
Journal of Engineering Volume 15 December 2009 Number 4

 4364

DEVELOPMENT OF A LAN SIMULATION TOOL

BASED ON WINDOWS ENVIRONMENT

Hamid M. Ali, Nidhal Ezzat and Wisam F. Kadhim
University of Baghdad

ABSTRACT

The Internet’s rapid growth has spurred the development of new protocols and algorithms to meet

changing operational requirements such as security, multicast transport, mobile networking, policy

management, and quality of service support. Development and evaluation of these operational tools

requires answering many design questions. This work proposes a computer network simulation

program, devoted for wired LAN systems. The simulator would be able to work under Microsoft

Windows NT platforms, also it has the potential to provide an emulation environment which should

be suitable for testing protocols above the TCP layer under the Windows NT platform supported

network layers, and offering scalability by running the simulator under distributed network system.

KEYWORDS

Network Simulators, Modeling.

 الخلاصة
أدى التنامي السريع للإنترنيت إلى تشابك عملية التطوير لبروتوكولات وخوارزميات جديدة لتحقق المتطلبات العملية المتغيرة، مثل

، (Policy Management)، إدارة اسلوب العمل (Mobile Networks)شبكات الأجهزة المتنقلة ، (Security)أمن المعلومات
 .تطوير وتقييم هذه الأدوات التشغيلية تتطلب الإجابة عن العديد من التساؤلات التصميمية(. Quality of Service)جودة الخدمة

نظام المحاكاة المقترح يكون قادر . السلكية(LAN)قترح نظام محاكاة لشبكات الحاسبات، مخصص لمنظومات الـلبحث ياهذا
كذلك له القابلية على توفير محيط والذي يكون مناسباً لفحص ، (Microsoft Windows NT)على العمل ضمن نظام التشغيل

 Windows)التي توفرها أنظمة التشغيل (network layers)باستخدام طبقات الشبكات (TCP layer)البروتوكولات ما فوق

NT platform) نظام المحاكاة المقترح المقياسية ، و يوفر(Scalability) أنظمة شبكات موزعة عن طريق تشغيل المحاكاة في
(Distributed Network System.)

INTRODUCTION

The network simulators exist in many forms and work on different criterion of computer networks,

some of these simulators can combine the simulation of more than one network system, and others

can be specifically created to simulate a particular network protocol. This fact has brought into the

surface some drawbacks in the simulation level of the current simulators, in reference to the concept

of the common simulator [BEF00] that can work on most of the network systems and protocols.

The upside of this divergence in functionality is realistic marketing; some vendors’ simulators are

optimized for managing LANs (Local Area Networks) and others for WANs (Wide Area

Networks), some merely provide network diagramming and limited simulation while others

perform more sophisticated global network modeling. The downside is that no one simulator can

perform all the required functionality, where if a particular network is needed to be modeled,

H. M. Ali Development Of A Lan Simulation Tool

N.Ezzat Based On Windows Environment

W.F. Kadhim

 4365

analyzed, and simulated, then multiple simulators are required, besides the notable differences

between them that imply the same job [Jim98].

Most of the simulators can simulate all of the network elements, but some of the packages fall short.

Where some can’t simulate disks, chips or controllers, some can’t mirror frame queuing

performance or media speed, and others can’t simulate device-level details such as hardware

architectures. With the exception of some simulators, most of the simulators are not considered to

be system-level simulation devices. That means they are limited in their ability to determine how

the performance of the end stations will impact the performance of the network [Jim98].

Another important issue to consider is that most of the network simulators do not support the

emulation feature; that is linking the simulated network to an actual real network, thus extending

the study criterion on the performance and behavior.

- OBJECTIVE OF THE WORK

In this work, the modeling of the basic network components used (clients, servers, hubs, and

routers) was accomplished using Windows NT resources and the proposed network simulator had a

simulation engine capable of: adding and removing of network components during runtime,

configuring network components’ parameters, and performance results calculation. The proposed

network simulator also has a timed events management to perform the required simulation

scenarios, like: server crash, router failure, or link sudden disconnection, where these events are

user generated according to specified time during the simulation run.

