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ABSTRACT
Rotating turbine blades are the important parts in gas turbines. Hence, an accurate estimation of
stresses, deformations and vibration characteristics are required in the design to avoid failure and ‘o
obtain an optimum weight and cost. Because in recent years interest in the effect of temperature ¢n
solid bodies has greatly increased, ther.nal effects are investigated in addition to the rotationl
effects.
This work presents the numerical solutions of the blade using degenerated curved shell theory. A
finite element package has been developed using the degenerated curved shell element as a
discretization element in order to obtain the stresses, deformations and vibration characteristics «f
) the rotating blades. The numerical results are compared with experimental and theoretical results ‘n
the published literature and they showed good agreement.

KEY WORDS
Thermal gradient effects, dynamic stresses, vibrations, gas turbine blades

DAl

o ol 5 aleaS pmall aniills Gl ¢g 3 oo sl e al aal e 5 sl Alie Las
Gy ol Gl AL e Jpeanlly Qi Cunt) apenaill e cosllaa ) Y1 alsa
il bl A o 5 a1 gl & paleall a5 el sy 52k dpeal L35 S 50 )
sl A,k aladauly gase Ja dlad el ) dlaYl g, o e sl ) sl A el
Claad L3208 paieS Agasdl 5,08 juaie aadiul s aliall 23 gas gk 23 SIS ¢ Agail)
Alanl) il ae Apaaell el gy 5ol il 8 Y1 el i g cla sl 5 Cialeal

Bn g Al s il el 53 pliall 4y ylaill
INTRODUCTION
Blades are important and expensive parts of turbomachinery. A turbomachine blade can bz
considered as a cantilever beam, of asymmetrical cross-section, fixed at its base, and pre-twiste

from the fixed end to the free end. It is usually mounted on a rotating disk at a stagger or skew ang]:
in such a way that pre-twisting and skewing is in the same direction. The pre-twist of the blad:

287

_“7—




THERMAL GRADIENT EFFECTS ON THE DYNAMIC
M'd "l'("‘:“f . A.N. Jamel STRESSES, DEFORMATIONS AND VIBRATIONS OF
and K. A, Attya ROTATING GAS TURBINE BLADES

causes coupling in both bending directions, in addition the asymmetry of the cross-section caus::s
coupling with the torsional motion of the blade.

The gas temperatures in modern gas turbines range between 900 °C and 1100 °C, the material
temperaturs that the designer permits will naturally depend on the stresses present. It seldon
exceeds 1000 °C, and only unstressed parts made of corrosion resistant materials may reach highr
temperatures. In order to reach these higher temperatures, blade cooling will take first place becau:e
it can be realized through heat transfer calculations and proper design.

In recent years, interest in the effect of temperature on solid bodies has increased because of rap d
developments in space technology, high-speed atmospheric flights, and nuclear energy applications.
The purpose of this note is to study the effect of a constant thermal gradient on coupled bendin;:-
bending-torsional vibrations of pre twisted blades.

An excellent classical study on the analysis of blades and disks was presented by Carneg e
Carnegie, [1957], static bending of pre-twisted cantilever blading was examined. The blading is pr:-
twisted linearly about the center of its cross section to a maximum angle of m/2 radians, and s
considered fixed at the root. He applied calculus of variations and static equilibrium equations we ¢
derived from expressions for the total energy of blades subject to either concentrated or uniform y
distributed bending loads.

Fauconneau and Marangont, [1970] investigated the effect of a constant thermal gradient on tte
transverse vibrational frequencies of a simply supported rectangular plate. They obtained bounc.s
for the eigen frequencies for various width to length plate ratios as functions of a parameter related
to the temperature dependence of the modulus of elasticity of the material.

