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ABSRACT 

The paper presents mainly the dynamic response of an angle ply composite laminated plates 

subjected to thermo-mechanical loading. The response are analyzed by analytically using 

Newmark direct integration method with Navier solution, numerically by ANSYS. The 

experimental investigation is to fabricate the laminates and to find mechanical and thermal 

properties of glass-polyester such as longitudinal, transverse young modulus, shear modulus, 

longitudinal and transverse thermal expansion. Present of temperature could increase dynamic 

response of plate also depending on lamination angle, type of mechanical load and the value of 

temperature.  
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هؼشضت الى تاثٍش راث صاوٌت هؼٌٍت للصفائح الوشمبت  الاستدابت الذٌٌاهٍنٍتهزٍ الذساست سمضث بشنل سئٍسً ػلى  انخلاصة

، التحلٍل طشٌقت ًٍوهاسك هغ حل ًافٍٍش باستخذام   التحلٍل الٌظشيٌق  ػي طشلاستدابت الذٌٌاهٍنٍت دسخت الحشاسة. وٌتن تحلٍل ا

فً الداًب الؼولً تن تصٌٍغ الصفائح الوشمبت الوصٌوػت هي الالٍاف الضخاخٍت والبولٍستش .ANSYSالؼذدي باستخذام بشًاهح 

طولً والؼشضً و هؼاهل القض والتوذد الحشاسي الطولً هثل هؼاهل ٌوًل ال لاٌداد الخواص الحشاسٌت والوٍناًٍنٍت

اػتوادا ػلى صاوٌت التصفٍح  الاستدابت الذٌٌاهٍنٍتوخود دسخت الحشاسة ٌوني اى ٌضٌذ  وماى الاستٌتاج الشئٍسً اى .والؼشضً 

ًوع الحول الوٍناًٍنً ودسخت الحشاسة.و

 

 انحًم حراري انًيكاَيكية.,سحجابة انذيُاييكية, الاصفائح يركبةانكهًات انرئيسية:  
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1. INTRODUCTION 

During the last decades, needs for composite materials consist of two or more types of materials 

mixed together homogenously have appeared to produce desirable properties , the constituents 

are combined at a macroscopic level, one constituent is called the reinforcing phase called fiber 

and the one in which is embedded is called the matrix.  Reddy J.N.]  

The analysis of structural vibration is necessary in order to calculate the natural frequencies of a 

structure, and the response to the expected excitation. In this way it can be determined whether a 

particular structure will fulfil its intended function and, in addition, the results of the dynamic 

loadings acting on a structure can be predicted, such as the dynamic stresses, fatigue life and 

noise levels. Ref. [Beards C.E] 

Many researches had studied free vibration analysis and vibration of plate under mechanical or 

thermal or thermo-mechanical loading. 

Chorng-Fuh Liu and Chih-Hsing Huang,1996 performed a vibration analysis of laminated 

composite plates subjected to temperature change. The first order shear deformation theory of a 

plate is employed. The resulting finite element formulation leads to general nonlinear and 

coupled simulation equations and calculate the frequencies of vibration of a symmetric cross-ply 

plate.  Hui-Shen Shen, et.al, 2003, studied the dynamic response of laminated plates subjected 

to thermo-mechanical loading and resting on a two-parameter elastic foundation. The 

formulation is based on higher order shear deformable plate theory and includes the thermal 

effect. Effects of foundation stiffness, thickness ratio, and temperature change on the dynamic 

response are discussed. Kullasup P. et al., 2010, analysed free vibration of symmetrically 

laminated composite plates with various boundary conditions by Kantorovich method. The beam 

function is used as an initial trial function in the repeated calculation, which is employed to 

calculate the natural frequency. Suresh K. J. et al., 2011, developed an analytical procedure is 

to evaluate the free vibration characteristics of laminated composite plates based on higher order 

shear deformation with zig-zag function. Slope discontinuities improved by Zig-zag function at 

the interfaces of laminated composite plates. The solutions are obtained using Navier’s method.  