The work included a validation test to the proposed network simulator by running a file transfer

application (as an example) on a simulated network from one hand and a similar real network on the

other hand all under the same timed events, then comparing the simulation results.

- MODELING OF NETWORK ELEMENTS

The network resources of Windows NT Platform were used to model each network element, where

they were based on some of the network architecture functionality of Windows. The network

protocols of Windows (like TCP/IP) were used as the protocol layers in the simulation engine,

instead of programming prototypes of these protocols (like other simulators do, especially those

programmed under UNIX), this would make the protocol modeling approaches much more to

reality, since the actual protocol would be used in the simulation process.

The modeling of end-systems, like clients and servers, were based on creating a network resource

by adding virtual network adapters, so that Windows network architecture would assign a set of

protocol layers on top of each virtual network adapter, which would lead to an accessible network

resource representing either a client or a server.

The modeling of the intermediate-systems, like hubs and routers, were based on assigning

connections’ lists and routing tables that would be used in packet filters within the protocol layers

in the Windows network architecture, so that each connection’s list would represent a hub, and each

routing table would represent a router.

- WINDOWS NT NETWORK ARCHITECTURE

Microsoft
®
 Windows

®
 2000 and later operating systems use a network architecture based on the

seven-layer networking model developed by the ISO (International Standards Organization).

Introduced in 1978, the ISO OSI (Open Systems Interconnection) Reference model describes

networking as: "a series of protocol layers with a specific set of functions allocated to each layer.

Each layer offers specific services to higher layers while shielding these layers from the details of

how the services are implemented. A well-defined interface between each pair of adjacent layers

Journal of Engineering Volume 15 December 2009 Number 4

 4366

defines the services offered by the lower layer to the higher one and how those services are

accessed" [Mic01a]

Figure 1 represents a model of Windows 2000 network architecture. In the figure, components that

are on the same horizontal level provide similar functionality. The top layer of the diagram is where

user applications reside. In order to communicate with other networked computers, additional

software and hardware support is needed. Each layer below the applications and services layer

provides services that are necessary to create packets of data, arrange for their delivery, and send

them across the physical media to another computer.

TCP/IP IPX/SPX NetBEUI AppleTalk IrDA
DLC

Native

ATM IP over

ATM

ATM

LANE

Winsock API Telephony API Redirectors Servers NetBIOS API

RPC DCOM Named Pipes Mail Slots

Applications and Services

NDIS Wrapper

Connectionless

Miniports

Connection-Oreinted

Miniports

TDI Boundary

Layer

NDIS Boundary

Layer

HAL

ATM Adapter
Ethernet, Token Ring,

FDDI Adapter

Figure 1: Windows 2000 Network Architecture Layers [Mic01a].

The Windows Network Architecture provides packet filtering techniques that can be used to filter

and process inbound and outbound TCP/IP transport protocol data. There are two types of these

techniques: user mode techniques and kernel mode techniques. Figure 2 shows some of these

techniques.

User mode is the processor mode in which applications run. User mode processes have access only

to their own address space and must use established interfaces to obtain other system services. This

protects the operating system and improves its performance [Mic01b].

Kernel mode is the processor mode, in which operating system code (such as system services and

device drivers) runs. It is a highly privileged mode of operation where the code has direct access to

all memory, including the address spaces of all user-mode processes and applications, and to

hardware. Processes running in kernel mode have access to advanced CPU features for I/O and

memory management [Mic01b].

