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ABSTRACT 
In this paper, a proposed method based on real-coded genetic algorithm is presented and applied to 

solve multiple load flow solution problem. Genetic algorithm is a kind of stochastic search algorithm 

based on the mechanics of natural selection and natural genetics. They combine the concepts of 

survival of the fittest with genetic operators such as selection, crossover and mutation abstracted 

from nature to form a surprisingly robust mechanism that has been successfully applied to solve a 

variety of search and optimization problems. Elitist method is also used in this research, and 

blending models are implemented for crossover operator. In the proposed work, five busbars typical 

test system and 362-bus Iraqi National Grid are used to demonstrate the efficiency and performance 

of the proposed method. The results show that, genetic algorithm is on-line load flow solution 

problem for small-scale power systems, but for large-scale power systems, it is recommended that 

the load flow solution using genetic algorithm is for planning studies. The main important feature of 

the purposed method is to give high accurate solution with respect to the conventional methods. 

                                                                                                         
  الخلاصة

مسألة سريان الحمل متعددة  ، تقدم طريقة مقترحة مبنية على اساس خوارزمية جينية مشفرة بالاعداد الحقيقية لحلالبحثفي هذه  
الطبيعي و الجينات ( الانتقاء)تعتبر الخوارزمية الجينية احدى طرق البحث العشوائية القائمة على تقنيات الانتخاب . الحلول

ي ، العبور و التغيار الاحيائ(الانتقاء)مع عوامل جينية كالانتخاب ( بقاء الاصلح)تجمع الخوارزمية الجينية مبادئ . الطبيعية
تم في هذا . المستخلصة من الطبيعة لتكوين تقنية متينة استخدمت بنجاح في حل مختلف مسائل البحث و ايجاد القيم المثلى( الطفرة)

لتبيان كفاءة و مدى فعالية الخوارزمية  .البحث استخدام طريقة انتخاب الامثل بالاضافة الى استخدام نماذج الخلط في عملية العبور
تبين النتائج . قدرة كهربائية قياسية منظومةمقترحة على مسائل سريان الحمل متعددة الحلول، تم تطبيق الطريقة الالجينية في حل 

كون الطريقة المقترحة ملائمة للحل اللحظي لمسائل سريان الحمل و بالتالي التطبيق العملي اثناء التشغيل لمنظومات القدرة صغيرة 
اهم . درة كبيرة الحجم، فيوصي الباحث باستخدام الطريقة المقترحة لاغراض التصميم و التخطيطأما بالنسبة لمنظومات الق. الحجم

 .خواص الطريقة المقترحة هي الحصول على نتائج و حلول لمسألة سريان الحمل بقيم عالية الدقة
 

KEYWORDS 

 Continuous Genetic Algorithm, Chromosome Crossover, Load Flow Analysis, Newton-

Raphson Method, Mutation, Multi-Objective Minimization.  
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INTRODUCTION 

With increasing computer speeds, researchers are increasingly applying artificial and computational 

intelligence techniques, especially in power system problems. These methods offer several 

advantages over traditional numerical methods. Among these techniques is that of genetic algorithm. 

Genetic algorithms (GAs) are efficient stochastic search algorithms that emulate natural phenomena. 

They have been used successfully to solve wide range of optimization problems. Because of 

existence of local optima, these algorithms offer promise in solving large-scale problems. A genetic 

algorithm mimics Darwin’s evolution process by implementing “survival of the fittest” strategy. 

Genetic algorithm solves linear and nonlinear problems by exploring all regions of the search space 

and exponentially exploiting promising areas through selection, crossover, and mutation operations. 

They have been proven to be an effective and flexible optimization tool that can find optimal or near-

optimal solutions [Talib 2007]. In this study, an improved genetic algorithm solution of the load flow 

problem is presented in order to minimize the total active and reactive power mismatches of the 

given systems, a real-coded genetic algorithm has been implemented.  

 

THE CONCEPTS OF LOAD FLOW ANALYSIS 
The load flow studies are the backbone of the design of a power system. They are the means by 

which the future operation of the system is known ahead of time. The load flow problem is one of the 

basic problems in the power system engineering, and can be expressed as a set of non-linear 

simultaneous algebraic equations, and thus it is to have multiple solutions [Woon 2004]. A load flow 

study is the determination of voltage, current, power, and power factor or reactive power at various 

points in an electrical network under existing or contemplated conditions of normal operation, so 

power flow calculations provide power flows and voltages for a specified power system subject to 

the regulating capability of generators, condensers, and tap changing under load transformers as well 

as specified net interchange between individual operating systems. This information is essential for 

the continuous evaluation of the current performance of a power system and for analyzing the 

effectiveness of alternative plans for system expansion to meet increased load demand. The continual 

expansion of the demand for electrical energy due to the growth of industries, commercial centers, 

and residential sections requires never-ending additions to existing power systems. The systems 

engineer must decide what components must be added to the system many years before they are put 

into operation and he does this by means of power flow studies. The load flow solution usually 

provides additional information, e.g. losses [Kubba 1987]. The load flow is the most frequently 

carried out study by power utilities and is required to be performed at almost all the stages of power 

system planning, optimization, operation, control, and contingency analysis. 

