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ABSTRACT
Rotating turbine blades are the important parts in gas turbines. Hence, an accurate estimation of
stresses, deformations and vibration characteristics are required in the design to avoid failure and 'o
obtain an optimum weight and cost. Because in recent years interest in the effect of temperature c n
solid bodies has greatly increased, the'.aal effects are investigated in addition to the rotation rl
effects.
This work presents the numerical solutions of the blade using degenerated curved shell theory, \
finite element package has been developed using the degenerated curved shell element as a
discretization element in order to obtain the stresses, deformations and vibration characteristics r,f
the rotating blades. The numerical results are compared with experimental and theoretical results :n
the published literature and they showed good agreement.
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INTRODUCTION
Blades are important and expensive parts of turbomachinery. A turbomachine blade can b:
considered as a cantilever beam, of asymmetrical cross-section, fixed at its base, and pre-twistel
from the fixed end to the free end. It is usually mounted on a rotating disk at a stagger or ik.* angl:
in such a way that pre-twisting and skewing is in the same directlon. The pre-twist of the blad:
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causos coupling in both bending directions, in addition the asymmetry of the cross-section causr:s

coupling with the torsional motion of the blade.

The gas temperatures in modern gas turbines range between 900 oC and ll00 oC, the materirl
temperature that the designer permits will naturally depend on the stresses present. It seldo n
exceeds 1000 oC, and only unstressed parts made of corrosion resistant materials may reach high :r
temperatures. In order to reach these higher temperatures, blade cooling will take first place becaurre

it can be realized through heat transfer calculations and proper design.

ln recent years, interest in the effect of temperature on solid bodies has increased because of rap d
developments in space technology, high-speed atmospheric flights, and nuclear energy application s.

The purpose of this note is to study the effect of a constant thermal gradient on coupled bendinll-
bending-torsional vibrations of pre twisted blades.

An excellent classical study on the analysis of blades and disks was presented by Cameg e

Carnegie, |9571, static bending of pre-twisted cantilever blading was examined. The blading is pr':-

twisted linearly about the center of its cross section to a maximum angle of x/2 radians, and .s

considered fixed at the root. He applied calculus of variations and static equilibrium equations we e

derived from expressions for the total energy of blades subject to either concentrated or uniform y
distributed bending loads.
Fauconneau and Marangont, [1970] investigated the effect of a constant thermal gradient on tle
transverse vibrational frequencies of a s:mply supported rectangular plate. They obtained boun<,s

for the eigen frequencies for various width to length plate ratios as functions of a parameter relatt d

to the temperature dependence of the modulus of elasticity of the material.
Sisto and Chang, [984] presented a finite element method of discretizing beam segrnents of pr:-
twist rotating blades. Employing the matrix displacement method, stiffness and mass properties ae
developed from basic mechanics of pre-twisted beam theory. By introducing the prop,)r

displacement functions, the structural stiffrress matrix and the effect of rotor blade rotational motic n
on the stiffness matrix are obtained systematically from the potential and kinetic energy functions.
Tomar and Jain, U984] investigated the effect of a constant thermal gradient on coupled vibratior,s
of a beam of linearly varying semi circular cross section attached to a rotating disk. They used a
method based on the frequencies corresponding to the first three modes of vibrations, and found tl e
effect of thermal gradient on frequencies of a wedge shaped rotating beam. Later they used tl e
same method but to study coupled bending-tortional vibrations of a pre-twist slender beam.
Omprakash and Ramamurti, [989] carried out the steady state dynamic stress and deformaticn
analysis of high pressure stage turbomachinery bladed disks taking into account all the geometr c
complexities involved and the contributions due to initial stress and membrane behavior. They use d

a triangular shell element with six degrees of freedom per node. Abbas and Irretier, [198tt1
investigated experimentally the combined effect of rotary inertia, shear deformation and flexibili'y
on the vibration characteristics of blade turbine, and compared the experimental results with
theoretical results obtained by, the finite element method and the numerical integration method.

THERMAL EFFECT

It is assumed that the blade is subjected to a steady one dimensional temperature distribution alor g
the length, i.e., in the z-direction Tomar and Jain, [1985]:
Tr =r"(r-i) (1)

Where T denotes the temperature excess above the reference temperature at any point at a distan< e

C =Ztt and q denotes the temperature excess above the reference temperature at the end Z=L <,r

7:r
b r.