Sisto and Chang, [1984] presented a finite element method of discretizing beam segments of pr:-
twist rotating blades. Employing the matrix displacement method, stiffness and mass properties a e
developed from basic mechanics of pre-twisted beam theory. By introducing the prop:r
displacement functions, the structural stiffness matrix and the effect of rotor blade rotational moticn
on the stiffness matrix are obtained systematically from the potential and kinetic energy functions.
Tomar and Jain, [1984] investigated the effect of a constant thermal gradient on coupled vibratiors
of a beam of linearly varying semi circular cross section attached to a rotating disk. They used a
method based on the frequencies corresponding to the first three modes of vibrations, and found tt e
effect of thermal gradient on frequencies of a wedge shaped rotating beam. Later they used tte
same method but to study coupled bending-tortional vibrations of a pre-twist slender beam.
Omprakash and Ramamurti, [1989] carried out the steady state dynamic stress and deformaticn
analysis of high pressure stage turbomachinery bladed disks taking into account all the geometr ¢
complexities involved and the contributions due to initial stress and membrane behavior. They used
a triangular shell element with six degrees of freedom per node. Abbas and Irretier, [198¢]
investigated experimentally the combined effect of rotary inertia, shear deformation and flexibili'y
on the vibration characteristics of blade turbine, and compared the experimental results with
theoretical results obtained by, the finite element method and the numerical integration method.

THERMAL EFFECT
It is assumed that the blade is subjected to a steady one dimensional temperature distribution alor g
the length, i.e., in the z-direction Tomar and Jain, [1985]:
T =T,0-¢) ()

Where T denotes the temperature excess above the reference temperature at any point at a distance
£ =Z/L and T, denotes the temperature excess above the reference temperature at the end Z=L cr
=1.

The temperature dependence of the modulus of elasticity for most engineering materials is given
by:

|
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[ 4 E(T))=E,(1- YT,) )
Where E is the value of the modulus of elasticity at the reference temperature, i.c., at T\=0 alorg

the Z direction. Taking the temperature at the end of the blade, ie., at =1 as reference
temperature, the modulus variation becomes:

E(Q)=E,[l-a(l-8)] 3)

Where the temperature gradient o = T, 0<a<1

FORMULATION OF 3D DEGENRATED SHELL ELEMENT

Following Huang [1988], the formulation of the finite element for three-dimensional degenerated
curved shell is as follows:
It is assumed that the displacement of points at the midsurface are u’,v/and w'in the locil

coordinate directions x',y’and z', respectively. If the rotations 6, and 0 of the mid surface
normal in the X' —z'and y' -z’ plane are available then the following relations can be obtained at a
typical material point p.

u'=u,+2'0,

V=v)+2'6, (@)

w =w

If the displacements u!,v’and w/can be transformed to the global coordinate system :s

u,,v,and w_then it is possible to write:

& ox. ox;
U =ug; +x3(05 —-+0 —) (5)
axl OXZ

Strains are defined in terms of the local coordinate system of axes x/(x! =x',x), =y’,x, =z'), wheie

X} is perpendicular to the material surface layer ({ =constant). Therefore, the strain components «f
interest are:

e, ] [ ou/ox’ ]
£ ov'/ oy
= ou' 16y +ov' 1 ox' (6)
v ou'/oz' +ow'/ox'
7y | LOV'/oz"+ow' /oy

Where & i$ the in plane strain vector defined in the local coordinates, €, is a transverse shear strain

TS xS

m»
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| —
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| S—|
I
~
~ M 0~
Il

vector, and u’,v"and w'are the displacement components in the local system x.

In the local Cartesian coordinate system with x’—y’tangential to the shell midsurface, g, cante
divided into two parts, one associated with membrane, e, and one associated with bendirg
behavior, €] so that:

€ =€/ +8,
Where:
Ou,, / ox' z'06, / ox'
£, = ov, /oy’ and, ¢ = z'00,, /8y’ (7)
oul, /1y’ + v, | ox' z'(06, 1 3y' +06), / x')
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The global derivatives of the displacements u, v and w are transformed into local derivatives of tt e

local displacements u’,v'and w'by the standard operation: *
ou'/ox' ov'/ox" ow'/ox ou/dx 0Ov/ox oOw/ox
ou'loy ov'/oy' ow'ldy' |=0"|ouldy ov/dy owldy |0 (8)
ou'/oz ov'/oz ow'/oz ou/oz 0Ov/oz owloz

Where 0 is the transformation matrix:
Oox/ox' ox/oy' ox/oz'

0=|oy/ox" dyldy oyloz
oz/ox' oOz/oy' 0z/0z

The global derivatives of the displacement u, v and w are obtained from the expression (9).
For a material, especially orthotropic, that possesses three mutually perpendicular axes of elast ¢
symmetry, two of which (1,2) are tangential to the surface layer and the third (3) normal to it, then:

1

& =—(0, —0,0, —,0,)
1
1
£y, =—(0, —0,0, = U03)
E,
1 )
£y =—(0, = 03,0, —03,0;)
3
Y =7, /Gy,
Y =73/ Gy, L]