 

ITERATIVE NUMERICAL (LF) SOLUTION METHODS 

 

* NEWTON-RAPHSON METHOD 
At each iteration of the Newton-Raphson method, the nonlinear problem is approximated by a linear 

matrix equation (Jacobian matrix). The linearzing approximation can best be visualized in the case of 

a single-variable problem as shown in figure (1). 
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Fig. 1   Single-Variable Linear Approximation [Taylor 1967] 

 

The Newton-Raphson load flow equation are 
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The Jacobian matrix equation can be written as: 
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Using Newton-Raphson method to solve the mismatch powers equations either in polar coordinates 

with (∆V) and (∆δ) as variables or in rectangular coordinates with (∆e) and (∆f) as variables [Al-

Shakarchi 1973]. 

 

* FAST DECOUPLED LOAD FLOW METHOD 
Fast decoupled load flow method, possibly the most popular method used by utilities, is well known 

for its speed of solution, reduced memory, and reliable convergence (Nanda  1987). The algorithm is 

simpler, faster and more reliable than Newton’s method and has lower storage requirements. The fast 

decoupled load flow method is based on Newton’s load flow method with the modifications of 

neglecting the J2 and J3 Jacobian submatrices due to the weak coupling between  “P-V” and “Q-δ” 

quantities in power transmission system. Together with other approximations, the fast decoupled 

load flow equations become: 

 

  Δ
Δ

 B
V

P








                                                                                                                         

 

  VB
V

Q
Δ

Δ
 







                                                                                                                        

where 
km

km
x

B
1

   for   m≠k   and  
km km

kk
x

B


1
 

    
for    m=k                                                      

 

kmkm BB    for   m≠k   and  
km

kmkk BB


 

    
for    m=k (Stott and Alsac 1974)                            

 

GENETIC ALGORITHM 

Genetic algorithms (GAs) are adaptive methods which may be used to solve search and optimization 

problems. Over many generations, natural populations evolve according to the principles of natural 

selection and “survival of the fittest”. By mimicking this process, genetic algorithms are able to 

“evolve” solutions to real world problems, if they have been suitably encoded [Holland 1975]. 

Genetic algorithms work with a “population of individuals”, each representing a possible solution to 

a given problem. Each individual is assigned a “fitness score” according to how good a solution to 

the problem it is. The highly-fit individuals are given opportunities to “reproduce”, by “cross 

breeding” with other individuals in the population. This produces new individuals as “offspring”, 

which share some features taken from each “parent”. The least fit members of the population are less 

likely to get selected for reproduction, and so “die out”.  A whole new population of possible 

solutions is thus produced by selecting the best individuals from the current “generation”, and mating 

them to produce a new set of individuals. This new generation contains a higher proportion of the 

characteristics possessed by the good members of the previous generation. In this way, over many 

generations, good characteristics are spread throughout the population. By favouring the mating of 

the more fit individuals, the most promising areas of the search space are explored. If the genetic 

algorithm has been designed well, the population will converge to an optimal solution to the 

problem. There are some differences between genetic algorithms and traditional searching algorithms 

(such as numerical techniques). They could be summarized as follows [Younes 2006]: 
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 The algorithms work with a population of strings, searching many peaks in parallel, as 

opposed to a single point. 

 Genetic algorithms work directly with strings of characters representing the parameters set, 

not the parameters themselves. 

 Genetic algorithms use probabilistic transition rules instead of deterministic rules. 

 Genetic algorithms use objective function information instead of derivatives or other 

auxiliary knowledge (convexity, modality, continuity, differentiability). 

 Genetic algorithms have the potential to find solutions in many different areas of the search 

space simultaneously.  

 

GENETIC ALGORITHM IMPLEMENTATION 
A simple genetic algorithm is an iterative procedure, which maintains a constant size population of 

candidate solutions. During each iteration step (generation), three genetic operators (reproduction, 

crossover, and mutation) are performing to generate new populations (offspring), and the 

chromosomes of the new populations are evaluated via the value of the fitness which is related to 

cost function. Based on these genetic operators and the evaluations, the better new populations of 

candidate solutions are performed [Younes 2006]. With the above description, the three steps in 

executing the genetic algorithm operating on fixed-length character strings are as follows: 

1. Randomly create an initial population of individual fixed-length character strings. 

2. Iteratively perform the following sub steps on the population of strings until the termination 

criterion has been satisfied: 

A. Assign a fitness value to each individual in the population using the fitness measure. 

B. Create a new population of strings by applying the following three genetic operations. The 

genetic operations are applied to individual string(s) in the population chosen with a probability 

based on fitness. 

i. Reproduce an existing individual string by copying it into the new population. 

ii. Create two new strings from two existing strings by genetically recombining substrings using 

the crossover operation at a randomly chosen crossover point. 

iii. Create a new string from an existing string by randomly mutating the character at one randomly 

chosen position in the string. 

3. The string that is identified by the method of result designation (e.g. the best-so-far individual) 

is designated as the result of the genetic algorithm for the run. This result may represent a solution 

(or an approximate solution) to the problem. 