The ternperaturc dependence of the modulus of elasticity formost engineering materials is give n

by: 
e
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O E(T,)=8,(1-yf,) Q)

Where E,is the value of the modulus of elasticity at the reference temperature, i.e., at Tr=0 alorg
the Z direction. Taking the temperature at the end of the blade, i.e., at e:t as referenre
temperature, the modulus variation becomes:

E(E) = E, [1 - ott - OI (3)

Where the temperature gradient o = y\ 0< a< 1

FORMULATION OF 3D DEGENRATED SHELL ELEMENT
Following Huang [1988], the formulation of the finite element for three-dimensional degenerate d
curved shell is as follows:
It is assumed that the displacement of points at the midsurface are u'",viand w'"in the loc,rl

coordinate directions x',y'and z', respectively. If the rotations 0* and O,of the mid surfate

normal in the x' - z' and y' - z'plane are available then the following relations can be obtained at a
typical material point p.

u'=u'o+z'0,
v' = v'o + z'0, (4)

w'=w'o

If the dibplacements ui,viand wican be transformed to the global coordinate system i.s
uo,vo and wo then it is possible to write:

ui = uoi + x\(0',1*. rtrh) (5)

Strains are defined in terms of the local coordinate system of axes xf (xi = x',x', = y',Xl = z'), whei e

xl is perpendicular to the material surface layer ( ( :constant). Therefore, the strain cornponents of
interest are:

I
Lt

0u' I Ax'

Av' I 0y'

Au'lAy'+Av'l0x'
0u'l0z'+Aw'l0x'
Av'l0z'+Aw'l0y'

Where ei i$ the in plane strain vector defined in the local coordinates, ei is a transverse shear strain
vector, and u', v'and w'are the displacement components in the local system xi .

In the local Cartesian coordinate system with x'-y'tangential to the shell midsurface, ef can te
divided into two psrts, one associated with membrane, ei and one associated with bendirg
behavior, ei so that:

Where:

)uo I Ax'

fu| l0y'
Alo /0y' + tu; /A{

t

r:,1 
=

,,,

7,,,

7,,,

t',

v yz

(6)

E', =t; +t;

z'a?; I 0x'

z'a0; I 0y'

z'(A9i lfu' + A0; lAx')

(7)

,

alum and, €6 =
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The global derivatives of the displacements u, v and w are transformed into local derivatives of tl e
local displacements u',v'and w'by the standard operation:

I
I ou' I ox' av' I ox' ow' I ox'l t
lur' I ay' av' I ay' aw' I ay'l= t'l
lar' I oz' av' I oz' aw' I oz' ) L

0ul 0x

0ul0y
0ul0z

AvlAx

tulAy
0vl0z

Awl Ax

Awl0y

Awl0z t,
(8)

(l t)

Where 0 is the transformation matrix:

0-
Ox I Ox' Ax I fu' Ox L,'1
ay I o;' ay I ay' ay I Oz'l

Oz I Ax' Oz I Ay' Oz I ar'|]

The global derivatives of the displacement u, v and w are obtained from the expression (9).
For a material, especially orthotropic, that possesses three mutually perpendicular axes of elast c
symmetry, two of which (1,2) are tangential to the surface layer and the third (3) normal to it, then:

1€r=*(o,-urzoz-urtot)
Ll

I
e, = J- (o z - Dzrot - uzto t)

t,2

| _\ (9)€t=*(ot-uror-utzoz)
L7

Yr, = trr lGD

lrs = tn/Qn

Yr, = rr, /Gx
In which E,,Erand E,are Young's moduli in the 1, 2, and 3 (material) direction;,

respectively,uris Poisson's ratio for transverse strain in the i direction when stressed in the j
direction. G,, , G,, and G ,, are the shear moduli in the 12, 13 , and 23 planes, respectively. In view t ,f

the reciprocal relations u, / E, = D,i / E, , and there being only nine independent elastic constants f< r

an orthotropic elastic medium, assuming that a state of plane stress exists and that the change r f
shell thickness during deformation is negligible, then eq.(9) reduces, on use of standarJ
relationships between the anisotropic material patameters, to,
or,z,r = Dt,,r,, (10)

t

Where,

or,2,3 = [o,

tl,z,3 = [t, ,

Dl

Dzt

0

0

0

D_

,O 2 rTl2 rT,, rr rrl'

tzrT nrT nry rrl''
Dn00
D200
0D30
00D4
000

0

0

0

0

(t2)

ffid,

D5
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Dr=Et/A,
Dz=Ez/L
Dtz=Erurr/L
Dt = Grz (13)
Do = KrGn

D, = KrG*
A = 1- unuzr

The terms K, and K, are shear correction factors in the 13 and 23 planes, respectively that will l,e
determined,later.