Junaid Kameran Ahmed et al., 2013, presented a static and dynamic analysis of Graphite 

/Epoxy composite plates. In this work the behavior of laminated composite plates under 

transverse loading using an eight-node diso-parametric quadratic element based on First Order 

Shear Deformation Theory was studied,. Pushpendra k. kushwaha1 and jyoti vimal, 2014, the 

natural frequencies and mode shapes are compared for different boundary condition. 

Comparisons are made with the result for thin and thick composite laminated plate. Numerical 

results have been computed for the effect of number of layers, thickness ratio of plate, different 

boundary conditions, different aspect ratio, and different angle of fiber orientation of laminated 

composite plate. 

The point of originality of the present work is how to derive the analytical solution of dynamic 

response for composite laminated plates by classical laminated plate theory for the first time 

under thermo-mechanical loading, by applied different type of loading on the symmetric and 

anti- symmetric angle ply composite laminated plates using Newmark direct integration method 

with Navier solution. Thermal and mechanical properties for composite plate made from (glass-

polyester) with fiber volume fraction (0.3) are determined experimentally.   

Also Finite element coded by ANSYS14.0 used to find natural frequency of composite laminate 

plate. 
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2. ANALYTICAL SOLUTION (CLASSICAL LAMINATE PLATE THEORY)  

2.1 Displacement 

Classical lamination theory (CLPT) based on the Kirchhoff hypothesis based on assuming the 

straight line perpendicular to the mid surface before deformation remains straight after 

deformation which means neglecting shear strains and transverse normal strain and stress in the 

analysis of laminated composite plates. Ref.[ Reddy J.N.] 
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           Are longitudinal and transverse thermal expansions respectively. And θ is the 

lamination angle. 

The change in temperature defined 

 

  =applied temperature– reference temperature                                                      (2.e) 

 

Where reference temperature            [Reddy J.N.]. The transformed stress-strain relations 

of an orthotropic lamina in a plane state of stress are; for  ̅   see [Reddy J.N.] 
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The resultant of inplane force Nxx ,Nyy and Nxy and moments Mxx, Myy and Mxy  acting on a 

laminate can be obtained from integration of the stress in each layer or lamina through the 

laminate thickness. Knowing the stressed in terms of the displacements, the inplane force 

resultants Nxx, Nyy, Nxy, Mxx, Myy and Mxy can be obtained.                                                  

 The inplane force resultants are defined as 
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Where    ,     and      are normal and shear stress. 
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Here,     are the extensional stiffness,     the coupling stiffness, and     the bending stiffness. 
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2.3 Equation of Motion 

The equations of motion are obtained by setting the coefficient of     ,     ,     to zero 

separately 
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 layer and q(x,y,t) is a dynamic force subjected on a system. 

 ̂    ̂       ̂   equal to zero because there were no buckling. 

These equations of motion (7 a-c) can be expressed in terms of displacements (    ,     ,      
by substituting the forces results from Eqs. (4 ,5,8) into Eq. (7.a) to(7.c) and get partial 

differential equations,  
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To solve equation (9-a) used Navier solution with state space approach. 

            For angle-ply rectangular laminates with edges y=0 and y=b simply supported and the 

other two edges x=0 and x=a  simply supported. Assume the following representation of the 

displacement [Reddy .J.N.] 
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substituting Eqs. (10 and 11) in partial differential Eq. (9.a) and the result 

 

[

 ̂   ̂   ̂  
 ̂   ̂   ̂  
 ̂   ̂   ̂  

] {

   

   

   

}  [

 ̂    
  ̂   
   ̂  

] {

 ̈  

 ̈  

 ̈  

}  {
 
 

   

}  {

    
 

𝛽   
 

   𝛽   
 

}                  

(12.a)                  
Where 

 ̂        
     𝛽

                                                                                                              
(12.b) 
 