 

Now, we'll discuss briefly each step of the implementation of the genetic algorithm: 

 

- CHROMOSOME REPRESENTATION 
Genetic algorithms operate on representations of solutions to problems. Since they work with 

encoded parameters of the optimization problem, the choice of a representation form has a large 

impact on the performance. There are different ways of encoding solutions, and probably no single 

best way for all problems. The performance of genetic algorithms depends on the choice of a 

suitable representation technique. Most genetic algorithms applications use Holland’s fixed-length 

simple binary coding. This is historically the most widely used representation. Each chromosome 

is comprised of zeroes and ones, with each bit representing a gene [Abdul-Haleem 2005]. A 

conceptually simpler technique would be the real-coded representation, in which each 

chromosome vector is coded as a vector of floating point numbers of the same length as the 

solution vector. Each element was forced to be within the desired range, and the genetic operators 

were carefully designed to preserve this requirement [Michalewicz 1996]. 
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- POPULATION INITIALIZATION 
In the genetic algorithm, populations of chromosomes are created randomly by generating the 

required number of individuals using a random number generator that uniformly distributes numbers 

in the desired range. The extended random initialization is a variation whereby a number of random 

initializations are tried for each individual and the one with the best performance is chosen for the 

initial population. Other users of genetic algorithms have seeded the initial population with some 

individuals that are known to be in the vicinity of the global optimum. This approach is only 

applicable if the nature of the problem is well understood beforehand or if the genetic algorithm is 

used in conjunction with knowledge based system [Abdul-Haleem 2005]. 
  

- OBJECTIVE FUNCTION OR FITNESS FUNCTION 
The objective function is used to provide a measure of how individuals have performed in the 

problem domain. In the case of a minimization problem, the mostly fit individuals will have the 

lowest numerical value of the associated objective function. This raw measure of fitness is usually 

only used as an intermediate stage in determining the relative performance of individuals in a genetic 

algorithm. Another function is the fitness function, is normally used to transform the objective 

function value into a measure of relative fitness [Ibrahim 2005]. 

 

- REPRODUCTION 
The selection, or competition, is a stochastic process in which the chance of an individual surviving 

is proportional to its adaptation level. The adaptation is measured by the phenotype (search point, 

solution) evolution, that is, the characteristics presented by an individual in the problem environment 

(search space). The genetic algorithm, through selection, determines which individuals will go to the 

reproduction phase. There are several selection methods, where the fittest individuals from each 

generation are preferentially chosen for reproduction [Zamanan 2006]. Some of these methods are: 
a. ROULETTE WHEEL SELECTION METHOD.  

b. TOURNAMENT SELECTION METHOD. 

 

- RECOMBINATION 
Recombination produces new individuals in combining the information contained in two or more 

parents (parents-mating population). This is done by combining the variable values of the parents. 

Depending on the representation of the variables, different methods must be used. For the 

recombination of binary valued variables, the name “crossover” is established. This has mainly 

historical reasons. During the recombination of binary variables, only parts of the individuals are 

exchanged between the individuals. Depending on the number of parts, the individuals are divided 

before the exchange of variables (the number of cross points). The number of cross points 

distinguishes the methods. 

In single-point crossover, one crossover position a € [ 1, 2 , ……… , Nvar-1 ], where (Nvar) is the 

number of variables of an individual, is selected uniformly at random and the variables exchanged 

between the individuals about this point, then two new offspring are produced. 

In double-point crossover, two crossover positions are selected uniformly at random and the 

variables exchanged between the individuals between these points. Then two new offspring are 

produced. For multi-point crossover, (c) crossover positions ai € [ 1 , 2 , ……… , Nvar-1 ]; i = 1: m, 

where (Nvar) is the number of variables of an individual, are chosen at random with no duplicates and 

sorted into ascending order. Then, the variables between successive crossover points are exchanged 

between the two points to produce two new offspring. The section between the first variable and the 

first crossover point is not changed between individuals. Uniform crossover generalizes this scheme 
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to make every locus a potential crossover point. A crossover mask, the same length as the individual 

structure is created at random and the parity of the bits in the mask indicate which parent will supply 

the offspring with which bits [Pohlheim 2005]. 

 

- MUTATION 
By mutation, individuals are randomly altered. These variations (mutation steps) are mostly small. 

They will be applied to the variables of the individuals with a low probability (mutation probability 

or mutation rate). Normally, offspring are mutated after being created by recombination [Pohlheim 

2005]. In this process, randomly selected bits of randomly selected strings are changed from (0) to 

(1) and vice versa. This process occurs according to pre-specified probability. Usually, less than 5% 

of bits are changed in this process. Mutation process is used to escape from probable local optimum 

[Zamanan 2006]. 

 

- TERMINATION OF THE GENETIC ALGORITHM 
Termination criteria or convergence criteria for genetic process may be triggered by finding an 

acceptable approximate solution and bring the search to halt. The termination criteria can be one or 

more of the following criteria [Abdul-Haleem 2005]: 

a. Using diversity measure. 

b. After a specified number of generations. 

c. Finding an acceptable approximate solution. 

d. Repetition until no change in the solution. 