In- general, the principal axes of anisotropic 1,2 will not coincide with the reference axes x, y b rtwill be rotated by some angle ol. Therefore, the constitutive relation, eq.(I0), must be transforme l,
before use in determining the element stiffness matrix, as follows:
01,2,3 = Qoor,y,,

@ Number 4 volume I December zooz

t1,2,3 - () ttx,y,z
Where,

or,r,, = [', ,oyrTx),tTxzrrrrT,'

€ ,,r,, - [", , € y ,')/ *y ,T ,, ,r ,r)'''
It is convenient to write the constitutive equations in the partitioned form:

o'r

o,:lntl.-
LrlJ'

oi
t'ry

T,*,

cy

I
a

( 14)

t

: o'lt'f1
L'l J

0

0

G

(ls)

Where oi(ei)and ol(el)are the in-plane stresses (strains) and transverse shear stresses (strainr )
respectively, defined in the local coordinates and:

D
D'f o

ODi
For an isotropic material:

),'+2G A'

)"' ),' + 2G

00

( 16)

D,, =

D
KGO
O-KG

I{ere K is a shear correction factor taken equal to (5/6) for a homogenous qoss section. The term ( iis the shear modulus and },'is the plane stress reduced l,'= uE/(l-u,), E is the modulus cf
elasticity and uis Poisson,s ratio.

The Total Potentiat Enerw
In the local coordinate system, the total potential energy for the degenerated shell is given as:

291

o



M. J. Jweeg , A. N. Jamel
and K. A. Attya

THERMAL GRADIENT EFFECTS ON THE DYI\AMIC
STRESSES, DEFORMATIONS AND VIBRATIONS OF

ROTATING GAS TURtsINE BLADES

(17)n - *[r,1 
D,ro,,dv,,:k,rt D,,t,,dv -ty

Wher. * is the potential energy of the applied toads

I

Element Geometry
In the degenerated shell element, each node has five degrees of freedom, i.e., three translation rl

displacements in the direction of the global axes and two rotations with respect to axes in the pla 
'e

of the middle surface as shown in Fig. (1). The Cartesian coordinate at any point of the shell can I 'e
uniquely given in terms of nodal coordinate of a point at the vector V,k can be expressed as,

r! =*! *fnv* (i:1,2,3) (18)

n

rr =I Nk(€,rfi!
k=l (i:1,2,3) ( 19)

xi = I t{k (6,ri*! +
rn5y
).L- k-l

tvk(€,r)torr{,
n

k=l

Alternatively, the global coordinates of pairs of points on the top and bottom surfaces at each no< .e

are usually input to define the element g,.ometry. Thus,

xi= t I,{k (€,rt
k=l

Where :

x, =Cartesian coordinate of any point in the element, ( X, = X,X, = y,x, = z)
xf :Cartesian coordinate of any point k.

ht:Thickness of shell in ( direction at nodal point k.

Vrl = i* Component of the unit normal vector to the middle surface.

N- (E,n):The two-dimensional interpolation function corresponding to node k
(:The distance from the middle surface.

Displacement Field
The displacements at any point in the shell element are defined by the three Cartesian componen s

of the midsurface node displacement u|, and two rotations of the nodal vector V,k about tt e
orthogonal direction normal to it. According to Omprakash and Ramamurti, [989], tte
displacements uf along the thickness at each nodal point are,

uf = u!,, + x;It,,[#) 
- 

* e !;[ft 
) 

- 

]

W*!,,o0.+*!,bo,,o,,] 
(i:t,2,3) (20)

(21)

I

",ltf = UL (v,i 
"[ -v:,":)

2
Thus, the same expression as that is obtained as:

+Lto
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) =tNre G,rir!

t=l

= t NkG,ryb!,.*f a,, 
o(€,ry)hr(v,i o{ -v!,":)

ek, - ofx1 I

0k, = -o*x2 L,.

