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ABSRACT

The paper presents mainly the dynamic response of an angle ply composite laminated plates
subjected to thermo-mechanical loading. The response are analyzed by analytically using
Newmark direct integration method with Navier solution, numerically by ANSYS. The
experimental investigation is to fabricate the laminates and to find mechanical and thermal
properties of glass-polyester such as longitudinal, transverse young modulus, shear modulus,
longitudinal and transverse thermal expansion. Present of temperature could increase dynamic
response of plate also depending on lamination angle, type of mechanical load and the value of
temperature.
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1. INTRODUCTION

During the last decades, needs for composite materials consist of two or more types of materials
mixed together homogenously have appeared to produce desirable properties , the constituents
are combined at a macroscopic level, one constituent is called the reinforcing phase called fiber
and the one in which is embedded is called the matrix. Reddy J.N.]

The analysis of structural vibration is necessary in order to calculate the natural frequencies of a
structure, and the response to the expected excitation. In this way it can be determined whether a
particular structure will fulfil its intended function and, in addition, the results of the dynamic
loadings acting on a structure can be predicted, such as the dynamic stresses, fatigue life and
noise levels. Ref. [Beards C.E]

Many researches had studied free vibration analysis and vibration of plate under mechanical or
thermal or thermo-mechanical loading.

Chorng-Fuh Liu and Chih-Hsing Huang,1996 performed a vibration analysis of laminated
composite plates subjected to temperature change. The first order shear deformation theory of a
plate is employed. The resulting finite element formulation leads to general nonlinear and
coupled simulation equations and calculate the frequencies of vibration of a symmetric cross-ply
plate. Hui-Shen Shen, et.al, 2003, studied the dynamic response of laminated plates subjected
to thermo-mechanical loading and resting on a two-parameter elastic foundation. The
formulation is based on higher order shear deformable plate theory and includes the thermal
effect. Effects of foundation stiffness, thickness ratio, and temperature change on the dynamic
response are discussed. Kullasup P. et al., 2010, analysed free vibration of symmetrically
laminated composite plates with various boundary conditions by Kantorovich method. The beam
function is used as an initial trial function in the repeated calculation, which is employed to
calculate the natural frequency. Suresh K. J. et al., 2011, developed an analytical procedure is
to evaluate the free vibration characteristics of laminated composite plates based on higher order
shear deformation with zig-zag function. Slope discontinuities improved by Zig-zag function at
the interfaces of laminated composite plates. The solutions are obtained using Navier’s method.
Junaid Kameran Ahmed et al., 2013, presented a static and dynamic analysis of Graphite
/Epoxy composite plates. In this work the behavior of laminated composite plates under
transverse loading using an eight-node diso-parametric quadratic element based on First Order
Shear Deformation Theory was studied,. Pushpendra k. kushwahal and jyoti vimal, 2014, the
natural frequencies and mode shapes are compared for different boundary condition.
Comparisons are made with the result for thin and thick composite laminated plate. Numerical
results have been computed for the effect of number of layers, thickness ratio of plate, different
boundary conditions, different aspect ratio, and different angle of fiber orientation of laminated
composite plate.

The point of originality of the present work is how to derive the analytical solution of dynamic
response for composite laminated plates by classical laminated plate theory for the first time
under thermo-mechanical loading, by applied different type of loading on the symmetric and
anti- symmetric angle ply composite laminated plates using Newmark direct integration method
with Navier solution. Thermal and mechanical properties for composite plate made from (glass-
polyester) with fiber volume fraction (0.3) are determined experimentally.