 

LOAD FLOW SOLUTION USING GENETIC ALGORITHM 

The binary genetic algorithm is conceived to solve many optimization problems that stump 

traditional techniques. But, what if we are attempting to solve a problem where the values of the 

variables are continuous and we want to define them to the full machine precision? In such a 

problem, each variable requires many bits to represent it. If the number of variables is large, the size 

of the chromosome is also large. Of course, ones and zeros are not the only way to represent a 

variable. One could, in principle, use any representation conceivable for encoding the variables. 

When the variables are naturally quantized, the binary genetic algorithm fits nicely. However, when 

the variables are continuous, it is more logical to represent them by floating-point numbers. In 

addition, since the binary genetic algorithm has its precision limited by the binary representation of 

variables, using floating-point numbers instead easily allows representation to the machine precision. 

This continuous genetic algorithm also has the advantage of requiring less storage than the binary 

genetic algorithm because a single floating-point number represents the variable instead of (Nbits) 

integers. The continuous genetic algorithm is inherently faster than the binary genetic algorithm, 

because the chromosomes do not have to be decoded prior to the evaluation of the cost function 

(objective function) [Haupt 2004]. 

 

COMPONENTS OF A CONTINUOUS GENETIC ALGORITHM 
 

- THE VARIABLES AND COST FUNCTION 
A cost function generates an output from a set of input variables (a chromosome). The cost function 

may be a mathematical function or an experiment. The objective is to modify the output in some 

desirable fashion by finding the appropriate values for the input variables. The goal is to solve some 

optimization problem where we search for an optimum (minimum) solution in terms of the variables 

of the problem. If the chromosome has (Nvar) variables (an N-dimensional optimization problem) 

given by (b1, b2, ………, bNvar), then the chromosome is written as an array with (1×Nvar) elements 

so that: 
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chromosome = [b1, b2, b3, ………, bNvar]                                                                                         
 

In this case, the variable values are represented as floating-point numbers. Each chromosome has a 

cost found by evaluating the cost function (f) at the variables (b1, b2, ………, bNvar). 
 

cost = f (chromosome) = f (b1, b2, ………, bNvar)                                                                            
 

Equations (10) and (11) along with applicable constraints constitute the problem to be solved [Haupt 

2004]. 

Our primary problem in this research is the continuous functions introduced below. The two cost 

functions are [Kubba 1987]: 

   
                           n 

ΔPk = Pk
sp

 – Vk ∑ Vm (Gkm cosδkm + Bkm sinδkm)                                                                            
                          m=1  

for “PV” and “PQ” busses 

                                             
                            n 

ΔQk = Qk
sp

 – Vk ∑ Vm (Gkm sinδkm – Bkm cosδkm)                                                                         
                           m=1  

for “PQ” busses only 

 

Where     δkm = δk – δm, and 

(ΔPk) is the mismatch active power at bus (k) and (ΔQk) is the mismatch reactive power at bus (k). 

(Vk, Vm, δk, δm) are the voltage magnitude and angle at busses (k) and (m) respectively, which are 

the variables of the two cost functions. 

 

* VARIABLE ENCODIND, PRECISION, AND BOUNDS 
Here, the difference between binary and continuous genetic algorithms is shown. It is no longer 

needed to consider how many bits are necessary to represent accurately a value. Instead, (V) and (δ) 

have continuous values that are limited between appropriate bounds (which are in our problem, 0.95 

≤ V ≤ 1.05 and -5˚ ≤ δ ≤ 5˚ for “5 busbars” typical test system and 0.9≤V≤1.1, -20
o 

≤δ≤20
o 

for Iraqi 

National Grid). Although the values are continuous, a digital computer represents numbers by a finite 

number of bits. When we refer to the continuous genetic algorithm, it means that the computer uses 

its internal precision and roundoff to define the precision of the value. Now, the algorithm is limited 

in precision to the roundoff error of the computer [Haupt 2004]. 

 

* INITIAL POPULATION 
The genetic algorithm starts with a group of chromosomes known as the population. We define an 

initial population of (Nind) chromosomes. A matrix represents the population with each row in the 

matrix being a (1×Nvar) array (chromosome) of continuous values. Given an initial population of 

(Nind) chromosomes, the full matrix of (Nind×Nvar) random values is generated. 

All variables are normalized to have values between (0) and (1), the range of a uniform random 

number generator. The values of a variable are “unnormalized” in the cost function. If the range of 

values is between (blo) and (bhi), then the unnormalized values are given by: 
 

b = (bhi – blo) bnorm + blo                                                                                                                    
 

where: 
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bhi : highest number in the variable range. 

blo : lowest number in the variable range. 

bnorm : normalized value of variable.   

This society of chromosomes is not a democracy: the individual chromosomes are not all created 

equal. Each one’s worth is assessed by the cost function. So at this point, the chromosomes are 

passed to the cost function for evaluation [Haupt 2004]. 