H. M. Ali Development Of A Lan Simulation Tool

N.Ezzat Based On Windows Environment

W.F. Kadhim

 4367

Windows Sockets

16-bits 1.1

Application

Windows Sockets

32-bits 1.1

Application

Windows Sockets

32-bits 2.0

Application

Winsock.dll Wsock32.dll

Ws2_32.dll
Mswsock.dll

Wshelp.dll

Layered Service Provider

Helper DLLs

Wshtcpip.dll

Wshnetbs.dll

Wshirda.dll

Wshatm.dll

Wshisn.dll

Wshisotp.dll

Sfmwshat.dll

Name Space DLLs

Nwprovau.dll

Rnr20.dll

Winrnr.dll

Msafd.dll

Windows

Sockets 1.1

API

Windows

Sockets 2.0

API

Windows

Sockets 2.0

SPI

Afd.sys Other TDI Client Drivers

TDI Filter

over TCP

TDI Filter

over UDP

Tcpip.sys

TCP UDP

Firewall Hook

Reassembly Reassembly

IP Routing

Packet Filter

NDIS Wrapper

NDIS Hooking Driver

NDIS Intermediate

NDIS Miniport NDIS Miniport

Netcard Netcard

Transport Data

Interface

TDI

NDIS API

used by

protocols

Microsoft

TCP/IP

Driver

U
s
e

r
M

o
d

e
K

e
rn

e
l
M

o
d

e
Filtered

NDIS API

NDIS API

Figure 2: Some TCP/IP Traffic Processing Techniques[Mic01b].

- PROPOSED NETWORK SIMULATOR

In order to meet some of the intended simulation requirement of the network research [BHH99],

this work focused on the design of a network simulator based on the following specification:

 Simulation criterion that focuses on the impact of changes in network behavior on the

application layer and user mode applications.

 Use of Microsoft
®
 Windows

®
 NT Platform to model the network elements, where

Windows network resources are used to model the targeted network elements, like clients,

servers, hubs, and routers.

 The network simulator models and functions would be included as DLLs (Dynamic Linked

Libraries), so it can be used under any supported platform and with wide variety of network

applications, thus leading to increase in level of abstraction.

 Use of flexible graphical user interface that would improve the interaction with the network

simulator, and make easy access to its functions.

 Applying a simulation scenario based on network components’ failures and recovers on

specified times by the user to simulated real world events on networks, like router failure or

server crash.

 Provide the potential for supporting full emulation capabilities, where the simulated model

can be accessed directly form an outside real network and vice versa, so that all the traffic

can be monitored and data analyzed.

 Capability of simulating large scale networks depending on the full emulation potential

support, using parallel operation of multiple simulators running on different machines

connected via a real network, thus reducing both time and resources.

Journal of Engineering Volume 15 December 2009 Number 4

 4368

Simulator Design

A. Clients & Servers Models

In order to model the clients and servers, it should be pointed out that each client and each

server represents a system of applications running on a networking protocols stack that are on

top of one NIC at minimum. Therefore, to create a model of a client (or a server), an NIC

should be added to the system, so that the Windows device management would add the

appropriate protocol layers and drivers to make this NIC functional and the applications to

work on it.

Since it’s not convenient to add physical NICs to the system to represent the clients and

servers, another method can be applied instead, which is through the use of virtual NICs.

These virtual NICs are merely driver entries at the miniport diver layer or intermediate

miniport driver layer, where there is no actual NIC bound to it. Windows network architecture

provides two types of these virtual NIC drivers: Microsoft Loopback Adapter, and NDIS

MUX Intermediate driver.

There is no documentation about the Microsoft loopback adapter, except the installation

method and the general use of it. Microsoft provided this loopback adapter as a dummy NIC

that can be used for troubleshooting the network configurations and settings, another

advantage of Microsoft loopback adapter is achieved through installing Active Directory on a

Domain Controller that doesn't have a network adapter. Normally, this is not a possibility as

active directory requires that a network adapter be installed first. If it is needed to install

active directory on a computer without a network card, such as a test or a lab environment,

Microsoft loopback adapter can be installed instead of physically installing a network adapter.