Also Finite element coded by ANSYS14.0 used to find natural frequency of composite laminate
plate.
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2. ANALYTICAL SOLUTION (CLASSICAL LAMINATE PLATE THEORY)

2.1 Displacement

Classical lamination theory (CLPT) based on the Kirchhoff hypothesis based on assuming the
straight line perpendicular to the mid surface before deformation remains straight after
deformation which means neglecting shear strains and transverse normal strain and stress in the
analysis of laminated composite plates. Ref.[ Reddy J.N.]

aWO

u(x,y, t)=u,(x,y,t) e (1. a)
v(x,y,t)=v,(x,y,t) —Z% (1. b)
w(x,y, )=w,(x,y) (1.0

6W0 aWO

Whereg ' 3y

denote the rotations about y and x axis respectively.

u,,v, and w, denote the displacement components along (x, y, z) directions respectively of a
point on the mid-plane (i.c....z=0).

2.2 Stress and Strain
The total strains can be written as follows

ou azwo
(0) MWy [ T2 — auAT
XX Exx Exx aax > a‘zxz
(0) @ Yo _ Wo
{::/YY} =1 &y +z* €y (= dy “yyAT +z ay? (23.)
Xy (0) D dug , v GEATN
Yxy Yxy oy + i Axy AT —2 % Txdy

0 0 0 . 1 1 1
Where (g§x>,g§y),y,§y>) are the membrane strains and (e,gx),ef,y),y,gy)) are the flexural
(bending) strains, known as the curvatures a,, , ay, and a,,are thermal expansion coefficients

defined

Uyy = @11(cos0)? + a,,(sin §)? (2.b)
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ayy = a11(sin 6)* + a,,(cos H)? (2.c)

205y = 2(a11 — azz) sinf cos 6 (2.d)

ai1and a,, Are longitudinal and transverse thermal expansions respectively. And 0 is the
lamination angle.

The change in temperature defined
AT=applied temperature— reference temperature (2.e)

Where reference temperature T,.r = 25C° [Reddy J.N.]. The transformed stress-strain relations
of an orthotropic lamina in a plane state of stress are; for Q;; see [Reddy J.N.]

Oyyt =|Q1z Qa2 Q| § Evy—ayyAT
o < < <
xy Q6 Q26 Qesly

Oxx 611 Q 12 @16 Exx — axxAT
) B
k

yxy— 205yAT

The resultant of inplane force Nxx ,Nyy and Nxy and moments Mxx, Myy and Mxy acting on a
laminate can be obtained from integration of the stress in each layer or lamina through the
laminate thickness. Knowing the stressed in terms of the displacements, the inplane force
resultants Nxx, Nyy, Nxy, Mxx, Myy and Mxy can be obtained.

The inplane force resultants are defined as

NXX GXX
Z
Nyy r=¥R_1 kak+1 {ny} dz (4.a)
ny Oxy K

Where o, , 0y, and o, are normal and shear stress.
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Nx Ay A Ags g’(f)y Bi1 Biz Bis Exx Nix
Nyy ¢ =[A12 Az A26] ery ¢+ (B2 Baa Bas|{&y(— (N (4.6)
Nyy Ae Aze Ass Yoy Big Bz Bee Vay Nyy
M, Oxx
Myy t=3=1 [, {Uyy} zdz (5.2)
Zk
Mxy O'xy k
EO 1 Mt
My Bi1 Biz Bie xy D1y Dy Dig] (&xx xx
Myy = BlZ BZZ BZ6 g_gy + D12 DZZ D26 831’3/ - M3t/y (5b)
Myy) 1Bis Bas Besl (10, ) D16 D26 Decl\yg, My

Here, A;; are the extensional stiffness, B;; the coupling stiffness, and D;; the bending stiffness.

A=Y =1Qi D (Zrsr — 2k) (6.2)
Bu_z 2=1QiD k(% k41 — 2%1) (6.b)
DU_3 2=1(Qi)k(Z3 k41 — 2°k) (6.c)

And Where{N'} and {M*} are thermal stress and bending results, respectively

Nix, Mix Q11 Q12 Qi ( %xx
NJEY' - 1f h/2 Q12 Q22 Q26 { ] (1,2) ATdz (6.d)
ny» Mt Q16 Q26 Qo) \“%ry

2.3 Equation of Motion

The equations of motion are obtained by setting the coefficient of Su, , dv, , dw, to zero
separately
5



