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Abstract: 

 

In this paper the finite element method has been used to determine the fundamental natural 

frequencies of a pre-twisted plate mounted on the periphery of a rotating disc. Three dimensional, 

finite element programs was built using three noded triangular shell element as a discretization 

element for cantilever plate, this element has six degrees of freedom at each node. All formulations 

and computations are coded in (FORTRAN-77). The investigation covers the effect of speed of 

rotation, disc radius, aspect ratio, pre-twist angle and skew angle on the vibration characteristics of 

rotating cantilever plate. For this analysis, the initial stress effect (geometric stiffness) and other 

rotational effects except the corioles acceleration effect have been included. The eigenvalues have 

been extracted by using simultaneous iteration technique. Results shown that the natural 

frequencies increase when; angular speed and disc radius are increases. 

 

 

 

 الخلاصة:

بقزص  زبخّي يهخٌٕت نظفٍحت لاطاطٍتا فً ْذا انبحذ حقٍُت انعُاطز انًحذدة نحظاب انخزدداث انطبٍعٍتاطخخذيج                

ٌحخٕي ْذا انعُظز حٍذ باطخعًال انعُظز انًزهذ كعُظز حجشئت نٍٓكم انظفٍحت,  حت كقشزة دٔارة,حًزٍم ْذِ انظفٍ دٔار. حى

-FORTRAN) انُخائج باطخخذاو بزَايج حاطٕب بهغت كم. حى انحظٕل عهى عهى رلاد عقذ نكم عقذة طج درجاث يٍ انحزٌت

 ٔ ٔ َظبت انطٕل إنى انعزع ٔ سأٌت الانخٕاءقطز انقزص َظف يزم طزعت انذٔراٌ ٔ  ثعذة يخغٍزاحأرٍز انبحذ درص   .(77

فً ْذا انخحهٍم حًج دراطت حأرٍز الإجٓاد الابخذائً )انجظأة انُٓذطٍت( . خظائض الاْخشاس فً انظفائح انذٔارة عهى سأٌت انخزبٍج

(, ٔباطخخذاو حقٍُت انخكزار Coriolis accelerationض )ٕنم كٍزٌٔ انخأرٍز أنذٔراًَ بذٌٔ الأخذ بُظز الاعخبار ٔجٕد حأرٍز حعجٍ

ٌّ انخزدداثَ انطبٍعٍتَ حشٌَِذُ  حبٍٍ .انًخشايٍ نحظاب انخزدداث انطبٍعٍت  انظزعتِ انشأٌتِ َٔظفِ قطز انقزصِ.بشٌادة انُخَائجَِ بأ

 

KEY WORDS 
 rotating pre-twist plate, natural frequency, geometric stiffness, FEM. 

 

 

INTRODUCTION: 
 

 The natural frequencies of rotating turbomachinery blades are known to be significantly 

higher than those of the non- rotating blades. For reliable and economic designs of the structures, it 

is necessary to estimate the dynamic characteristics of those structures accurately and efficiently. 

Since the blades are generally idealized as cantilever beams (a few investigations assumed the blade 

as a cantilever plate), the vibrations of rotating cantilever beams have been studied in several 
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investigations. An early analytical model to calculate natural frequencies of a rotating cantilever 

beam was suggested by (Southwell 1921). Based on the Rayleigh energy theorem, a simple 

equation that relates the natural frequency to the rotating frequency of a beam was suggested. This 

equation is known as the Southwell equation, and widely used by many engineers nowadays. Later, 

to obtain more accurate natural frequencies, a linear partial differential equation that governs 

bending vibration of a rotating beam was derived by (Schilhansl 1958). Applying the Ritz method 

to the equation, more accurate coefficients for the Southwell equation could be obtained. Since the 

early 1970s, due to the progress of computing technologies, a large number of papers based on 

numerical approaches have been published. For instance, in references (Bauer 1980), 

approximation methods for the modal analysis of rotating beams were employed. More complex 

shapes and the effects of beams were also considered. The effects of tip mass (Wright 1982), 

elastic foundation and cross-sectional variation (Kuo  1994), shear deformation (Yokoyama 1988), 

pre-twist and orientation of a blade (Subrahmanyam 1987), and gyroscopic damping effect (Yoo 

1998) on the modal characteristics of rotating cantilever beams were studied. Survey papers for the 

vibration analysis of rotating structures are available (RAO 1987). The most widely used modeling 

method for the transient analysis of structures is the classical linear modeling method (Bodley 

1978). This modeling method employs the Cartesian deformation variables and the linear Cauchy 

strain measures. It has several merits such as simplicity of formulation, ease of implementation in 

finite elements methods, and efficiency of computation, which results from the use of co-ordinate 

reduction techniques (Hale 1980). This modeling method, however, often provides erroneous 

results when structures undergo overall motion such as rotation. To resolve the problem of the 

classical linear modeling method, several non-linear modeling methods (Christensen  1986) have 

been developed. With these non-linear modeling methods, the problem of accuracy can be resolved. 