Yo =753/ Gy

In which E_ ,E,and E,are Young’s moduli in the 1, 2, and 3 (material) directions,
respectively, v, is Poisson’s ratio for transverse strain in the i direction when stressed in the j
direction. G,,G,,and G, are the shear moduli in the 12, 13, and 23 planes, respectively. In view «f
the reciprocal relations v, /E, = v, /E,, and there being only nine independent elastic constants fcr

an orthotropic elastic medium, assuming that a state of plane stress exists and that the change «f
shell thickness during deformation is negligible, then eq.(9) reduces, on use of standard
relationships between the anisotropic material parameters, to,

c,,,=Dg,; (10)
Where,
0123 '—'[0'1,0'2»712’713’53]]' a1
€123 =[51’§2’7’12’713’723]T
D, D, 0 0 0]
Dy, D, O 0 O
D=| 0 0 Dy 0 O (12)
0 0 0 Dy O
0 0 0 0 Ds
and,
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D =E /A

D,=E,/A

Dy, =E,u, /A

D, =G, (13)
D, =K\G,

Ds = K,G,,

A=1-v,0,,

The terms K, and K, are shear correction factors in the 13 and 23 planes, respectively that will Le

determined later.

In general, the principal axes of anisotropic 1,2 will not coincide with the reference axes X,y bit
will be rotated by some angle . Therefore, the constitutive relation, eq.(10), must be transforme 1,
before use in determining the element stiffness matrix, as follows:

0123 = an-x,y,z (14)

8],2.3 = Qs‘g.\‘,y,z
Where,

O'xyy,: = [O'Vr ,O'y 5 Z'"_y, Tes l'),_. ]’/‘

)

g.x,y,z = [gx’gy’Y,xy 5}/xz ’}/,v:]
It is convenient to write the constitutive equations in the partitioned form:
To'; i

' y ’
7 :[G{L Ty :DI[E{J (15)
O _’ Es

Where o/ (g!)and c,(g!)are the in-plane stresses (strains) and transverse shear stresses (strain: )
respectively, defined in the local coordinates and:

D, 0
D':[ / J (16)

0 D;
For an isotropic material:

A'+2G A’ 0

D, = A A'+2G 0

0 0 G

, |KG 0 }
b = )

' 0" KG|
Here K is a shear correction factor taken equal to (5/6) for a homogenous cross section. The term
is the shear modulus and )\'is the plane stress reduced A'=vE/(1-v?), E is the modulus cf

elasticity and vis Poisson’s ratio.

The Total Potential Energy

In the local coordinate system, the total potential energy for the degenerated shell is given as:
291
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1 IV YN 1 Y YN 7
I[1=—\&, D\e' dv+— |&,' D.gdv—W (17)
2 / 1¢f 2 § v“s
v v

Where W is the potential energy of the applied loads.

Element Geometry

In the degenerated shell element, each node has five degrees of freedom, i.c., three translation il
displacements in the direction of the global axes and two rotations with respect to axes in the plar¢
of the middle surface as shown in Fig. (1). The Cartesian coordinate at any point of the shell can te
uniquely given in terms of nodal coordinate of a point at the vector V| can be expressed as,

h = xk 4 ¢hV3, (i=1,2.3) (18)

5= 2N et

k:' ' ) =1,2,3)(19)
%= SN Gt + SN G

k=1 k=1

Alternatively, the global coordinates of pairs of points on the top and bottom surfaces at each noc e
are usually input to define the element goometry. Thus,

L 1+ = ] )
&y = Z N { é/ lkmp 24’ x‘k,bottom J (lzl 32,3) (20)
k=1

Where :

x, =Cartesian coordinate of any point in the element, (x, =X,X, =y,x, =2)
x| =Cartesian coordinate of any point k.

h" =Thickness of shell in £ direction at nodal point k.

V; =1, Component of the unit normal vector to the middle surface.

N* (@,n)fThe two-dimensional interpolation function corresponding to node k
€ =The distance from the middle surface.