0u Av Aw

a€ a6 a€
0u Av Aw

0r7 0r7 0r7

0u Av Aw

0( a( a(

Aw0u Av
;;ox ox
0u 0v
;;-oy oy
auY
0z 0z

u

u

t

(i:1,2,3) (22)

j.ui =2,V- (4,q,{)dr
k=1

and,

oo --bt u!, ,[, of "tf (n)
Where ul, is the displacement of the k,n nodal point in the Cartesian coordinate, af and crl ae

the rotations about Vj and \n , respectively. It is noticed that,

(24)

Apparently, the displacement function assumed in eq.(22) is true only for small rotations.
It should be noted that in the implementation of the finite element method, Vl is not necessari y
normal to the shell midsurface. Cons:quently, a certain approximation is introduced by the violatic n
of the assumption of the straight 'normal'. According to Huang [1988], the strain componen.s
should be defined in terms of the Iocal coordinate system in whiCt, tt e local derivativei of tl e
displacement u', v' and w' are obtained from the global derivatives of the displacements u, v ar d
w.
The global derivatives of the displacements u, v and w are given by,

=J7

0z

a€
0z

ôrl

-a-z

a(

Ax
Aw

-oy

w
,02

Ay

a€

ry
o17

ry
a(

(2s)

Ax

a€
0x
atorl
Ax

a(

J= (26)

In eq.(25) the displacement derivatives referred to the curvilinear coordinate are obtained fror n
eq.(26). The strain-displacement matrix B, relating the strain components in the local system to tt e
element nodal variables, can then be constructed as,

n,,=lB,d, e7)
k=l

Where e' and d, are defined in eq.(2) and eq.(23), respectively, and B is a matrix with five rov.s
and a numler of columns equal to the element nodal variables.
It is convenient to write eq.(27) in the partitioned from,

)
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t
(28)

-w (30)

in which e'y and e', are the in plane strains, and the transverse shear strains defined by eq.(2).

Assumed that there is a zero shess in the direction perpendicular to five stress and stra n

components in the local system.
The total potential energy can be written as,

(2e)a=?r"
Thus,

t,
DBdv W

n, =r,4lu', D,u,*)d, *lo:[Jr, D,Brr,)r,

erre=;d[hr'

Ki u= 
"iu, 

D,B,,etv

Where the elasticity matrix D is divided into a bending part D, and shear part D,. Upon fini e
element diicretization and subseque;'t minimization of n with respect to the nodal variable di tl e
following equation are obtained,
K,idi=-fi (31)

in which the stifkress matrix K, linking nodes i and j has the following typical contributiors

emanating from the in-plane and transverse shear strain energy terms respectively,

Ki u = la|,o,nrav
(32)

Where a 2-pointintegration rule through the shell thickness and a full integration rule in the [ - 1

surface should be used and,

dv = d*'dy'dz' =Vla]dryd(

Where 14 is the deterrninant of the Jacobian rnatrix.

Dvnamic Equilibrium Equations

The semi discrete form of the dynamic equilibrium equations is obtained using the principle of
virtual work which states that for any arbitrary kinematically consistent set of displacements, tl e
virtual work done must equal that done by the external forces irrespective of the material behaviour,
i.e.:

[(6,)r rar= fir,)r ds+ fia,)t (o- A'cupv (33)

vyv
Where 6, is a vector of virtual displacements, 6" is the vector of associated virtual strains and , r

is the vector of stresses referred to the local coordinates. The term t is a vector of surface tracticn
acting on the portion 6, of the boundary 6. The vectors b,pti and cu are the body, inertial ard

damping forces, respectively. The symbol (.) denotes differentiation with respect to time. p is tl e
mass density and c is the damping parameter.

a

294

a

f:t =[r ';",)

a



Numb er 4 Volume 8 l)ecember 2002 Journal of Engineerinl

For a finite element representation of an isoparametric 'degenerated' shell element tt e
displacements, velocities and accelerations u,u,tiand their virtual counterparts can be defined jn

terms of the nodal variables d,il and d by the expressions,

u =itt,(6,q,C\, = Nd, du = NM
,=l

n =i[,(€,q,()d, = Nit (34)
i=l

ii =itt,(g,ry,(V, = Nd
j=l

Where N,(q,n,() is the matrix of shape function.
With the standard strain matrix B we may relate the virtual strain vector to the nodal variables as,