 

- NATURAL SELECTION 
Survival of the fittest translates into discarding the chromosomes with the highest cost. First, the 

(Nind) costs and associated chromosomes are ranked from lowest cost to highest cost. Then, only the 

best are selected to continue, while the rest are deleted. The selection rate, (Xrate), is the fraction of 

(Nind) that survives for the next step of mating. The number of chromosomes that are kept each 

generation is: 
 

Nkeep = Xrate . Nind                                                                                                                             

 

Natural selection occurs each generation or iteration of the algorithm. Of the (Nind) chromosomes, 

only the top (Nkeep) survive for mating, and the bottom (Nind – Nkeep) are discarded to make room for 

the new offspring. Deciding how many chromosomes to keep is somewhat arbitrary. Letting only a 

few chromosomes survive to the next generation limits the available genes in the offspring. Keeping 

too many chromosomes allows bad performers a chance to contribute their traits to the next 

generation. We often keep 50% (Xrate=0.5) in the natural selection process [Haupt 2004]. 
 

- SELECTION FOR MATING 
In this process, two chromosomes are selected from the mating pool of (Nkeep) chromosomes to 

produce two new offspring. Pairing takes place in the mating population until (Nind – Nkeep) offspring 

are born to replace the discarded chromosomes. Pairing chromosomes in a genetic algorithm can be 

as interesting and varied as pairing in an animal species. We’ll look at a variety of selection methods.  
a. Weighted random pairing (roulette-wheel): which is divided into: 

i. Rank weighting. 

ii. Cost weighting. 

b. Tournament selection. 

Each of the parent selection schemes results in a different set of parents. As such, the composition of 

the next generation is different for each selection scheme. Roulette-wheel and tournament selection 

are standard for most genetic algorithms. It is very difficult to give advice on which selection scheme 

works best. In our problem, we follow the rank-weighting roulette-wheel and tournament parent 

selection procedures [Haupt 2004]. 
 

- RECOMBINATION 
As for the binary algorithm, two parents are chosen, and the offspring are some combination of these 

parents. Many different approaches have been tried for crossing over in continuous genetic 

algorithm. The simplest methods choose one or more points in the chromosome to mark as the 

crossover points. Then the variables between these points are merely swapped between the two 

parents. The problem with real-valued crossover methods is that no new information is introduced: 

each continuous value that was randomly initiated in the initial population is propagated to the next 

generation, only in different combinations. Although this strategy works fine for binary 

representations, there is now a continuum of values, and in this continuum we are merely 

interchanging two data points. These approaches totally rely on mutation to introduce new genetic 
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material. The blending models remedy this problem by finding ways to combine variable values 

from the two parents into new variable values in the offspring.  

In our problem, we want to find a way to closely mimic the advantages of the binary genetic 

algorithm scheme. It begins by randomly selecting a variable in the first pair of parents to be the 

crossover point: 
 

c = roundup {random*Nvar}                                                                                                             

 

We’ll let 
 

parent  1 = [bm1, bm2, ……, bmc, ……, bmNvar] 

parent  2 = [bd1, bd2, ……, bdc, ……, bdNvar] 
 

Where (m) and (d) subscripts discriminate between the mom and dad parent. Then, the selected 

variables are combined to form new variables that will appear in the children: 
 

bnew1 = bmc – β (bmc – bdc) 

bnew2 = bdc + β (bmc – bdc) 
 

Where β is a random value between 0 and 1. The final step is to complete the crossover with the rest 

of the chromosome as in binary genetic algorithm: 
 

offspring  1 = [bm1, bm2, ……, bnew1, ……, bdNvar] 

offspring  2 = [bd1, bd2, ……, bnew2, ……, bmNvar]   

              

If the first variable of the chromosomes is selected, then only the variables to the right of the selected 

variable are swapped. If the last variable of the chromosomes is selected, then only the variables to 

the left of the selected variable are swapped. This method does not allow offspring variables outside 

the bounds set by the parent unless β > 1 [Haupt 2004]. 

 

*  MUTATION 
Random mutations alter a certain percentage of the genes in the list of chromosomes. We can 

sometimes find our method working too well. If care is not taken, the genetic algorithm can converge 

too quickly into one region of the cost surface. If this area is in the region of the global minimum, 

that is good. However, some functions, such as the one we are modeling, have many local minima. If 

nothing is done to solve this tendency to converge quickly, it may end up in a local rather than a 

global minimum. To avoid this problem of overly fast convergence (premature convergence), the 

routine is forced to explore other areas of the cost surface by randomly introducing changes, or 

mutations, in some of the variables. The basic method of mutation is not much more complicated for 

the continuous genetic algorithm. Do we also allow mutations on the best solutions? Generally not. 

They are designated as elite solutions destined to propagate unchanged. Such elitism is very common 

in genetic algorithms. Why throw away a perfectly good answer? The equation of mutation used here 

is [Haupt 2004]: 
 

bmut = (bhi – blo) bnorm + blo       ; bmut: variable under mutation.   
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MULTIPLE OBJECTIVE OPTIMIZATION (MOO) 

In many applications, the cost function has multiple, often times, conflicting objectives. The most 

important approach to (MOO) are: weighted cost functions [Haupt 2004].  
               N 

cost = ∑ wi fi                                                                                                                                        
              i=1  

 

Where: 
 

fi is the cost function (i). 
                                                N 

wi is the weighting factor and  ∑ wi = 1. 
                                                               i=1  