Number 11 Volume 21 November - 2015 Journal of Engineering

ONyx , ONxy _ 9%u 23w

ax ay bz —hosa (7.2)
any aNyy _ azv aBW
ox T dy =1Io at2 L dyat? (7.0)
02 My 0*Myy | 0°Myy o~ 3w | & 0*w | o~ 9Pw . 9w ( a3u a%v )
oxz T 2 dxdy + dy? + Nyx ozt Nyy y2 + Ny axdy lo oz T 11 \Grar dyat2
L (55 +=22) — gy, 0) (7.0)
2\oxzaez T ayzacz) T 1Y '
Where

— V'N Zk
Uo 1. 1;) = Bk f, p® (1, 2,2%)dz (8)

p® being the material density of k™ layer and q(x,y.t) is a dynamic force subjected on a system.
Nyx, Ny, andN,,, equal to zero because there were no buckling.

These equations of motion (7 a-c) can be expressed in terms of displacements (Su, , vy , Swy)
by substituting the forces results from Egs. (4 ,5,8) into Eq. (7.a) to(7.c) and get partial
differential equations,

€11 C12 C13](Uo my; 0 0 7(to 0 ff

C1z2 C22 Ca3[{Voi+| O mp 0 [{To;=40¢+<fF (9.8)

€13 C23 C33){wp 0 0 ma3l q fi
Cll = AlldJZC + 2A16dxdy + A66d32/ (9b)
C12 = A16d3 + (Arz + Agg)dxdy + Aped; (9.0)
c13 = —[B11d3 + 3Bygd2d, + (Byy + 2Bes)dyd5 + Beds| (9.d)

6
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C22 = A66d926 + 2A26dxdy + Azzd)z, (96)
€23 = —[B16d3 + (Byy + 2Beg)d2d,, + 3B,6d,d% + Byyd3] (Chy)

€33 = —Dyqd} — 4Ds¢d3dy — 2(D1y + 2Dgg)d2d% — 4Dyedy — Dapdy — (A11@xx + A1ty +
24160y )ATAZ — (A16tex + AzeQyy + 4Ag6 ey )ATdydy — (Ao + Agatyy +

24260y )ATd2 (9.9)
ONL, ~ ON%

fi ==+ (9.h)

¢ _ ON%, % .

t _ _ [9*Mix ML, 9*Mi, .
f3 - ( ax2 +2 dyodx T ay? (91)
And the coefficients m;; is defined by
mqyq = —Iodg yMy3 = Ildxd?:mzz = —Iod?F My3 = 11dydt2 yM33 = Iod? - Izd?(dazc + dgzz)

(9.k)

To solve equation (9-a) used Navier solution with state space approach.

For angle-ply rectangular laminates with edges y=0 and y=b simply supported and the
other two edges x=0 and x=a simply supported. Assume the following representation of the
displacement [Reddy .J.N.]

Ug (X, y,t) = Yime1 2im=1 Umn (1) Sinax cospy (10.a)
vo(x, ¥, t) = Y1 Yomm=1 Vimn (t) cosax sinfy (10.b)
Wo(X, V,t) = Ymeq D=1 Winn(t) sinax singy (10.c)
Where: a="2 g=""

a a
m = No. of the mode in x-direction (m=1,2,3)
n = No. of the mode in y-direction (n=1,2,3)
Unmn s Vi » Winn are coefficients to be determined; and

AT (x,y,t)=Y =1 Ymn=1 Tmn (t) sin ax sin By (11.a)
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Ton () = :—b foa fob AT (x,y,t) sin ax sin Sy dxdyBy (11.b)

substituting Egs. (10 and 11) in partial differential Eg. (9.a) and the result

€11 €12 i3] (Umn my; 0 0 7 (ilmn 0 aN},
€12 € Co3|{Vmmp+| 0 My, 0 Upne =14 0 ¢+ BN2Z.,