6r=f B,6di =BOd (35)
i=l

Upgn substitution of eq.(33 ) and eq.(34) into eq.(32 ),
arluii + cd + p@)l= *' t (36)

is obtained, in which the mass matr:x lvl, the damping matrix C, the internal restoring force vector
p(d) and the external applied load vector f have the following element contributions,
M,= lr,N'nau i C,= lcil-rNavi p,= lBrodv; .f,= lrrus+ [Nroau ei)

ve ve ve se ve

Where s. and v" denote the surface and volume, respectively, of the element under consideratio:r.
Since the virtual displacements 6d may be arbitrary, eq. (36) may be written as,
Md+Cd+P(d)=1 (3s)
For linear elastic situations, the stresses o are related to the strains e as follows,

o=De=DBd
Therefore, the internal restoring forces p(d) can be rewritten as,

P(d) = g6
Where,

r = I K, --Z [tr otau (3e)
e eye

In which K, is the contribution to the structural stiffness matrix K from a typical element e.

Modelinq of Mass Matrix
Consistent mass matrlx, Mo, in eq.(37) represents a consistent mass matrix. The sub matrix of tte
element mass matrix linking nodes i and j can be expressed as,

M".i,j = lN,ofr,av (40)

Which does not lead to a diagonal mass matrix, when the adopted shape functions N are identisrl
to those used in the evaluation of the element stiffrress matrix.

For a typical node i, the diagonal mass term m,, of the lumped mass matrix associated with
(u,v,w) can be evaluated by the expression,

*,, = ar, tgu (41)
ve

29s
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(42)

(43)

Where co, is a multiplier and p is the density of the plate or shell element. The diagonal rota;y

inertia I,,, and I,,, associated with vector V, and V, are also considered in this work, because the ir
importance has been proven for thick plates. The rotary inertia are given as,

'dv

t

1,,, = I,,z = @i In

Iott ,r{ ;dv

and, @; -

Z, loru rN pdv
k=l ve

Where n is the number of nodes for each element. For the layered element,

Iiir=I,z=0i IX pihi
smJ

Where h, represents the thickness of the jth layer and in its evaluation, summation is made ovr:r

the number of layers. The term zl i: the distance of the layer middle surface sm. The rotary inert. a

for a non-layered element is approximately equal to,

I ut = I iiz = :,,+ 
(45)

Eq.(as) can be thought of as a resultant of the lumped mass mii / 2 concentrated at each end of tt e

vector Vj about the axis normal to it. The lumped mass matrix for node i of the shell can be written

4S,

ve

h2 +Z %Y,dv, (44)

,

Mi=

6l = Xe'*
then eq. (41) gives the following free vibration equation,

(r-,'M)x -o

00rnii00

ffiri0000
0ffiri000

o 0 0 lrn 0

0 0 0 0 Iilz

(46)

SOLUTION OF EIGNVALUE PROBLEM

To solve eq,(38), Newmark's algorithm together with the Hughes and [,iu predictor-conect(r
scheme is adopted. The parameters y and F are used to control the stability and accuracy of the

solution, In the present work a conditionally stable time stepping scheme is adopted with y:0. i
and P =0.25 .

For free vibration motion the external force f is equal to zero and if the displacements are assumeJ
to be harmonics as:

(47)

(48)
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which is called a linear algebraic eignvalue problem.
Generally, there are two methods for solving eigenvalue problem. The transformation method;,
such as Jacobi, and Householder schemes are preferable when all the eignvalues and eignvectors a e
required. The iterative methods, such as the power method, are preferable when few eignvalue ar d
eignvector are required. Since the designer is interested in finding the first lower natural frequencir:s
of the structures, the iterative method in solving the eignvalue problem is used.

The methodof Rayleigh-Ritz subspace iteration can be used to find the lowest eignvalues ard
the associated eignvectors of the general eignvalues problem, Bathe t1982]. It is very effective n
finding the first few eignvalues of the problem whose stiffness K and mass M matrices have lar5.e
bandwidth.

T

RESULTS AND DISCUSSIONS

Results and discussions of the previously described analysis of a rotating blade are presented her:.
The reliability of the theoretical work and computer programs output are investigated by makir g
comparisons of the present results with some known experimental and theoretical solutions.