  ̂             𝛽                                                                                                               
(12.c) 
 

  ̂          
     𝛽

  𝛽                                                                                                  (12.d) 
 

  ̂        
     𝛽

                                                                                                           (12.e) 
 

 ̂         
      𝛽

                                                                                                      (12.f) 
 

   ̂       
              

 𝛽     𝛽
                                                                       (12.g) 

 

  ̂    ̂                                                                                                                           

(12.h) 
 

 ̂   (       
  𝛽  )                                                                                                      (12.i) 

 

The dynamic load subjected on the system, 

 

        )=∑ ∑           
 
   

 
           𝛽                                                                     

(13.a)   
                    

)(...sin.sin).,(
4

),,(
0 0

tfdydx
b

yn

a

xm
yxq

ab
tyxQ

b a

mn  


                                                          
(13.b)     
   

)().,(),,( tfyxqtyxQmn 
                                                                                                        (13.c) 

 

Many types of        loading can be considered as  [Muhannad L. S. Al-Waily,2004]: 

1. Uniformly distributed load   at area of plate (a*b). By substituting the load into Eq. (13.b), 

gives: 
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2. Point load Po at x=a1 and y=b1. By substituting the load into Eq.(13.b), gives: 
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3. Sinusoidal distributed loading,             
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(13.b), gives:  
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4. Uniformly distributed load qo at central area (A*B). By substituting the load into Eq. (13.b), 

gives:  
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And many types of      can be considered as [Khdeir A. A. & Reddy J. N,1988]  

1. Sine pulse loading 
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2.4 Solution of Dynamic Equilibrium Equations 

The equations of equilibrium governing the linear dynamic response of a system can be written 

as the following formula  
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MA and KS:     are the mass and stiffness matrices. 

R:                is the vector of externally applied loads. 

U and U :   are the displacement and acceleration vectors 
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In the Newmark direct integration method, the first time derivative  U  and the solution U  are 

approximated at (n+1) time step (i.e. at time t = tn+1 = (n+1) t  by the following expression 

[Rao V. Dukkipati,2010]. 
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Where: 

  And  :    are parameters that control the accuracy and stability of the scheme, and the 

subscript n indicates that the solution evaluated at     time step (i.e. at time, t =   ). The choice  

5.0  and 25.0  is known to give an unconditionally stable Scheme (average acceleration 

method), [Rao V. Dukkipati,2010]. 

 

 

3. NUMERICAL ANALYSIS 

3.1 Element Selection and Modeling 

An element called shell281 as shown in Fig.1 is selected which is suitable for analyzing thin to 

moderately thick shell structures. The element has eight nodes with six degrees of freedom at 

each node: translations in the x, y, and z axes, and rotations about the x, y, and z axes. It may be 

used for layered applications for modeling composite shells. It is include the effects of 

transverse shear deformation. The accuracy in modeling composite shells is governed by the 

first order shear deformation theory. The shell section allows for layered shell definition, options 

are available for specifying the thickness, material, orientation through the thickness of the 

layers. But to insert the temperature effect in calculations must be to adding degree of freedom 

(T). Then, the degrees of freedom change from (6 to7) in each node.  

 

3.2 Verification Case Studies 

    In the present study, Series of preselected cases are modeled to verify the accuracy of the 

method of analysis. The case study discussed here for dynamic response without temperature 

change is a comparison of the present work with the numerical solution of [Reddy .J.N, 1982] 

for a laminated plate Fig. 2, 

Close comparison between the two sets of results is evident, for a/h=5(maximum central non 

dimension deflection of present work for CLPT with Newmark direct integration method is= 

23.5(error 2.174%), for present F.E.M ANSYS maximum central non dimension deflection 

is=23.65(error 2.8%). while for above reference = 23.  