The MUX intermediate miniport driver is an NDIS 5 driver that demonstrates the operation of

an N:1 or 1:N MUX driver, i.e. one which creates multiple virtual network devices on top of a

single lower adapter. Protocols bind to these virtual adapters as if they are real adapters

[Mic01a]. The number of virtual miniports exposed by a MUX intermediate driver can be

different than the number of lower physical adapters that are bound to the driver. A MUX

intermediate driver exposes virtual miniports in a 1:N, N:1, or even an M:N relationship with

underlying adapters. This results in complicated internal bindings and data paths [Mic01a].

In an N:1 configuration, a MUX intermediate driver can expose many virtual miniports for a

single physical adapter below. Overlying protocols bind to these virtual miniports of the MUX

intermediate driver in the same way that they bind to non-virtual miniports. The MUX

intermediate driver handles requests and sends that are submitted to the driver for specific

connections at each virtual miniport. The driver repackages and transfers these requests and

sends down to the NDIS miniport driver for the bound physical adapter. Figure 3 illustrates an

N:1 MUX intermediate driver configuration [Mic01a].

H. M. Ali Development Of A Lan Simulation Tool

N.Ezzat Based On Windows Environment

W.F. Kadhim

 4369

Open Adapter x

Virtual Adapter x

Open Adapter 1

Virtual Adapter y

Adapter 1

NIC Device

External Bindings

External Bindings

Protocol

Miniport edge

Protocol edge

Miniport

N:1 MUX

Intermediate

Driver
Internal

Bindings

Open Adapter y

Figure 3: NDIS N:1 MUX intermediate driver configuration[Mic01a].

B. Hubs & Routers Models

Since there are no real NICs, there exist no actual physical connection between the simulated

clients and servers; also it would mean there is no physical routing operation can be applied.

So in order to model the physical connections, hubs and routing operation, it would be useful

to use the packet filtering techniques provided by Windows network architecture.

The most useful technique to use for modeling the physical connections, hubs, and routers is

the Firewall-Hook driver. This fact comes from the following aspects (refer to figure 2 for

details):

 The Windows network architecture TCP/IP routes all the internal traffic at the protocol

driver layer (TCP/IP driver), which means there no traffic is going down to the NDIS layers

below.

 All the configured network adapters that exist in the system, whether they were actual or

virtual, are treated as being all connected together, even if they have different IP addresses.

 The firewall-hook driver is located within the TCP/IP driver on top of the IP routing

functions.

 It’s a kernel mode packet filter that performs its operation on all the packets traffic of every

application running on the system. Yet, it supports the interaction of the user on its

operation, which makes it user mode configurable.

Therefore, the modeling of the physical connections, hubs, and routers can be made through

modeling only the lists of connections and routing tables. And theses lists and tables are

passed to the firewall-hook driver to perform the connections and routing operation, provided

that the routing is only static.

The filter hook driver only allows one filter function installed in the system. If one application

already uses this functionality, the targeted application doesn’t work. With firewall-hook

driver, this problem has no existence, all filter functions can be installed as required. Each

filter function has a priority assigned, so the system will call one function after another (in

priority order) until a function returns “DROP PACKET”. If all functions return “ALLOW

PACKET”, the packet will be allowed. This can be thought as a chain of functions, this chain

is broken when one of them returns “DROP PACKET”, and the order of each function in the

chain is given by its priority value [Jes04].

Journal of Engineering Volume 15 December 2009 Number 4

 4370

Figure 4 represents an example of the firewall-hook driver operation, with the following

processes:

 A packet is received at the host, IP driver has the list of filter functions ordered by priority

(the function with more priority is Filter Function 1).

 First, the IP driver passes the packet to the highest priority filter function and waits for the

return value.

 Filter Function 1 returns “ALLOW PACKET”.

 Because Filter Function 1 allows the packet, IP driver passes the packets to the next filter

function: Filter Function 2.

 In this case, Filter Function 2 returns “DROP PACKET”. So, IP driver drops the packet and

does not continue calling next filter function.