Displacement Field
The displacements at any point in the shell element are defined by the three Cartesian componen s
of the midsurface node displacement u!, and two rotations of the nodal vector V! about tte

orthogonal direction normal to it. According to Omprakash and Ramamurti, [1989], tt
displacements u along the thickness at each nodal point are,

k
ox
uk w+ 3 gk ax, +6:‘(’ :\
i\ ox, - 6X2J

nub=ut +~g—h"(V,fal" _VEat)

21)

Thus, the same expression as that is obtained as:
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u, =
k=

N el + SN G il -viet)  Gm123) @2)
k=1

n

u =Y N €n,0)d*

k=1

and
X s

d =ty uly uly o af] 23)

Where u; is the displacement of the k, nodal point in the Cartesian coordinate, a* and o' ae

-

the rotations about V, and V', respectively. It is noticed that,

k k
6x{ = q
(24)
0/( — k
xlz - "a2

Apparently, the displacement function assumed in eq.(22) is true only for small rotations.

It should be noted that in the implementation of the finite element method, V' is not necessari y
normal to the shell midsurface. Cons=quently, a certain approximation is introduced by the violatic n
of the assumption of the straight ‘normal’. According to Huang [1988], the strain componen s
should be defined in terms of the local coordinate system in which the local derivatives of tte
displacement u’,v' and w' are obtained from the global derivatives of the displacements u, v ard
w.

The global derivatives of the displacements u, v and w are given by,

(ou v ow] [ow v ow
o oax ox g 05 0O
u v ow|_ 0w ow (25)
o o oy on on dn
ou v ow e
LOz 0z .0z 106 08¢ o4 |
& o o
05 05 0
J = _5£ Q _a_z_ (26)
on 0n 0on
& » o
L0 05 o4 |

In eq.(25) the displacement derivatives referred to the curvilinear coordinate are obtained fron
€q.(26). The strain-displacement matrix B, relating the strain components in the local system to tte
element nodal variables, can then be constructed as,

n
g'=Y Bd, (27)
k=1

Where € and d, are defined in eq.(2) and eq.(23), respectively, and B is a matrix with five row's
and a number of columns equal to the element nodal variables.
It is convenient to write eq.(27) in the partitioned from,
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(o

1 1> B.a °
zB‘de
k=1

gl
in which ¢’; and & are the in plane strains, and the transverse shear strains defined by eq.(2).

s

Assumed that there is a zero stress in the direction perpendicular to five stress and stran
components in the local system.
The total potential energy can be written as,

M=yI1, (29)
Thus,

m, =%d£[ jBTDdejlde W

n, = }id”{ [B/D, B./.dv:,de + é—d;{'{ [8!D, B.‘_dv}dt, W (30)

Where the elasticity matrix D is divided into a bending part D, and shear part D,. Upon finie

element discretization and subseque:t minimization of m with respect to the nodal variable di tte
following equation are obtained,

Kd, =/, @31
in which the stiffness matrix K, linking nodes i and j has the following typical contributior:s
emanating from the in-plane and transverse shear strain energy terms respectively, .
K, = |BD,Bydv
o (32)

K:, = [B/D,B,dv
Where a 2-point integration rule through the shell thickness and a full integration rule in the £ -
surface should be used and,
dv = dx'dy'dz’ =|J|dédnd{
Where M is the determinant of the Jacobian matrix.
Dynamic Equilibrium Equations
The semi discrete form of the dynamic equilibrium equations is obtained using the principle of
virtual work which states that for any arbitrary kinematically consistent set of displacements, tl e
virtual work done must equal that done by the external forces irrespective of the material behaviour,
e

[(6,) oav=[(5,) tds+ [(6,) (b~ pi—ciJav  (33)

v v v

Where &, is a vector of virtual displacements, &, is the vector of associated virtual strains and
is the vector of stresses referred to the local coordinates. The term t is a vector of surface tracticn
acting on the portion 8, of the boundary &. The vectors b,pii and cu are the body, inertial ard
damping forces, respectively. The symbol (.) denotes differentiation with respect to time. p is tte
mass density and c is the damping parameter. &
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For a finite element representation of an isoparametric ‘degenerated’ shell element tte
displacements, velocities and accelerations u,u,iiand their virtual counterparts can be defined in

terms of the nodal variables d,d and d by the expressions,

u= fﬁ,(};,n,;)d, =Nd, Su=N&d

i=]