However, serious computational inefficiency results from the non-linearity that disables the co-

ordinate reduction techniques. More recently, a new linear modeling method for the dynamic 

analysis of a flexible beam undergoing overall motion was introduced (Yoo  1995). 

 

THEORETICAL BACK GROUND: 

  

 The formulation follows a pattern similar to that in (Henry 1974). Two Cartesian co-

ordinate systems are used, an absolute fixed system )( 0000 ZYXR  and a local system 

)(1 ZYXR (see Fig. 1) attached to the rotating disc. 

The potential strain energy U and kinetic T are, respectively, 
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For plate bending problems, according to (Zienkiewicz 1979), the strains are given by: 
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p and f are strains due to in-plane and bending displacements respectively and g is the effect of 

bending displacements on mid-surface strains. 

The stresses are given by, 
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Where }{ p and }{ f are in – plane stress resultants and bending and twisting moments, 

respectively. 

With the definitions for stresses and strains U is given by, 

 

      321 PPPU                                    (5)  

 

Where 21,PP  plane stress, bending strain energy and 3P   supplementary strain energy due to the 

effect of bending displacement on mid-surface strains, more expressions for 1P , 2P  and 3P  are 

standard (Timoshenko 1959). 

 At rest the co-ordinates of a typical Point M on the mid-surface are  )0,, yx . Due to the 

displacement, 

    

 twvud ,,}{                                        (6) 

 

The instantaneous co-ordinates of  M  are  ),,( wzvyux   , and then  

 

    





























































wz

vyy

uxx

w

vy

ux

z

y

x

IMOIOM

i

i

i

i

i

i
RRR 111

     (7) 

The angular velocity in the 1R system is 

  

t
R

][ 321
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And the absolute velocity of the point M is given by, 
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Computing ).,.(
2

VVeiV
t

, canceling the  terms like those proportional to 2

iz which give no 

contribution when Lagrange's equations are applied, and  substituting  the  result in Eq.(2) one can 

write the kinetic energy as  (Timoshenko 1959), 
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DERIVATION OF THE STIFFNESS MATRIX: 

The polynomials for the displacements u and v are linear in 321, LandLL  while for the 

displacements w  the polynomial assumed is cubic (Zienkiewicz 1979). 

The in – plane nodal displacements are defined by, 

 

 tvuvuvuq 3322111}{                    (13) 

 

And the bending nodal displacements are defined by, 
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After standard finite elements procedure one arrives at,  
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The other shape functions for nodes 2 or 3, can be written down by a cyclic permutation of the 

suffixes 1, 2, 3. 

 L1, L2, L3 and the area co–ordinates, and ia  and ib , are defined in Fig.2. 

Once one knows the expression for the strain and the shape functions, then pk the in–plane stiffness 

matrix, and fk , the bending stiffness matrix can be easily derived. The integration is performed by 

using numerical three-point integration (Cowper 1973) over the triangular area. 

 

DERIVATION OF GEOMETRIC STIFFNESS MATRIX: 

Owing to the presence of the in–plane stresses 0

x , 0

y  and 0

xy  in the middle surface caused by 

rotation, the additional strain energy stored in the element is given by 3P . This additional strain 

energy results in an increase in the stiffness of the elements by an amount, 
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Where  G is defined by 
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For details, see (Zienkiewicz 1979). It is easy to show that,  
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Therefore, 
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DERIVATION OF MASS, CORIOLES AND SUPPLEMENTARY MATRICES, AND THE LOAD 

VECTOR:  

By using Eq. (16 and 18) in Eq. (10) and then applying Lagrange's equations one obtain, 
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The element mass matrix is, 
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The element Coriolis matrix is 
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The element supplementary or rotational stiffness matrix is, 
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Moreover, the force vector is, 
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FINAL MATRICES AFTER ASSEMBLY: 

Adding expressions Eq. (27 and 28) and equating the result to zero gives the final 

differential equation of the structure after assembly in from, 
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The matrix GK  depends on the initial stress distribution. Initially the stresses are taken as zero and 

the equation. 
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Is solved for the initial stress distribution 0 . Then the solution of, 
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Gives a new stress distribution . The stress values were found to converge within two iterations. 