Network Packet Network PacketIP Driver

Filter Function 1 Filter Function 2 Filter Function 3

(1)

(2)
(5)

(3)
(4)

(6) IP Driver drop

the packet

Figure 4: An Example of Firewall-hook Driver Operation[Jes04].

Another problem that can be found with filter hook drivers is that for sent packets, the user

can’t access packet content data. However, all data can be accessed with a firewall-hook

driver. The structure of data received in a firewall-hook filter function is more complex that

the one received in filter hook driver. It’s more similar to the structure of packets that can be

found in an NDIS driver, where the total packet is composed by a chain of buffers. As filter

hook driver, firewall-hook driver is only a kernel mode driver used to install a callback

function (but firewall-hook driver installs a callback in IP driver). In fact, the process to install

a firewall-hook driver is similar to the one used to install a filter hook driver [Jes04].

C. Simulation Engine

The simulator engine consists of three major functions: adding the modeled network

components (Clients, Servers, Hubs, and Routers) to the system during runtime, configuration

of network parameters of each installed component, and calculating the performance results of

the simulated network. The design of the simulator engine would also consider the support for

full emulation, such that the simulator would be beneficial at all levels of usage.

After the modeled network components are added in the system as designed to form the

simulated network, it’s required to configure the network parameters of each added

component, like IP address, subnet mask, default gateway, and DNS (Domain Name Service)

server. Microsoft Windows provides a set of classes and functions that can be used for this

purpose, these classes and functions are found in WMI (Windows Management

Instrumentation).

WMI is a component of the Microsoft Windows operating system and is the Microsoft

implementation if the WBEM (Web-Based Enterprise Management), which is an industry

initiative to develop a standard technology for accessing management information in an

enterprise environment. WMI uses the CIM (Common Information Model) industry standard

H. M. Ali Development Of A Lan Simulation Tool

N.Ezzat Based On Windows Environment

W.F. Kadhim

 4371

to represent systems, applications, networks, devices, and other managed components. WMI

can be used to automate administrative tasks in an enterprise environment [Mic01a].

When activating the designed network in simulation mode, it’s important to calculate the

performance of the network, like bandwidth, percentage of sent and received packets, and

each protocol status. The mechanism by which Windows collects performance data on various

system resources is the performance counter. Windows contains a pre-defined set of

performance counters with which the user can interact; some of these are found on all

Windows 2000 systems and some are custom to specific applications and are found only on

certain systems [Mic01a].

D. Events & Time Management

The events and time management in the proposed network simulator would include user

generated scenarios that would run in a timed-event sequence. The user would specify the

type of action to be taken and the corresponding time for the action to occur. These actions

can take the form of servers’ crashes, routers failures, and links sudden disconnections, so that

the user can measure the degree of interaction between the network nodes and explore the

vulnerable points in order to avoid them.

This type of management can be achieved through the use of a time ordered list or table that

would be referenced on a time bases in respect to a simulation timer, where at every time tick

the table would be referenced to check whether the current simulation time matches one of the

events time. At that point, if a match found, the events and time manager would execute the

event using WMI functions to disable a certain virtual adapter that models a client or a server,

or remove a set of filtering rules that represent a hub or a router.

Each events table entry would contain the following information to represent an action:

 Time of the event, which is referenced to the simulator timer.

 Network node to be disabled, that indicates whether a client, server, hub, or a router to be

crashed.

 Duration of the action, where it sets the time for which the action would take from failure to

recovery.

System Architecture

The simulator system architecture is divided into two main sections (or layers): Simulation

Platform (VNetSimPlatform), and Application Layer (VNetSimApplication). The reasons

behind such architecture are:

 Provide transparency of the kernel mode used resources from the application layer that is

used by the user.

 Make the simulation platform as stand alone set of resources, which makes it easier for

future development to upgrade the functions within the platform or the application layer

without affecting the other.

Figure 5, shows the general system architecture of the network simulator.

Journal of Engineering Volume 15 December 2009 Number 4

 4372

VNetSimApplication

VNetSimPlatform

Windows Kernal

Application

Layer

Simulation

Platform

Figure 5: Simulator General System Architecture.