N,(én.¢)d, = Nd (34)

i
i

1
ii =Y N(&n.¢)d, = Nd
i=l
Where N, (£,,¢) is the matrix of shape function.
With the standard strain matrix B we may relate the virtual strain vector to the nodal variables as,

i

3

8¢ =3B &d =Bs&d (35)
Upon substitution of eq.(33 ) and eq.(34) into eq.(32 ),
8d" (M + cd + p(a))=ad” f (36)

is obtained, in which the mass matrix M, the damping matrix C, the internal restoring force vector
p(d) and the external applied load vector f have the following element contributions,

M,= [pN"Nav; C,= [CN"Nav; P,-= [B" oav: fo= [NTdds+ [NTbdv  (37)

ve ve ve se ve

Where s, and v, denote the surface and volume, respectively, of the element under consideratio'1.
Since the virtual displacements 8d may be arbitrary, eq. (36) may be written as,
Md +Cd +P(d) = f (38)

For linear elastic situations, the stresses o are related to the strains € as follows,
o =De=DBd

Therefore, the internal restoring forces P(d) can be rewritten as,

P(d)=Kd

Where,

K=Y K,=Y [B"DBav (39)
e € vye

In which K, is the contribution to the structural stiffness matrix K from a typical element e.

Modeling bf Mass Matrix

Consistent mass matrix, M, in eq.(37) represents a consistent mass matrix. The sub matrix of tte
element mass matrix linking nodes i and j can be expressed as,
M, ;= [N,pNav (40)

ve

Which does not lead to a diagonal mass matrix, when the adopted shape functions N are identic: ]
to those used in the evaluation of the element stiffness matrix.

For a typical node i, the diagonal mass term m, of the lumped mass matrix associated with
(u,v,w) can be evaluated by the expression,

m;; = ; J.pdv (41)
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Where o, is a multiplier and p is the density of the plate or shell element. The diagonal rota:y
inertia I, and I, associated with vector V, and V, are also considered in this work, because their
importance has been proven for thick plates. The rotary inertia are given as,

Ilil = 11:2 =CU, J.mlzdv (42)
[oN;Ndv
and, @, = - (43)
> [PNyNyav
k=1ye

Where n is the number of nodes for each element. For the layered element,

h?

12 13t

Ly =1y = @ J-; pjhj(z + %Jd‘ dy (44)
sm

Where h, represents the thickness of the jth layer and in its evaluation, summation is made over
the number of layers. The term z| ic the distance of the layer middle surface sm. The rotary inert a
for a non-layered element is approximately equal to,

h2
Iul = 1:12 = mu _2;— (45)

S

Eq.(45) can be thought of as a resultant of the lumped mass m, /2 concentrated at each end of tte
vector V. about the axis normal to it. The lumped mass matrix for node i of the shell can be written

as,
‘m;, 0 0 0 0]
0O my 0 0 O
M= 0 0 m 0 0 (46)
0 0 0 I; O
0 0 0 0 Iy

SOLUTION OF EIGNVALUE PROBLEM

To solve eq.(38), Newmark’s algorithm together with the Hughes and Liu predictor-correctcr
scheme is adopted. The parameters y and B are used to control the stability and accuracy of thz
solution. Iz the present work a conditionally stable time stepping scheme is adopted with y=0.5

and $=0.25 .

For free vibration motion the external force f is equal to zero and if the displacements are assume 1
to be harmonics as:

d=Xe'” (47)
then eq.(41) gives the following free vibration equation,

(K- o*M)X =0 (48)
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which is called a linear algebraic eignvalue problem.
Generally, there are two methods for solving eigenvalue problem. The transformation methods,
such as Jacobi, and Householder schemes are preferable when all the eignvalues and eignvectors a e
required. The iterative methods, such as the power method, are preferable when few eignvalue ar d
eignvector are required. Since the designer is interested in finding the first lower natural frequencii:s
of the structures, the iterative method in solving the eignvalue problem is used.

The method of Rayleigh-Ritz subspace iteration can be used to find the lowest eignvalues ard
the associated eignvectors of the general eignvalues problem, Bathe [1982]. It is very effective n
finding the first few eignvalues of the problem whose stiffness K and mass M matrices have larg e
bandwidth.

RESULTS AND DISCUSSIONS

Results and discussions of the previously described analysis of a rotating blade are presented her .
The reliability of the theoretical work and computer programs output are investigated by makir g
comparisons of the present results with some known experimental and theoretical solutions.