Finally the frequencies and eigenvectors are found for the deformed configuration. The equation of 

motion of the structure, with the cariolis matrix neglected, is 
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Assuming harmonic vibrations, iwt
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In which EM and RGE KKK   are symmetric and positive definite matrices Eq. (37) is standard 

eigenvalue problem and is solved for the eigenvalues and eigenvectors by using a simultaneous 

iteration technique (Jennings 1977). 

The tapered and skewed plate can be also be modeled by triangular shell elements, the variation in 

thickness being accounted for by defining the thickness of the element at the three nodes. For 

formulating all the matrices the element thickness can by taken as the mean of the nodal 

thicknesses. 

        

VERFICATION TEST: 

 

 The present works were comparing with the numerical results in (Rao 1999) to find the 

fundamental non-dimensional frequency of vibration for rotating cantilever plate. Table. (1) 

explains the current results with numerical results in (Rao 1999), and the values of percentage error 

with numerical results. In this table, the maximum error not exceeds (2%). The data for the 

verification case are:      

 
30,4/,0625.0/,2/,3,35,3.0,/7850,217 3   brbtblmmtmmbmKgpaE G    

 

RESULTS AND DISCUSSIONS: 

 

The fundamental bending frequencies with out Coriolis effect are computed for pre- twisted 

cantilevers plates of two different aspect ratios (1 and 2), and for various values of non-dimensional 

speed of rotation  10tofrom , of pre-twist angle   9045,0 and , of skew angle 

  9045,0 and  and non-dimensional disc radius  5.10,/ tofromlrr . Fig. 3 show the 

suitable mesh sizes where chosen for aspect ratios (1 and 2) in this analysis (The suitable mesh for 

the aspect ratio 1 and 2, which obtained after convergence test). In all computations, Poisson's ratio 

was taken as (0.3), and the material of the plate has been assumed homogeneous and isotropic 

)/7850,/10*200( 329 mKgmNE   and the dimensions of the cantilever plate 

were )2,40( mmtmmb  . 

 Figs. (4 and 5) show the variation of non-dimensional frequency of vibration    with non-

dimensional speed of rotation    for different twist and skew angles corresponding to the aspect 

ratios (1 and 2) respectively, for plate having  0r . The second set of results will initiate the 

tendency of change of    with  r  for different twist and skew angles were show in Figs. (6 and 

7) corresponding for aspect ratios (1 and 2) respectively, for plate having  5.0 . 

 

The frequencies of all results are independent of skew angle and disc radius but dependent 

on pre-twist when the structure is stationary. The all-natural frequencies increase with increase in 

non-dimensional speed of rotation    for all combinations of three skews   9045,0 and  

and three twists   9045,0 and , and for both cases of aspect ratios (1 and 2). The rate of 

increase is maximum for the combination skew=  0  and twist=  0 , and is minimum for the 

combination skew=  90  and twist=  90 . In general it has been observed that the rate of increase 

decrease with increase in pre-twist as well as with the increase in skew angle. At any given speed 

(including stationary case) and skew angle the frequency decreases with the increase in pre-twist 

angle. The maximum and minimum percentage increases in the frequency value, with the increase 
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in speed  10tofrom  are roughly about 48% (when the skew is  0 , the twist is  0  and  0r ) 

and about 6% (when the skew is  90 , the twist is  90  and  0r ). 

  

 From Fig. (6 and 7) it can be seen that all the frequencies increase with increase in 

disc radius  lrr /  for all cases. When the non-dimensional disc radius is increased from (0 to 1.5) 

the value of    is maximum for the combination skew=  90  and twist=  90 , and is minimum for 

the combination skew=  0  and twist=  0 . The maximum and minimum percentage increases in 

the frequency value, with the increase in non-dimensional disc radius (0 to 1.5) are roughly about 

25% (when the skew is  90 , the twist is  90 ) and about 20% (when the skew is  0 , the twist is 

 0 ). 