C13 €23 €331 Wmn 0 0 Mgzl Wy Qmn —2af Mg,
(12.a)
Where
€11 = (1‘111C¥2 + Aesﬁz)
(12.b)
¢12 = (A2 + Age)af
(12.c)
613 = —(3B16a® + Bysf2)P (12.d)
a2 = (Ass® + A %) (12.¢)
Cy3 = —(B1a® + 3By (12.1)
¢33 = Dyja* + 2(Dy, + 2Dgg)a®B* + D,y f* (12.9)
My = Myy = Iy
(12.h)
T?l33 = (IO + Iz(az + ﬁz)) (12')

The dynamic load subjected on the system,

q(x,y,t)=Yn=1 Xm=1Qmn(x,y, t) sinax sin fy
(13.a)

40
an (Xv y’t) = _b_([
(13.b)

o'—.m

q(x, y). sm— smTﬁydx dy. f (t)

Qun (X, ¥,8) =0 (X, y). f (1) (13.c)

Many types of q(x, y) loading can be considered as [Muhannad L. S. Al-Waily,2004]:
1. Uniformly distributed load g,at area of plate (a*b). By substituting the load into Eq. (13.b),
gives:
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16

G(x,y) = ——q (14.0)
2. Point load P, at x=a; and y=b;. By substituting the load into Eq.(13.b), gives:

— 4 . mma; . Nmby
X =—P —Sin——
G(x,y) = —Pysin ™= sin ™

(14.b)
3. Sinusoidal distributed loading, q(x,y) = qosin"—sin=>. By substituting the load into Eq.
(13.b), gives:
q(x,y) = qo
(14.c)
4. Uniformly distributed load g, at central area (A*B). By substituting the load into Eq. (13.b),
gives:
q(x,y) =
(14.d)

And many types of f(t) can be considered as [Khdeir A. A. & Reddy J. N,1988]
1. Sine pulse loading

16

nmm?

. mmA . nnB
qoSIN——SIN——
2a 2b

) = {sin’;—f 0<t< tl} (15.4)
0 t>t

2. Step pulse loading

f©) = { é 0 Sttftfl } (15.b)

3. Ramp pulse loading

f@©) = { t/otl 0=! fltl } (15.0)

2.4 Solution of Dynamic Equilibrium Equations
The equations of equilibrium governing the linear dynamic response of a system can be written
as the following formula

MAU +KSU =R
(16)
Where:
¢11 G2 i3 M11 0 0 . Umn
KS=|¢15 Cpy  Cos MA=| 0 m,, O ] U= {vmn}
é13 623 633 0 0 ﬁ\l33 Wmn
Umn 0 1
UZ{vmn] R:{O}+ x
Wmn q 3t
MA and KS: are the mass and stiffness matrices.
R: is the vector of externally applied loads.

UandU: arethe displacement and acceleration vectors

9



Number 11 Volume 21 November - 2015 Journal of Engineering

In the Newmark direct integration method, the first time derivative {U} and the solution {U} are

approximated at (n+1) time step (i.e. at time t = th.; = (n+1) At by the following expression
[Rao V. Dukkipati,2010].

U =0, +la-a)0}, +ali),. ] ar

17

Ul =0} s D] (37 )+ 210} oy

(18)

Where:

o AndB :are parameters that control the accuracy and stability of the scheme, and the
subscript n indicates that the solution evaluated at nt" time step (i.e. at time, t = t,,). The choice

@ =05 and B =025 j5s known to give an unconditionally stable Scheme (average acceleration
method), [Rao V. Dukkipati,2010].

3. NUMERICAL ANALYSIS

3.1 Element Selection and Modeling

An element called shell281 as shown in Fig.1 is selected which is suitable for analyzing thin to
moderately thick shell structures. The element has eight nodes with six degrees of freedom at
each node: translations in the X, y, and z axes, and rotations about the x, y, and z axes. It may be
used for layered applications for modeling composite shells. It is include the effects of
transverse shear deformation. The accuracy in modeling composite shells is governed by the
first order shear deformation theory. The shell section allows for layered shell definition, options
are available for specifying the thickness, material, orientation through the thickness of the
layers. But to insert the temperature effect in calculations must be to adding degree of freedom
(T). Then, the degrees of freedom change from (6 to7) in each node.