Conversence Test
To veriS the convergence, stresses and deformations are computed for different mesh sizes. Thr y
are used for a certain blade geometn/ dinrensions in order to design a suitable mesh size to be uscd
during the analysis. The mesh sizes are shown in Fig.(2). fig.(3) shows the variation of v-deflectic n
with the degree of freedom. In this figure, the deflection values are those established after 135
degree-of-freedom, DOF. Fig. (4), (5), and (6) show the variations of xx-stresses, yy-stresses ard
xy-shear stresses, respectively, with the degree of freedom. In all figures, the stresses in a ll
directions are shown and their values stabilized after 175 DOF. Hence, it is preferable that tt e
satisfactory mesh size, for the current analysis, consists of three elements across the length and t\ o
elements across the width.

Verification Test
The results of the current work, presented in Tables (f), (2), (3), and (4), are compared with that r,f
Bathe [1982]. Table (1) shows the maximum tip deflections, where the pre-twist angle is 0o. Tle
present results are related with those results by Abbas and H. Irtetier, t19S9]. Table (2) also
demonstrates the sztme comparison in Table (1) but at pre-twist angle equal to i5o. In both tabl( s
the maximum error does not exceed 0.42%. Table (3) shows the maximum radial stresses when tte
pre-twist angle is 0o. The differences between the current results and the results of Bathe [ 1982] ar e
larger than the deflection results. Table (4) indicates the same correspondence in Table (3y but ,rt
pre'twist angle equal to 150. In both tables the maximum error e does not exceed 7.8% .

Thermal Effects
ln order to investigate the thermal effects, three values [0.02, 0.06, and 0.10] of thermal gradient a:e
used. Fig.(7) exhibits the variation of v-deflections with thermal gradient ai different ,ulues of prr -
twist anglel' It is observed that when thermal gradient increasei, v-deflection increases too. i"ip;.
(8), (9), and (10) display the variations ofxx-stresses, yy-stresses, and xy-shear stresses at differeirt
values of pre-twist angles. In all figures, it is shown that when thermal gradient increased, tte
stresses in all directions decrease. fig. (11) shows the variation of v-deflections with thermirl
gradient at different values of skew angle. This figure shows that when thermal gradient increase i,
the v-deflections increase. Fig. (12), (13), and (14) demonstrate the variations of xx-stresses, ) -
stresses, and xy-shear stresses with thermal gradient at different values of skew angle. In all figure r,
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it is seen that when thermal gradient increases, the stresses in all directions increase too' Generalll,

thermal gradient.u*.r i*ge"deformations in the blade. Hence, the thermal gradient along the blad:

must be lowered.

VIBRATION ANALYSIS
The vibration characteristics of blade are studied since the evaluation of natural frequencies, an I
mode shapes is important in order to avoid resonance'

Verilication Test .7 . ----r-r ^-r +L^^-^+r^^r -^.,,r+c i- Elarh.,
In this test, the current results are compared with the experimental and theoretical results in Bath':,

tlgs2]. Table (5) compares the current results with experimental and theoretical results in Bath':,

iltgri and the nuto6 of percentage error with experimental and theoretical results. In this table, it

is seen that the percentage effors 6etween the current results and experimental results are less the n

the percentage errors bJtween the experimental results and the numerical integration results 0f

Bathe, [982].

Thermal Effects
In order to study the effect of thermal gradient o1 natural frequencies, three values of therm rl

gradient [0. r, 0.06, *a o.oz] were select"Io. rig. (15) shows the variation of natural frequency wi h

thermal gradient aioirre."nt pre+wist argles. Ilis-seen that when the thermal gradient increases tl e

natural frequency decreases. rig. 116)'shows the variation of natural frequency with thermil

gradient at differeni;k; u"er.i liis'observed that when thermal gradient increases, the naturil

frequency decreases too. FJr this reason, thermal gradient effects represent very importa rt

parameters in the aesign of blades because ii reduces thi natural frequencies and that causes failu'e

to the blade under reiltively low speed. Consequently, few designers take this effect as a maj rr

parameter in the design as Fauconneau and Marangont, [1970] and Tomar and Jain' [1984]' it is

believed thermal grraT.rt is one of the important reasons for failure of the turbine blades and at ry

pa.t *orring *a.irrigh temperature. Thus, the thermal gradient is kept as small along the blade, rs

possible.

CONCLUSIONS
The conclusions obtained from the present works can be summarized as follows:

l- Thermal gradient reduces the strisses but raises the deformations in blade.

