case

Natural Frequency (Hz)

Shape | I*10%(m*) | J*10%(m*) | Present MSC\
No. work NASTRAN

1 0.4 0.8 1138.13 1154.22

2 2.4 2.6 1188.67 1214.53

3 2 2.2 1182.44 1222.36

4 2 2.1664 1181.79 1220.13

5 3.4 6.6 1201.89 1251.91

6 2.2 13.6 1206.12 1259.34

7 2 2.2 1182.44 1222.36
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g=-1
9
T o
n=-1 \/ Vw
= ) /
Fig. (1) Eight nodded shell element
%

Fig. (3) Stiffened shell Fig. (4) Geometry of conical shell with stiffeners
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NZ—»———--—-—--— e — - — ——— R

6 7
Fig.(5) Type of stiffeners

Length=0.2667 m Ring depth=6.35E-3 m  String depth= 1.27E-2 m
Small radius=0.087 m  Ring width= 6.35E-3 m String width= 6.35E-3 m
Large radius=0.134 m  E~=68.95E9 N/m’ E=73.13E9 N/m*
Thickness=2.54 mm p=2714 Kgm’ pe= 2765 Kg/m’

E= 68.95E9 N/m’ No. of rings=3 No. of strings=3
v=0.303 Gy=2.4E8 N/m? Gy=4.6E8 N/m’

p=2714 Kg/m’
6,=2.4E8 N/m’

Fig. (6) Shape of stiffened conical shell (ring and string) with material properties.
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Fig(13) Distribution of elements inside a quarter of conical shell with it's
deformed shape for the first mode
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NOTATION

B Young’s modulus N/m’
t Thickness m

Y, Poisson’s ratio

A, Area of ring m’
Aq Area of string m?
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n; No. of rings o
ng No. of stringers
Ss Shear Area of the Stringer m?
S Shear Area of the Ring m?’
[K] Element Stiffness matrix o
[M] Element Mass matrix o
L Length of conical shell m
M Bending Moment per Unit Length N.m/m
N Force per Unit Length N/m
Q Shear per Unit Length N\m
T Torsion Moment per Unit Length N.m/m
I Bending Moment of Inertia kg . m’
J Torsion Moment of Inertia kg . m’
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