For thermo-mechanical transient response of simply supported laminated plates, the curves of 

central deflection as a function of time for a (0/90/0) symmetric cross-ply laminated plate 

subjected to suddenly applied dynamic loading are plotted and compared in Fig. 3 ,with [Hui-

Shen Shen ,2003]. Close comparison between the two sets of results is evident, (maximum 

central deflection of present work for CLPT with Newmark direct integration method = 2.35 cm 
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(error2.08%), and for present F.E.M. ANSYS program is= 2.2375cm (error6.77%), while for 

above reference = 2.4 cm. Fig.3. 

 

 

4. EXPERIMENTAL WORK          

In the present work, three- purposes were investigated. First, to outline the general steps to 

design and fabricate the rectangular test models from fiber (E-glass) and polyester resin to form 

laminate composite materials. Second, the manufactured models are then used to evaluate the 

mechanical properties (         ) with temperature change of unidirectional composite 

material. Third, evaluate coefficient of thermal expansion (CTE) of the composite plate. 

 

 4.1 Thermo-Mechanical Analyzer 
Thermo-mechanical Analysis (TMA) determines dimensional changes of solids and liquids 

materials as a function of temperature and/or time under a defined mechanical force. 

Irrespective of the selected type of deformation (expansion, compression, penetration, tension or 

bending), every change of length in the sample is communicated to a highly sensitive inductive 

displacement transducer (LVDT) via a push rod and transformed into a digital signal. The push 

rod and corresponding sample holders of fused silica or aluminum oxide can be quickly and 

easily interchanged to optimize the system to the respective application. Figs.4 and 5. 

The dimension of sample is (5*20*4) mm. the thermal properties which obtain from this test 

shown in Table 1. 

 

5. RESULTS AND DISCUSSION  

The present study focused mainly on the dynamic response behavior of composite 

laminated plates subjected to mechanical and thermo-mechanical loads of finite duration 

uniform (step, sine and ramp) and sinusoidal (step, sine and ramp) on the top surface of the plate 

for three cases of temperature (without temperature effect, T=50C and T=100C) . The step 

loading           ̅     , ramp loading           ̅           and sinusoid 

loading          ̅              . For uniform distributed load  ̅      
  

    
 and for 

sinusoidal distributed  ̅         . The amplitude of force is             and the time of 

load applied on plate is   0.05sec. The dynamic response of central deflection of composite 

plate discussed for different parameters such as load condition, lamination angle , temperature 

change , symmetric or anti symmetric angle ply for simply supported composite plate 

analytically by CLPT with Newmark direct integration method and numerical result by ANSYS.  

 

 (5-1) Effect of Load Condition   

Figs. 6 to 9 represent the variation of central transverse deflection with time (dynamic 

response) for four layer anti-symmetric and symmetric cross-ply and angle ply simply supported 

laminated plates under sinusoidal                                and 

uniform              variation loading, (step                 ,ramp loading          
             and sinusoid loading q(x,y,t)=P(x,y) sinπt/t1 ) for   =100N/   ,t1=0.05 sec ) 

without any temperature change solved analytically by CLPT with Newmark direct integration 

method and (F.E.M) by ANSYS program. The deflection due to step loading higher in 

magnitude than the other loads with percentage reach to 91.96%, 97.4% from sine and ramp 

load, respectively, because the step load subjected suddenly with constant value with the time. 
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Very good verification between CLPT with Newmark and FEM by ANSYS maximum error 

is12.9%.  Maximum response for step load always occurs in the time of applying load (i.e. in the 

time less than    after that the response became in negative sign and positive sign alternatively. 

for ramp load, the response increasing linearly with time until it reached to    at this point the 

maximum response occurs, then the response became in negative sign and positive sign 

alternatively. For sine load the response behavior have the sine shape and the maximum 

response at     .  