3.2 Verification Case Studies

In the present study, Series of preselected cases are modeled to verify the accuracy of the
method of analysis. The case study discussed here for dynamic response without temperature
change is a comparison of the present work with the numerical solution of [Reddy .J.N, 1982]
for a laminated plate Fig. 2,
Close comparison between the two sets of results is evident, for a/h=5(maximum central non
dimension deflection of present work for CLPT with Newmark direct integration method is=
23.5(error 2.174%), for present F.E.M ANSYS maximum central non dimension deflection
i5=23.65(error 2.8%). while for above reference = 23.
For thermo-mechanical transient response of simply supported laminated plates, the curves of
central deflection as a function of time for a (0/90/0) symmetric cross-ply laminated plate
subjected to suddenly applied dynamic loading are plotted and compared in Fig. 3 ,with [Hui-
Shen Shen ,2003]. Close comparison between the two sets of results is evident, (maximum
central deflection of present work for CLPT with Newmark direct integration method = 2.35 cm

10
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(error2.08%), and for present F.E.M. ANSYS program is= 2.2375cm (error6.77%), while for
above reference = 2.4 cm. Fig.3.

4. EXPERIMENTAL WORK

In the present work, three- purposes were investigated. First, to outline the general steps to
design and fabricate the rectangular test models from fiber (E-glass) and polyester resin to form
laminate composite materials. Second, the manufactured models are then used to evaluate the
mechanical properties (E;, E,, G1,) Wwith temperature change of unidirectional composite
material. Third, evaluate coefficient of thermal expansion (CTE) of the composite plate.

4.1 Thermo-Mechanical Analyzer

Thermo-mechanical Analysis (TMA) determines dimensional changes of solids and liquids
materials as a function of temperature and/or time under a defined mechanical force.

Irrespective of the selected type of deformation (expansion, compression, penetration, tension or
bending), every change of length in the sample is communicated to a highly sensitive inductive
displacement transducer (LVDT) via a push rod and transformed into a digital signal. The push
rod and corresponding sample holders of fused silica or aluminum oxide can be quickly and
easily interchanged to optimize the system to the respective application. Figs.4 and 5.

The dimension of sample is (5*20*4) mm. the thermal properties which obtain from this test
shown in Table 1.

5. RESULTS AND DISCUSSION

The present study focused mainly on the dynamic response behavior of composite
laminated plates subjected to mechanical and thermo-mechanical loads of finite duration
uniform (step, sine and ramp) and sinusoidal (step, sine and ramp) on the top surface of the plate
for three cases of temperature (without temperature effect, T=50°C and T=100°C) . The step
loading q(x,y,t) = q(x,y), ramp loading q(x,y,t) =q(x,y)t/tl and  sinusoid
loadingq(x,y,t) = q(x,y)sinmt/t1 . For uniform distributed load g(x,y) :m:fnz and for

sinusoidal distributed g(x, y) = q, . The amplitude of force is g, = 100N/mm? and the time of
load applied on plate ist; =0.05sec. The dynamic response of central deflection of composite
plate discussed for different parameters such as load condition, lamination angle , temperature
change , symmetric or anti symmetric angle ply for simply supported composite plate
analytically by CLPT with Newmark direct integration method and numerical result by ANSYS.

(5-1) Effect of Load Condition

Figs. 6 to 9 represent the variation of central transverse deflection with time (dynamic
response) for four layer anti-symmetric and symmetric cross-ply and angle ply simply supported
laminated plates under sinusoidal (P(x,y) = qo sin(® x/a)sin(* y/b)) and
uniform(P(x,y) = qo ) variation loading, (step q(x,y,t) = P(x,y) ,ramp loading q(x,y,t) =
P(x,y) t/t1 and sinusoid loading q(x,y,t)=P(x,y) sinat/t; ) for qo=100N/m? ,t;=0.05 sec )
without any temperature change solved analytically by CLPT with Newmark direct integration
method and (F.E.M) by ANSYS program. The deflection due to step loading higher in
magnitude than the other loads with percentage reach to 91.96%, 97.4% from sine and ramp
load, respectively, because the step load subjected suddenly with constant value with the time.