E. Simulation Platform (VNetSimPlatform)

This layer is considered as the kernel mode layer of the simulator, it provides the functions

that use windows resources to perform the modeling of each network component (such as

Clients, Servers, Routers, and Hubs) and manage these resources to appear as objects to the

upper application layer. The simulation platform consists of a layered set of DLLs (Dynamic

Linked Libraries); each one handles certain functions or models a set of network components.

Figure 6 shows the components of the simulation platform.

VNetSimConfig.DLL

VNetSimAdapter.DLLVNetSimFWHook.DLL

VNetSimHost.DLLVNetSimNetwork.DLL

VAdapterNetConfigFWHookControl

FWHookDrv.SYS

Windows Kernel

Functions and

Resources

HostArrayList HostNetElementArrayList NetElement

Figure 6: Components of Simulation Platform.

The simulation platform uses a collection of programming languages to perform its functions,

where at the lower layers conventional C language was used with drivers (such as

FWHookDrv.SYS), also the C++ language was used with the DLLs that operate with

Windows system calls and functions (such as those used in VNetSimAdapter.DLL and

VNetSimFWHook.DLL). At the upper layers, C# language was used with the DLLs that work

as objects of the modeled network components (such as VNetSimHost.DLL and

VNetSimNetwork.DLL), as well as the DLLs working as interfaces between the object DLLs

and the kernel mode DLLs (such as VNetSimConfig.DLL).

The reason for such variety in programming languages is that at every level of the simulation

platform there are certain needs that each programming language can provide better than the

others. In the case of drives, commonly conventional C language can be used in order to

compile and build the driver. As for the DLLs that operate on Windows resources and kernel

functions, the C++ language is known to be a very efficient and strong tool to work with

Windows resources and supports their requirements from pointers, complex data structures,

H. M. Ali Development Of A Lan Simulation Tool

N.Ezzat Based On Windows Environment

W.F. Kadhim

 4373

etc. Whereas C# language support for pointers and complex data structures is considered to be

unsafe code by the complier.

The C# language is easier to deal with than C++ in regard to the reduce in complexity and the

compilation features provided by the Dot Net environment, also in aspects of developing the

graphical user interface, which makes the C# more convenient to use at upper layers that is

used by the application layer as well as to hide the complexity of the underlying functions and

resources [TWA02].

F. Application Layer (VNetSimApplication)

The application layer performs most of the management functions and operations performed

by the network simulator, where it can be considered as the simulator kernel. The application

layer consists of four main blocks of functions, as shown in figure 7, each block is responsible

for certain set of functions.

Network Components Management
Simulation Events &

Time Control

Application Graphical User Interface

Simulation Statistics

Generator

Main Form Design Form

Client Server Router Hub

Figure 7: Block Diagram of the Application Layer.

 Application Graphical User Interface

This block represents the graphical user interface forms that would appear to the user. It

handles the operations and calling functions associated with each graphical object, such as

menus and toolbars, and pass the control to the corresponding block to perform the required

functions. The application graphical user interface contains two classes: main form class, and

design form class.

The main form class is a windows form class that represents the main window of the graphical

user interface. It holds the main menu, the main toolbar and it works as a container for the

design form. The design from class is also a windows form class that works as the document

where the users draw the design of the network to be simulated by using network components

icons found in the main form toolbar.

 Network Components Management

This block holds the graphical and functional classes that represent the network components,

such as Clients, Servers, Hubs, and Routers. The main function of the network components

management block is to provide a transformation between the application layer space objects

into the simulation platform space objects so as to keep control over the array lists of objects

at the two spaces.

For example, if the user adds a client to the design form, a client object is added to the

application layer space; hence, it is added to the clients’ array list along with its configuration

parameters. On the other hand, the network components management block would make a

transformation of the client object from the application layer space into the simulation

platform space by adding a host object to it, so it is added also to the hosts’ array list along

with the client’s configuration parameters. This step would add a loopback adapter to the

Journal of Engineering Volume 15 December 2009 Number 4

 4374

system to represent that client object and the adapter’s configuration is set according to the

network parameters of the client object.