Convergence Test

To verify the convergence, stresses and deformations are computed for different mesh sizes. They
are used for a certain blade geometrv dimensions in order to design a suitable mesh size to be used
during the analysis. The mesh sizes are shown in Fig.(2). Fig.(3) shows the variation of v-deflectic n
with the degree of freedom. In this figure, the deflection values are those established after 135
degree-of-freedom, DOF. Fig. (4), (5), and (6) show the variations of xx-stresses, yy-stresses ar d
xy-shear stresses, respectively, with the degree of freedom. In all figures, the stresses in all
directions are shown and their values stabilized after 175 DOF. Hence, it is preferable that tte
satisfactory mesh size, for the current analysis, consists of three elements across the length and two
elements across the width.

Verification Test

The results of the current work, presented in Tables (1), (2), (3), and (4), are compared with that of
Bathe [1982]. Table (1) shows the maximum tip deflections, where the pre-twist angle is 0°. Tte
present results are related with those results by Abbas and H. Irretier, [1989]. Table (2) also
demonstrates the same comparison in Table (1) but at pre-twist angle equal to 15°. In both tables
the maximum error does not exceed 0.42 % . Table (3) shows the maximum radial stresses when tt e
pre-twist angle is 0°. The differences between the current results and the results of Bathe [1982] are
larger than the deflection results. Table (4) indicates the same correspondence in Table (3) but .it
pre-twist angle equal to 15°. In both tables the maximum error e does not exceed 7.8 % .

Thermal Effects

In order to investigate the thermal effects, three values [0.02, 0.06, and 0.10] of thermal gradient aie
used. Fig.(7) exhibits the variation of v-deflections with thermal gradient at different values of pre-
twist angles. It is observed that when thermal gradient increases, v-deflection increases too. Fij:.
(8), (9), and (10) display the variations of xx-stresses, yy-stresses, and Xy-shear stresses at different
values of pre-twist angles. In all figures, it is shown that when thermal gradient increased, tke
stresses in all directions decrease. Fig. (11) shows the variation of v-deflections with therm:l
gradient at different values of skew angle. This figure shows that when thermal gradient increase s,
the v-deflections increase. Fig. (12), (13), and (14) demonstrate the variations of xx-stresses, yy-
stresses, and xy-shear stresses with thermal gradient at different values of skew angle. In all figure s,
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it is seen that when thermal gradient increases, the stresses in all directions increase too. Generally,
thermal gradient causes large deformations in the blade. Hence, the thermal gradient along the blad:
must be lowered.

VIBRATION ANALYSIS
The vibration characteristics of blade are studied since the evaluation of natural frequencies, anl
mode shapes is important in order to avoid resonance.

Verification Test

In this test, the current results are compared with the experimental and theoretical results in Bath::,
[1982]. Table (5) compares the current results with experimental and theoretical results in Bath::,
[1982] and the values of percentage error with experimental and theoretical results. In this table, it
is seen that the percentage errors between the current results and experimental results are less then
the percentage errors between the experimental results and the numerical integration results of

Bathe, [1982].

Thermal Effects

In order to study the effect of thermal gradient on natural frequencies, three values of thermal
gradient [0.1, 0.06, and 0.02] were selected. Fig. (15) shows the variation of natural frequency wi h
thermal gradient at different pre-twist arles. It is seen that when the thermal gradient increases tl e
natural frequency decreases. Fig. (16) shows the variation of natural frequency with thermal
gradient at different skew angles. It is observed that when thermal gradient increases, the natural
frequency decreases too. For this reason, thermal gradient effects represent very importait
parameters in the design of blades because it reduces the natural frequencies and that causes failu-e
to the blade under relatively low speed. Consequently, few designers take this effect as a major
parameter in the design as Fauconneau and Marangont, [1970] and Tomar and Jain, [1984], it is
believed thermal gradient is one of the important reasons for failure of the turbine blades and any
part working under high temperature. Thus, the thermal gradient is kept as small along the blade, 1s
possible.

CONCLUSIONS

The conclusions obtained from the present works can be summarized as follows:

1- Thermal gradient reduces the stresses but raises the deformations in blade.