11
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Very good verification between CLPT with Newmark and FEM by ANSYS maximum error
i512.9%. Maximum response for step load always occurs in the time of applying load (i.e. in the
time less than t, after that the response became in negative sign and positive sign alternatively.
for ramp load, the response increasing linearly with time until it reached to t, at this point the
maximum response occurs, then the response became in negative sign and positive sign
alternatively. For sine load the response behavior have the sine shape and the maximum
response at t, /2.

(5-2) Effect of Temperature Change with Varies Load Condition

Figs. 10 to 13 show the numerical result by ANSY'S for dynamic response of central deflection
of symmetric and anti-symmetric angle ply simply supported composite plate step uniform and
step sinusoidal load and different condition of temperature effect i.e. (T=25°C, T=50°C,
T=100°C). The deflection increases with percentage reaches to (58.47%) when temperature
became 50°C and when the temperature reach to 100°C the response increases with higher
percentage reaches to (200%) with respect to response without change in temperature for
laminated plates for step uniform dynamic load.

The reason behind that is there where two loads (mechanical and thermal) each load causes the
deflections (thermal and mechanical deflections) summation is the deflection of plate under
thermo-mechanical loading. When the temperature increases the deflection increased with high
percentage. The uniform load is higher than sinusoidal load for all load condition.

(5-3) Effect of Lamination Angle

Fig. 14 shows the effect of angle (0) on central deflection for four layer symmetric
angle-ply laminated plates, simply supported, subjected to sine uniform loading with applied
temperature equal to 50°C, solved analytically by Newmark and numerical by ANSYS .From
the results, the central deflection of laminated plate decreases with increasing the angle (6) from
10 to 40 with percentage reach to 24.8%. Then increase the central deflection when 6 increase
from 40 to70 with percentage reaches to 9.2%. The maximum deflection with time for each case
is when lamination angle is 10.

6. CONCLUSION
This study considers the vibration analysis of symmetric and anti-symmetric angle-ply
composite laminate plate. From the present study, the following conclusions can be made:
1-The Young and shear modulus decrease when temperature increases with high percentages
reach t096.3% when temperature changes from (20 °C to 100°C) for longitudinal young
modulus, for transverse young modulus is96.53% and for shear modulus is 91.1%. The
longitudinal and transverse coefficient of thermal expansion also decrease when temperature
increase with percentage 80% and73.7% respectively for the same temperature.
2- The response due to step loading higher in magnitude than the other loads with percentage
reach to 91.96%, 97.4% from sine and ramp load, respectively.

12
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3- The response increase with maximum percentage reaches to (58.47%) when temperature
became 50°C and when the temperature reach to 100°C the response increase with higher
percentage reaches to (200%) with respect to response without change in temperature