The problem with this method is determining appropriate values of (wi). Different weights produce different 

costs for the same (fi). This approach requires assumptions on the relative worth of the cost functions prior to 

running the genetic algorithm. Implementing this multiple objective optimization approach in a genetic 

algorithm only requires modifying the cost function to fit the form of eq. (17) and does not require any 

modification to the genetic algorithm [Haupt 2004]. Thus, 

 

cost = w f1 + (1-w) f2                                                                                                                           

 

This approach is adopted in this research for its simplicity, easy of programming and gives us the required 

accuracy. Here, (w) is chosen to be (0.5). 
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Fig. (2) Flowchart of a Continuous Genetic Algorithm 

IMPLEMENTATION AND RESULTS 
 

The proposed continuous (real-coded) genetic algorithm is demonstrated on two test systems namely, 

5-buses test system [Stagg 1968] which lines data and buses data are present in appendix. The 

Generate initial population 

Find cost for each chromosome 

Select mates 

Mating and crossover 

Mutation 

Find cost for each chromosome 

End  
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second system is the 362-bus Iraqi National Grid (ING) with 599 branches. The software is 

implemented by using MATLAB version 7 with Pentium 4, 2 GHz CPU, and 2 Gbyte RAM. The 

input data are the nodal admittance matrix, buses data (specified values), and the slack voltage                                                        

1. Five Buses Typical Test System Results 

Table (1) shows the results of the application of the genetic algorithm to “5 bus-bars” typical test 

system to find the active and reactive power mismatches described in eqs. (12) and (13) for  accuracy 

of 0.001 p.u (0.1 MW/MVAR) and the voltage magnitude and phase angle associated with each 

busbar. Because of the stochastic nature of the genetic algorithm process, each independent run will 

probably produce a different number of generations and consequently the computation time and the 

best amongst these should be chosen. The best of the (10) implementation runs are shown in this 

table. The base quantities are 132 KV and 100 MVA. 

 

Table (2) Load Flow Solution for “5 busbars” Typical Test System with an Accuracy of (0.001) 

           

Bus Active power Reactive power Voltage Voltage No. of 

No. mismatch(p.u) mismatch(p.u) magnitude(p.u) angle(deg.) generations 

1 slack slack 1.06 0.00 ـــــ 

2 0.00018139 0.00076184 1.0333 -0.2856 37 

3 0.00094649 0.00028622 1.0349 -2.5267 27 

4 0.00096724 0.0004207 1.0014 -1.4736 26 

5 0.00091083 0.00096267 0.9786 -1.5042 35 

Total Computational Time:   0.516 sec. 

    

Figures below, the dotted curves show the evolution process of the active and reactive power 

mismatches (cost function) versus the number of generations and the solid curves show the mean 

cost of the individuals versus the number of generations at each busbar of the “5 busbars” typical 

test system with an accuracy of (0.001). In the figures and due to the stochastic nature of the genetic 

algorithm, we note that each busbar requires different number of generations to reach the required 

accuracy (0.001 p.u.). 
 

              
                               Evolution Process at Busbar 2                         Evolution Process at Busbar 3 
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                              Evolution Process at Busbar 4                     Evolution Process at Busbar 5                                                                                                                    

 

In the table (2) shown, the active and reactive line flows (power flows) for the “5 busbars” typical 

test system which consists of (7) lines are calculated, the calculation is done for an accuracy of the 

active and reactive power mismatches of (0.001). 

 

Table (2) Active and Reactive Power Flows for the “5 busbars” Typical Test System with an 

Accuracy of (0.001) 

 

Line Line Active power Reactive power 

No. Term flow (MW) flow (MVAR) 

1 1─2 22.3473 -39.7436 

2 1─3 21.5944 -4.3321 

3 2─3 20.7693 7.3872 

4 2─4 16.2575 -13.0168 

5 2─5 17.1768 -63.7962 

6 3─4 -22.2970 -123.5797 

7 4─5 -3.0479 -21.5199 

 

* Iraqi National Grid Load Flow Solution Results:                                                                                     
The 362-bus (ING) consists of 30-generator bus and 332-load bus with 599 branches [Al-Bakri 

1994]. Table (3) illustrates the load flow solution for Iraqi National Grid using the proposed 

continuous (real-coded) Genetic Algorithm with a power tolerance (minimum active and reactive 

power mismatches) of 0.001 p.u. with base quantities of 132 KV and 100 MVA. Also, the number of 

iterations (generations) for each bus are tabulated. Due to the huge table, only the load flow solution 

results of 96 bus are tabulated in this paper. 
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Table (3) Load Flow Solution for “IRAQI NATIONAL GRID” with an Accuracy of (0.001) 