 Simulation Events & Time Control

This block contains a single class which is called Simulation class. It contains a timer object

to provide the necessary timing for the simulation runtime process. The class also contains an

array list that works as a timed-events table, so it can hold the type of events to be activated

during the simulation run in a timely manner.

 Simulation Statistics Generator

This block is responsible for generating the statistics report of the simulation run, where it

contains instances of the performance counters built in the firewall hook driver, which would

provide the data required by the user to analyze the performance of the simulated network

under specific events.

* IMPLEMENTATION AND PERFORMANCE

The network simulator was implemented mostly in Microsoft .Net C# language, except for some

parts of the simulation platform, where it can operate on Windows NT platforms (Windows 2000

Server, Windows 2000 Professional, Windows XP Home Edition, Windows XP Professional

Edition, and Windows 2003 Server).

The network simulator was deployed under Pentium 4 with Windows XP SP2 and a validation test

was implemented on the proposed network simulator by running a file transfer application (as an

example) on a simulated network (shown in Figure 8) from one hand and a similar real network on

the other hand all under the same timed events listed below:

 Client 1 performs a download operation from the file server at early start of the simulation

process, during that operation the file server crashes for 2 seconds then recovers.

 After several seconds, Client 3 performs another download operation from the file server,

during that operation the network hub experience a power failure for 5 seconds then

recovers.

 Client 2 performs an upload operation to the file server to update some data, during that

operation client 2 experiences a system halt for 5 seconds then recovers.

 Finally, client 3 performs a download operation from the file server, but this time client 3

experiences a system halt for 5 seconds then recovers.

By comparing the simulation results, the validation test results (Figure 9) showed an acceptable

tolerance with slight difference that comes form the several factors like: the variable processing

conditions of the operating systems where the application was running on, the tolerance of

simulation and modeling of the proposed network, and accuracy of timed events when applied at

both simulated and real networks.

H. M. Ali Development Of A Lan Simulation Tool

N.Ezzat Based On Windows Environment

W.F. Kadhim

 4375

Figure 8: Network Topology that the Sample Application would be tested on.

From To
Simulated

Bytes/sec
Real Bytes/Sec

Device IP Address Device IP Address Sent Received Sent Received

Client 1

Client 1

Client 1

Client 1

192.168.10.1

192.168.10.1

192.168.10.1

192.168.10.1

Server

Server

Server

Server

192.168.10.10

192.168.10.10

192.168.10.10

192.168.10.10

302

231

133

213

1512

1345

0

342

300

250

150

225

1550

1350

3

350

Client 3

Client 3

Client 3

Client 3

192.168.10.3

192.168.10.3

192.168.10.3

192.168.10.3

Server

Server

Server

Server

192.168.10.10

192.168.10.10

192.168.10.10

192.168.10.10

312

462

12

21

383

1234

0

23

315

460

15

30

300

1300

7

30

Client 2

Client 2

Client 2

Client 2

192.168.10.2

192.168.10.2

192.168.10.2

192.168.10.2

Server

Server

Server

Server

192.168.10.10

192.168.10.10

192.168.10.10

192.168.10.10

123

1351

0

12

462

235

125

152

130

1400

5

15

475

235

130

155

Client 3

Client 3

Client 3

Client 3

192.168.10.3

192.168.10.3

192.168.10.3

192.168.10.3

Server

Server

Server

Server

192.168.10.10

192.168.10.10

192.168.10.10

192.168.10.10

342

43

9

12

351

1523

231

521

350

50

10

15

350

1550

235

525

Figure 9: Network Statistics resulted from running the Sample Application.

* CONCLUSION AND FUTURE WORK

The network resources of Windows NT platform can be used to model each network element,

where they can be based on some of the network architecture functionality of Windows.