4- It was seen that the different fiber orientation angles affected on dynamic response. The
central deflection of laminated plate decreases with increasing the angle (6) from 10 to 40 with
percentage reach to 24.8%. Then increase the central deflection when 0 increase from 40 to70
with percentage reaches to 9.2%. Thus, the maximum deflection with time is when lamination
angle is 10 for four layer symmetric angle-ply laminated plates, simply supported, subjected to
sine uniform loading with applied temperature equal to 50°C.
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NOMENCLATURE
Symbol Description Unit
a,b Dimension of plate in x and y coordinate m
Ajj , Bjj \Dj; Extensional stiffness, the coupling stiffness, and -
the bending stiffness
E;,E; , E;5 Elastic modulus of composite material GPa
G12, Go3, Gyi3 Shear modulus of composite material GPa
h Thickness m
I, 1,1, Mass moment of inertia kg.m*
[MA] Mass matrix kg
My , My, \M,,, Moment resultant per unit length N.m/m
N Total number of plate layers -
Nxx,Nyy ,Nxy The resultant of in-plane force per unit length N/m
Ny, Niy, Ni,, The resultant of in-plane force per unit length with N/m
thermal effect
Nxx,Nyy,Nxy Applied edge force N/m
q(x,y,t) Dynamic force subjected on a system N/m*
Qi(]{‘) Transformed lamina stiffness N/m
R Vector of externally applied loads N
t Time min or s
At Time Interval min or s
t1 The end time of load sec
T Temperature c?
AT Temperature increment c’
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Trer Reference temperature c’
Uu,uu Displacement , velocity and acceleration vectors m, m/s, m/ s
Uy, Uy, Wy Displacement components along (x,y,z) directions m
respectively
Unn s Vi s Winn, Amplitude of (u, , v, , w,) respectively -
X,Y,2 Cartesian coordinate system m
z Distance from neutral axis m
0 Fiber orientation angle Degree
a, a, Coefficient of thermal a/c or
expansion of composite material (/K)
p Density (kg/m3)
€xx + Eyy 1 Exy Strain components m/m
Stress components GPa

Oxx 1+ Oyy » Oxy

Figure 1. Shell281 geometry [ANSYS 13 Program].
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Figure 2. Comparison of the present solution with the numerical solution of [Reddy .J.N, 1982]
of two-layer cross-ply (0/90) square plate under suddenly applied sinusoidal loading (a/h=5).
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Figure 3. Comparison of present study with [Hui-Shen Shen et al 2003] for laminated square
plate under thermal loading condition at (A T = 200 C°).
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Figure 4. Operating principle of TMA.

17



Number 11 Volume 21 November - 2015 Journal of Engineering

Figure 5. TMA PT1000 device.

Tablel. Experimental value of mechanical and thermal properties of fiber —polyester composite
plate for fiber volume fraction= 0.3 changed with temperature.

T Eq E, G12=G13= G3 a, a;
ce Mpa Mpa Mpa E-6/K E-6/K
20 24627.0 5588.04 1551.77 14.57 47.81
30 23343.30 4123.11 1618.65 9.03 31.7
40 21775.40 1550.22 2505.75 7.20 29.36
50 15219.80 1515.37 623.423 4.79 25.79
60 6475.41 566.8 114.2336 3.20 21.38
70 2990.82 458.59 113.535 3.18 15.60
80 2555.71 289.27 130.48 3.22 15.59
90 1471.90 210.49 158.83 3.08 15.19
100 903.90 193.84 138.48 2.91 12.58
110 741.31 191.75 131.74 2.75 11.57
120 674.40 187.53 125.23 2.57 10.47
130 644.70 186.51 122.56 2.48 9.34
140 629.01 185.19 117.59 2.45 7.67
150 612.02 182.66 107.81 2.44 5.28
160 597.61 181.88 100.28 2.44 4.19
170 592.41 173.50 95.414 2.44 3.90
180 592.22 164.55 95.04 2.45 3.88
190 591.02 163.91 85.71 2.46 3.66
200 590.57 153.3 83.64 2.47 3
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Figure 10. Central deflection of four layers symmetric angle-ply (45/-45/...) laminated plates
for step uniform dynamic load with temperature change.
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Figure 11. Central deflection of four layers symmetric angle-ply (45/-45/...) laminated plates
for step sinusoidal dynamic load with temperature change.
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Figure 12. Central deflection of four layers anti- symmetric angle-ply (45/-45/...) laminated
plates for step uniform dynamic load with temperature change.
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Figure 13. Central deflection of four layers anti- symmetric angle —ply (45/-45/...) laminated
plates for step sinusoidal dynamic load with temperature change.
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Figure 14. Effect of lamination angle on central deflection of four layers (6/-6/-6/6) laminated
plates for sine uniform dynamic load with temperature equal to 50°C.
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