2- Thermal gradient minimizes the natural frequency of the blade and it represents a very importa nt

parameteis in the design of blade working at higher temperatures. Thermal gradient represet ts

one of the importantpiameters that cause failure of the blade, which works at high temperatures

and speeds.

a

I
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Table (1) Effect of radius of rotation on tip Table (2) Effect of radius of rotation on tip
v-deflections v- deflections twist :l

0.23yo
0,24Yo

0.240.

0.240
0.220h

0.230/0

Table (3) Effect of radius of rotation on Table (4) Effect of radius of rotation on

-t
Error

5.j%o

6.90h
7 .30

7.60A

7.70h

7.goh
Length/Width :4, Density =7850 Speed oft Thickness/Width =0. 12, Skew ansle =90o Width :0.1 m Y

@ I
)

Ratio Present Ref. ll2 Error
0 20.99 20.91 0.33%
I 29.93 28.73 0.34%
2 36.68 36.7 4 0. 16%
3 44.54 44.36 0,40yo
4 52.39 52.17 0.420h
5 60.24 59.gg 0.4 l%

Ratio Present
0 20.99

n r' [tL
20.94

I 28.95 28.88
2 36.91 36.82
3 44.87 44.76
4 52.83 52J1
5 60.79 60.65

Ratio Present Ref. Uzl Error
0 8.26 8.81 6.zYo
1 | 12.19 13,05 6.sYo
2 16. l3
3 20.06

17.29
2l .54

610A
6,80h

4 24.01 25.79 6.80A
5 27.93 30.02 6,goh

Ratio Present Ref. ll2'
0 8.3 8.83

1 12.5 13.43

2 1,6.7 18.02

3 20.9 22.62
4 25,1 27.21
5 29.3 31.81

N,qfe
v-deflection and yy-stresses put in dimensionless, where:

v-deflection : v w(max ) l (N' o' l n)rr-r,resses : o w(rnax.)lhr'b')
Table (5) Values of first natural frequency of blades lEz)

width of blade :0.025 m, Thickness of brade :0.01 I m, Poisson's ratio :0.3, Mass
Modulus of elasticity :208 GN/m2

xperimental' Theoreiical.' Present Error with Exp. Error with theor.
0.3 17 5 88.90 91 .30 91.46 2.970 0.17%
0.1 5gg 345.30 365. I 0 364.97 5.69Ya 0.430A
0. 1 059 7 47.90 821.50 819 ,42 957% 0,25%
0.0794 1300.00 1460.50 1447.49 11.34% 0.89%
0,063 5 1969.30 2292.20 2247.66 14,lg% 1.51%
0.0529 2736.90 3286.30 32ll.l I 17j3% 2.29%
0.0455 3594,70 4473.1 0 4297.95 19.56% 3.91%
4.0397 4550.00 5842.40 5579.36 22.63% 4.50%
0.0353 5513.50 7394.30 6966.67 26.35% s.78%
0.03 l g 6731 .90 9129.70 9465 ,62 25.75% 7,26yo

i!
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Fig (3) Variation of v-deflecrions with

degree of freedom
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K,
Kb

K,
K,
M*,

,.,Q,

Strain-displacement matrix
In-plane strain-displacement matrix
Bending strain-di splacement

Transverse shear strain-displacement matrix
Assumed in-plane strain-displacement matrix
Assumed transverse shear strain-displacement matrix
Elasticity matrix, N/mm2
Mernbrane strain tensor in the orthogonal curvilinear coordinate system
Assumed membrane stri.in tensor in the orthogonal curvilinear coordinate.
Young's modulus, N/mm2
Jacobian matrix
Determinant of the Jacobian matrix

Stiffness matrix, N/mm
In-plane stiffness matrix, N/mm
Bending stiffrress matrix, N/mm

Membrane stiffness matrix, N/mm

Transverse shear stiffness matrix, N/mm

Generalized stress component s, N. m/mm2

Shape function
Generalized stress components (in-plane forces), N/mm

Generalized stress components (shear forces), N/mm
Temperature excess above the reference temperature at any

point

atadistance e=ZL
Temperature excess above the reference temperature at the end z=L or (:1.
Displacement compon ents, mm
Potential energy of loads, ^i/. ln
Z-direction coordinate.
Transverse shear strain components in the Cartesian coordinate system

Transverse shear strain components in the natural coordinate system

Assumed transverse shear strain components in the natural coordinate system
Linear strain tensor
In-plane strain tensor
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