Bus Active power 
 Reactive 

power 
Voltage Voltage No. of 

 No. mismatch (p.u) 
mismatch 

(p.u) 
magnitude (p.u) angle (p.u) generations 

1 slack slack 1.04 0 ـــــ 

2 0.0005 PV 1 18.3805 262 

3 0.00021334 PV 1 2.8233 57 

4 0.0008081 PV 1 -9.5400 3191 

5 0.00011245 PV 1 13.6445 521 

6 0.00043106 PV 1 -11.8520 34 

7 0.0018487 PV 1 4.1875 5000 

8 0.00066843 PV 1 7.5529 244 

9 0.00023882 PV 1 12.3150 30 

10 0.00016648 PV 1 4.0006 134 

11 0.0003391 PV 1 -19.7704 884 

12 0.00045458 PV 1 -6.3530 266 

13 0.00013682 PV 1 4.5221 424 

14 0.00058912 PV 1 -6.9794 76 

15 0.00054176 PV 1 -8.1968 353 

16 0.00021063 PV 1 13.5898 42 

17 0.00078201 PV 1 4.5766 39 

18 2.4477*10
-6

 PV 1 11.1094 415 

19 0.00090163 PV 1 7.0672 47 

20 0.00089409 PV 1 -7.0275 9 

21 0.00037127 PV 1 -3.2876 159 

22 0.00014522 PV 1 -10.7986 24 

23 0.00093387 PV 1 2.0421 216 

24 0.00084462 PV 1 9.0268 472 

25 0.00038532 PV 1 2.9669 17 

26 0.00023586 PV 1 3.8338 527 

27 7.2047*10
-6

 PV 1 -6.8666 88 

28 0.00011686 PV 1 0.0252 50 

29 0.00026843 PV  1 7.3612 333 

30 0.0005791 PV 1 9.1833 1342 
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Bus Active power 
 Reactive 

power 
Voltage Voltage No. of 

 No. mismatch (p.u) 
mismatch 

(p.u) 
magnitude (p.u) angle (p.u) generations 

31 0.0003 0.0002 1.02247 12.3782 36 

32 0.00031048 0.00013264 1.03356 -12.5347 57 

33 0.00076127 0.00088425 0.915482 -18.8922 747 

34 0.00048097 7*10
-5

 0.981021 -3.14901 60 

35 0.00082233 0.00019414 0.909731 -7.5778 927 

36 0.0007 0.0004 0.999866 0.40992 54 

37 0.0009483 0.00059979 0.99142 -0.108361 3 

38 0.00072258 2.708*10
-5

 1.02766 2.41241 393 

39 0.00010822 3.1427*10
-5

 0.911085 8.90456 21 

40 7.3767*10
-5

 8.2306*10
-5

 0.978972 7.68687 21 

41 3.9217*10
-5

 0.00014068 0.914069 -2.09315 30 

42 0.00056231 0.00034232 0.931974 10.2677 117 

43 0.00015186 0.00084486 0.916778 9.06423 69 

44 0.00093275 0.00060546 0.935108 -13.2829 18 

45 0.00085845 3.9338*10
-5

 1.00216 -8.97243 12 

46 2.0578*10
-5

 0.00022034 0.935224 -7.08481 54 

47 0.0005849 0.00025364 0.96548 -8.2154 120 

48 0.0006 0.0009 0.96959 0.0359168 9 

49 0.00046407 0.00068482 1.01733 8.11071 36 

50 0.00064014 0.00040881 0.906882 16.9887 3 

51 0.00081139 0.00073374 1.01725 12.1607 15 

52 0.00063582 0.00036833 0.999238 0.015595 12 

53 0.00064585 0.00073222 0.924709 7.0377 54 

54 0.00039461 0.00031144 1.02049 4.97693 54 

55 0.00050197 0.00051873 0.912678 18.5084 312 

56 0.0006757 0.00066047 1.02961 13.4216 57 

57 0.00048624 0.00046999 1.01989 13.0202 165 

58 0.00026657 0.00078447 1.03154 -4.56727 54 

59 0.00020212 0.00087574 0.998382 -0.133244 135 

60 0.00099704 0.00040061 0.969316 -9.13924 336 

61 0.0002 0.0005 1.09633 -3.3891 60 
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62 0.00062866 0.00048481 1.01166 3.0274 69 

63 3.4536*10
-6

 0.00050729 1.00118 11.0695 144 

 

Bus Active power 
 Reactive 

power 
Voltage Voltage No. of 

 No. mismatch (p.u) 
mismatch 

(p.u) 
magnitude (p.u) angle (p.u) generations 

64 0.00052304 6.1774*10
-5

 0.926323 0.126932 30 

65 0.00039148 0.00027503 0.959269 -3.93418 234 

66 0.0003338 0.00048038 0.939048 5.45821 24 

67 0.00045369 0.00074015 1.03691 8.05995 12 

68 0.00077681 0.00053799 0.962027 -0.556099 186 

69 0.00027057 0.00061177 1.0712 5.11859 144 

70 0.00040663 0.00054506 0.909477 -13.4194 18 

71 0.00015602 0.00084029 1.0151 4.6136 60 

72 0.00085314 4.4098*10
-5

 0.9505 -9.4481 54 

73 0.00082757 0.00056498 0.9587 14.8084 132 

74 6.6466*10
-5

 0.00028761 1.0205 -0.5232 24 

75 0.00045213 0.00089712 0.9106 16.254 450 

76 0.00026312 0.00099152 1.0235 -0.4562 60 

77 0.0003 0.0002 0.9989 -15.9269 1137 

78 0.00060173 0.00081968 0.9069 9.3835 102 

79 0.00097288 0.00093161 0.9115 -9.6373 399 

80 0.00030775 0.00026214 1.0172 -11.3539 567 

81 0.00028197 0.0003666 0.9567 10.958 72 

82 0.0001 0.0007 0.9009 -9.6128 1215 

83 0.00017501 0.00031678 0.9538 0.5662 36 

84 0.00060463 0.00055344 0.9389 12.4227 51 

85 0.00049479 0.00025939 0.9917 -17.9393 69 

86 0.00074739 6.1917*10
-5

 0.9976 11.2733 54 

87 0.00073692 0.00062359 1.0459 3.6541 90 

88 0.0002 0 0.9265 7.1323 69 

89 8.0049*10
-5

 0.00089968 1.0154 -0.9266 33 

90 0.00051316 0.00093613 1.0007 -15.3443 189 

91 3.1397*10
-5

 0.00072166 1.0017 18.7953 138 

92 0.00062835 0.00047428 0.9977 12.0889 27 
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93 4.7755*10
-5