          

CONCLUSION: 

 

 A modal formulation for the free vibration of a pre-twist cantilever plate with setting angle 

is presented. Three dimensionless parameters are identified through a dimensional analysis: the 

aspect ratio of the plate, the ratio of hub radius to the plate length, and the dimensionless angular 

speed. The effects of the other parameters, such as well as the setting angle and twist angle on the 

natural frequencies of rotating cantilever plates are investigated. It is shown that the rotating plate's 

natural frequencies increase with the angular speed, that their increasing rates grow as the hub 

radius increases, and that the natural frequency decreases when the skew and twist angles increases. 

In addition, it can be noted that the frequencies of all results of are independent of skew angle and 

disc radius when the cantilever plate is stationary. 

 

 

Table. 1 Values of fundamental non-dimensional frequency of vibration    

 for stationary and rotating cantilever plate. 

 

 Present Work (Rao 1999) Error % 

 0  3.403 3.437 1.0 

( =2000 rpm) 3.525 3.579 1.5 

( =4000 rpm) 3.902 3.974 1.8 

( =7000 rpm) 4.799 4.892 1.9 
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Fig.1 Cartesian co-ordinate system. 

Fig. 2  Area co-ordinates. 

 

Fig.3 Suitable mesh size for pre-twisted cantilever plate. 

(a/b=1, No. of elements=60) (a/b=2, No. of elements=120) 
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Fig. 4 Variation of non-dimensional frequency of vibration with non-dimensional speed of 

rotation )0,1/(  rba . 
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Fig. 5 Variation of non-dimensional frequency of vibration with non-dimensional speed of 

rotation )0,2/(  rba . 
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Fig. 6 Variation of non-dimensional frequency of vibration with non-dimensional disc 

radius )5.0,1/( ba . 
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Fig. 7 Variation of non-dimensional frequency of vibration with non-dimensional disc 

radius )5.0,2/( ba . 
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NOMENCLATURES: 

 

c  Coriolis matrix of the element  

b  Width of the rotating plate m  

a  Length of the rotating plate m  

d  Displacement of a typical point in the mid-surface 

h  Thickness of a typical of an element  

321 ,, hhh  Thickness at the nodes 1, 2, 3 

t  Thickness of the rotating plate 

Gfp kkk ,,  In-plane, bending and geometric stiffness matrices of an element 

Rk  Additional stiffness of an element 

Em  Mass matrix of an element 

q  Nodal displacements of the structure 
vu,  

In-plane components of the displacement d  

11,vu  In-plane nodal displacements of node  i  

w  Components of the displacement d normal to the mid-

surface 

iw  Bending nodal displacements of node  i  

yx,  Components of iRinIM  

ii ztx ,,1  Components of iRinOI  

A  Area of the triangular element   

C  Coriolis matrix of the structure  

D  Flexural rigidity of the plate,  23 112/  tE   

E  Young's modulus  

F  Nodal centrifugal force vector for the element 

 2F  Nodal centrifugal force vector for the structure 

GE KK ,  Elastic and geometric stiffness of the structure 

RK  Additional stiffness of the structure 

321 ,, LLL  Area co-ordinates of the triangle  

EM  Mass matrix of an structure 

9121 ,,, bb NNNNN   Shape function 

21,PP  Plane stress, bending strain energy  

3P  
Supplementary strain energy due to the effect of bending 

displacement on mid-surface strains 

 OXYZR  
Global Cartesian co-ordinate system attached to the rotating 

disc 

 0000 ZYOXR  Absolute fixed Cartesian co-ordinate system  

 0001 ZYIXR  Local Cartesian co-ordinate system  
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T  Kinetic energy 

U  Total potential energy 

V  Absolute velocity of M   

  Non-Dimensional frequency of vibration, Dta /2   

  Strains 

fp  ,  Strain due to in-plane and bending displacements 

g  Effect of bending displacements on mid-surface strains 

  Skew angle, setting angle  

  Twist angle` 

  Poisson's ratio 

  Mass density 3/ mKg  

  Stress 2/ mN  

p  In-plane stress resultant 

f  Bending and twisting moment 
000 ,, xyYx   Initial in-plane stress  

  Frequency in rotation sec)/(rad  

o  Frequency at rest sec)/(rad  

  Speed of rotation sec)/(rad  

321 ,,   Components of  in 1R   

  Non-dimensional speed, o/  

r  ar /  

 

 

 

 

 

 

 

 

 