The modeling of end-systems, like clients and servers, can be based on creating a network resource

by adding virtual network adapters, so that Windows network architecture would assign a set of

protocol layers on top of each virtual network adapter, which would lead to an accessible network

resource representing either a client or a server.

The modeling of intermediate-systems, like hubs and routers, can be based on assigning

connections’ lists and routing tables that would be used in packet filters within the protocol layers

Journal of Engineering Volume 15 December 2009 Number 4

 4376

in the Windows network architecture, so that each connection’s list would represent a hub, and each

routing table would represent a router.

It was found that using timed events table for events management is the best way to make user

defined simulation events, where the user is free to set any type of events to occur at a specific time

during simulation run, these types of events can take the form of: server crash, router failure, or link

sudden disconnection. Those user-generated events would help in measuring the degree of

interaction between network nodes, and explore the vulnerable points in network application

development in order to avoid them.

The proposed network simulator has the potential to continue the research in the following topics of

network simulation:

 Use of Mux intermediate driver to model the end-system network components instead of

Microsoft loopback adapter, and modify the driver source code to support more user

interaction in its operation, like embedding the routing and hub connections within the Mux

driver.

 Develop new virtual drivers that would model wireless LANs, and ATM NICs, that could be

used to expand the criterion of protocols the network simulator would support and simulate.

 Develop the application layer of the simulator to support more functionality regarding the

scenario generation of events and time management functions, also to provide sniffing and

more advanced performance counters and measures to be useful in the analysis of the

simulated network.

REFERENCES

 [BEF00] Lee Breslau, Deborah Estrin, Kevin Fall, and Sally Floyed, “Advances in

Network Simulation”, IEEE Computer, Vol. 33, No. 5, p. 5967,

http://citeseer.ist.psu.edu/bresl au00advances.htm, 2000.

 [BHH99] Sandeep Bajaj, Padma Haldar, Mark Handley, and Ahmed Helmy,

“Improving Simulation for Network Research”, Technical Report 99-702, University of

Southern California, Los Angeles, http://citeseer.ist.psu.edu/bajaj99improving.html, March

1999.

 [Jes04] Jesús O.,“An Adventure: How to Implement a Firewall-Hook Driver”, Code Project,

Article available at: http://www.codeproject.com/internet/FwHookDrv.asp?df=100&

forumid=121826&exp=0&select= 960283, 2004.

 [Jim98] Duffy Jim, “Simulation Tools are as Varied as LANS They Model”, Article

available at:

http://www.findarticles.com/p/articles/mi_qa3649/is_199802/ai_n8790436.html, 1998.

 [Mic01a] Microsoft Corporation, Microsoft Windows XP Driver Development Kit,

"Network Drivers", 2001.

 [Mic01b] Microsoft Corporation, Microsoft Development Network, Windows NT

Workstation 4.0 Resource Kit, "Kernel Mode and User Mode", April 2001.

http://citeseer.ist.psu.edu/bresl%20au00advances.htm
http://citeseer.ist.psu.edu/bajaj99improving.html
http://www.codeproject.com/internet/
http://www.findarticles.com/p/articles/mi_qa3649/

H. M. Ali Development Of A Lan Simulation Tool

N.Ezzat Based On Windows Environment

W.F. Kadhim

 4377

 [TWA02] Adrian Turtschi, Jason Werry, Joseph Albahari, and Greg Hack, “C#.Net

Web Developer’s Guide”, Syngress Publishing, Inc., 2002.

ABBREVIATIONS

ATM Asynchronous Transfer Mode

CIM Common Information Model

DLL Dynamic Linked Library

DNS Domain Name Service

ISO International Standards Organization

LAN Local Area Networks

NDIS Network Driver Interface Specification

NIC Network Interface Card

OSI Open Systems Interconnection

TCP/IP Transmission Control Protocol/Internetwork Protocol

WAN Wide Area Networks

WBEM Web-Based Enterprise Management

WMI Windows Management Instrumentation