2- Thermal gradient minimizes the natural frequency of the blade and it represents a very importz nt
parameters in the design of blade working at higher temperatures. Thermal gradient represer ts
one of the important parameters that cause failure of the blade, which works at high temperatures
and speeds.
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Table (1) Effect of radius of rotation on tip

v-deflections (pre-twist angle =0°)

Table (2) Effect of radius of rotation on tip
v- deflections (pre-twist angle =15°)

Ratio Present | Ref. [12] Error Present | Ref. [12]
0 20.98 20.91 0.33% 0 20.99 20.94 0.23%
1 28.83 28.73 0.34% 1 28.95 28.88 0.24%
2 36.68 36.74 0.16% 2 36.91 36.82 0.24%
3 44.54 44,36 0.40% 3 44 .87 44.76 0.24%
4 52.39 52.17 0.42% 4 52.83 52.71 0.22%
5 60.24 59.99 0.41% 5 60.79 60.65

Table (3) Effect of radius of rotation on

Table (4) Effect of radius of rotation on

yy-stresses (pre-twist angle =15°)

Thickness/Width =0.12, Skew angle =90°, Width =0.1 m

Present Ratio Present | Ref. [12] Error
8.26 0 8.3 8.83 5.0%
12.19 1 12.5 13.43 6.9%
16.13 2 16.7 18.02 7.3%
20.06 3 20.9 22.62 7.6%
24.01 4 25.1 27.21 7.7%
27.93 29.3 31.81

Speed of rotation =2500 r.p.m., Ratio =Radius/length
Young’s modulus =207 MN/m’

Note

v-deflection and yy-stresses put in dimensionless, where:
v-deflection =v (a4 ) /(p£22 b 3/E)yy-stresses =0 (max.) /(,oQ 2p? )

Table (5) Values of first natural frequency of blades[Hz]

Length | Experimental | Theoretical Present | Error with Exp. | Error with theor.
0.3175 88.90 91.30 91.46 2.87% 0.17%
0.1588 345.30 365.10 364.97 5.69% 0.03%
0.1058 747.80 821.50 819.42 9.57% 0.25%
0.0794 1300.00 1460.50 1447.49 11.34% 0.89%
0.0635 1968.30 2282.20 2247.66 14.19% 1.51%
0.0529 2736.80 3286.30 3211.11 17.33% 2.28%
0.0455 3594.70 4473.10 4297.95 19.56% 3.91%
0.0397 4550.00 5842.40 5579.36 22.63% 4.50%
0.0353 5513.50 7394.30 6966.67 26.35% 5.78%
0.0318 6731.80 9128.70 8465.62 25.75% 7.26%

Width of blade =0.025 m, Thickness of blade =0.011 m, Poisson’s ratio =0.3, Mass density =7850 Kg/m3
Modulus of elasticity =208 GN/m?

" Bathe, [1982]
Bathe, [1982]
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Poisson’s ratio =0.25
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Thickness of blade =0.003175 m
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NOTATION
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AARSET-mo 0 g w
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L7

o ZZ

u, (u,v,w)
\\%
Z

VeV sy sesese

Vg oV ng oo
Vo Vogomsess
€
€

f

Strain-displacement matrix
In-plane strain-displacement matrix

Bending strain-displacement

Transverse shear strain-displacement matrix

Assumed in-plane strain-displacement matrix

Assumed transverse shear strain-displacement matrix

Elasticity matrix, N/mm’

Membrane strain tensor in the orthogonal curvilinear coordinate system
Assumed membrane stiain tensor in the orthogonal curvilinear coordinate.

Young’s modulus, N/mm’
Jacobian matrix

Determinant of the Jacobian matrix

Stiffness matrix, N/mm
In-plane stiffness matrix, N/mm
Bending stiffness matrix, N/mm
Membrane stiffness matrix, N/mm
Transverse shear stiffness matrix, N/mm
Generalized stress components, N. m/mm’

Shape function

Generalized stress components (in-plane forces), N/mm

Generalized stress components (shear forces), N/mm

Temperature excess above the reference temperature at any

point

at a distance z =ZiL
Temperature excess above the reference temperature at the end Z=L or £ =1.

Displacement components, mm

Potential energy of loads, N.m
Z-direction coordinate.

Transverse shear strain components in the Cartesian coordinate system
Transverse shear strain components in the natural coordinate system
Assumed transverse shear strain components in the natural coordinate system
Linear strain tensor

In-plane strain tensor
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€, Bending strain tensor

€, Membrane strain tensor

€, Transverse shear strain tensor

€, Assumed transverse shear strain tensor

0..0, Rotations

\Y% Poisson’s ratio

T Total potential energy

o Stress tensor, N/mm?