 0.00047299 1.0034 11.0409 60 

94 0.00031952 0.00085516 0.9855 1.9537 135 

95 0.00028333 0.00050642 1.0368 18.9362 60 

96 0.0008504 0.00096063 1.0821 -15.1242 96 

 

- CONCLUSION 
                  The proposed method (Real-Coded Genetic Algorithm) presented in this paper can be 

implemented on-line for small and medium-scale power systems load flow solution and it can be 

used for planning study for large-scale systems. The proposed method has reliable convergence and 

high accuracy of solution. Whereas the traditional numerical techniques (Gauss-Seidel, Newton-

Raphson, Fast decoupled,…etc.) use the characteristics of the problem to determine the next 

sampling point (e.g. gradient, linearity and continuity), genetic algorithm makes no such 

assumptions. Instead, the next sampled point is determined based on stochastic sampling or decision 

rules rather than on a set of deterministic decision rules. Also, whereas the traditional numerical 

techniques mentioned above use a single point at a time to search the problem space, genetic 

algorithm uses a population of candidate solutions for solving the problem. Thus, reducing the 

possibility of ending at a local minima.                                                                          Although 

binary-coded genetic algorithm has been successfully applied to a wide range of optimization 

problems, they suffer from disadvantage when applied to the real-world problems involving a large 

number of variables. Thus, we use in our problem the real-coded genetic algorithm, where all 

decision variables (unknowns) are expressed as real numbers. Explicit conversion to binary does not 

take place. A reduction of computational effort is an obvious advantage of a real-coded genetic 

algorithm. Another advantage is that, an absolute precision is now attainable by making it possible to 

overcome the crucial decision of how many bits are needed to represent potential solutions. Blending 

models are used in the crossover operator to remedy the problem of the crossover in the real-coded 

genetic algorithm which is, no new information is introduced: each continuous value that was 

randomly initiated in the initial population is propagated to the next generation, only in different 

combinations. Thus, the blending methods combine variable values from the two parents into new 

variable values in the offspring. At the same time, these methods do not allow offspring variables 

outside the bounds set by the parent unless β > 1, where β is a random number on the interval [0,1]. 

Finally, solving the load flow problems by genetic algorithm gives high accurate results with respect 

to the conventional methods, since load flow study is multiple solutions. 
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LIST OF SYMBOLS AND ABBREVIATIONS 

 

b : Any variable in the chromosome. 

B : Imaginary part of admittance. 

c : Crossover point. 

e :  Real part of bus voltage.  

E : Complex bus voltage. 

f : Imaginary part of bus voltage. 

G : Real part of admittance. 

GA : Genetic Algorithm. 

LF : Load Flow. 

n : Number of busses in the power system.   

N : Number of objective functions. 

Nvar : Number of variables in an individual. 

Nkeep : Number of chromosomes that are kept each generation. 

Nind : Number of individuals in the population. 

p : Iteration index. 

p.u : Per unit. 

PQ : Load busbars. 

PV : Generator busbars. 

sp : Specified value. 

V : Bus voltage magnitude.  

w : Weighting factor. 

Xrate : Selection rate. 

Ykk : Self admittance of bus (k). 

Ykm : Branch admittance between busses (k) and (m). 

ΔP : Active power mismatch. 

ΔQ : Reactive power mismatch. 

δ : Bus voltage phase angle.  

β : Random number on the interval [0,1]. 

http://www.sps.utm/
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APPENDIX I 

Nodal admittance matrix elements for “5 busbars” typical test system, per-unit quantity = 100 

MVA, and 132 KV. The following data are all in (p.u), and buses data. 

From Bus To Bus G (p.u) B (p.u) 

1 1 6.25 -18.695 

1 2 -5 15 

1 3 -1.25 3.75 

1 4 0 0 

1 5 0 0 

2 2 10.83334 -23.415 

2 3 -1.66667 5 

2 4 -1.66667 5 

2 5 -2.5 7.5 

3 3 12.91667 -38.695 

3 4 -10 30 

3 5 0 0 

4 4 12.91667 -38.695 

4 5 -1.25 3.75 

5 5 3.75 -11.21 

 

Bus Specified active Specified reactive Voltage 

No. power (p.u) power (p.u) (p.u) 

1 slack slack 1.06+j0 

 ـــــ 0.2 0.2 2

 ـــــ 0.15- 0.45- 3

 ـــــ 0.05- 0.4- 4

 ـــــ 0.1- 0.6- 5

 

  