 

(5-2) Effect of Temperature Change with Varies Load Condition  

Figs. 10 to 13 show the numerical result by ANSYS for dynamic response of central deflection 

of symmetric and anti-symmetric angle ply simply supported composite plate step uniform and 

step sinusoidal load and different condition of temperature effect i.e. (T=25C, T=50C, 

T=100C). The deflection increases with percentage reaches to (58.47%) when temperature 

became 50C and when the temperature reach to 100C the response increases with higher 

percentage reaches to (200%) with respect to response without change in temperature for 

laminated plates for step uniform dynamic load. 

The reason behind that is there where two loads (mechanical and thermal) each load causes the 

deflections (thermal and mechanical deflections) summation is the deflection of plate under 

thermo-mechanical loading. When the temperature increases the deflection increased with high 

percentage. The uniform load is higher than sinusoidal load for all load condition. 

 

(5-3) Effect of Lamination Angle 

Fig. 14 shows the effect of angle () on central deflection for four layer symmetric 

angle-ply laminated plates, simply supported, subjected to sine uniform loading with applied 

temperature equal to 50C, solved analytically by Newmark and numerical by ANSYS .From 

the results, the central deflection of laminated plate decreases with increasing the angle () from 

10 to 40 with percentage reach to 24.8%. Then increase the central deflection when  increase 

from 40 to70 with percentage reaches to 9.2%. The maximum deflection with time for each case 

is when lamination angle is 10.  

 

  6. CONCLUSION 

This study considers the vibration analysis of symmetric and anti-symmetric angle-ply 

composite laminate plate.  From the present study, the following conclusions can be made:      

1-The Young and shear modulus decrease when temperature increases with high percentages 

reach to96.3% when temperature changes from (20 C to 100C) for longitudinal young 

modulus, for transverse young modulus is96.53% and for shear modulus is 91.1%. The 

longitudinal and transverse coefficient of thermal expansion also decrease when temperature 

increase with percentage 80% and73.7% respectively for the same temperature.  

2- The response due to step loading higher in magnitude than the other loads with percentage 

reach to 91.96%, 97.4% from sine and ramp load, respectively.  
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3- The response increase with maximum percentage reaches to (58.47%) when temperature 

became 50C and when the temperature reach to 100C the response increase with higher 

percentage reaches to (200%) with respect to response without change in temperature 

4- It was seen that the different fiber orientation angles affected on dynamic response. The 

central deflection of laminated plate decreases with increasing the angle () from 10 to 40 with 

percentage reach to 24.8%. Then increase the central deflection when  increase from 40 to70 

with percentage reaches to 9.2%. Thus, the maximum deflection with time is when lamination 

angle is 10 for four layer symmetric angle-ply laminated plates, simply supported, subjected to 

sine uniform loading with applied temperature equal to 50C.  
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NOMENCLATURE 

Symbol Description Unit 

a, b Dimension of plate in x and y coordinate m 

    ,     ,     Extensional stiffness, the coupling stiffness, and 

the bending stiffness 

- 

  ,    ,    Elastic modulus of composite material GPa 

   ,     ,     Shear modulus of composite material GPa 

h Thickness m 

210 ,, III  Mass moment of inertia kg.m
2 

[MA] Mass matrix kg 

    ,     ,    Moment resultant per unit length N.m/m 

N Total number of plate layers - 

             The resultant of in-plane force per unit length N/m 

   
     

     
  The resultant of in-plane force per unit length with 

thermal effect 

N/m 

 ̂    ̂     ̂   Applied edge force N/m 

q(x,y,t) Dynamic force subjected on a system N/m
2
 

 ̅  
   

 Transformed lamina stiffness N/m 

R  Vector of externally applied loads N 

t Time  min or s 

∆t Time Interval min or s 

   The end time of load  sec 

T Temperature C
0
 

∆T Temperature increment C
0 
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     Reference temperature C
0

 

UUU  ,,  Displacement , velocity and acceleration vectors m, m/s, m/ s
2
 

   ,    ,    Displacement components along (x,y,z) directions 

respectively 

m 

    ,     ,      Amplitude of (   ,    ,      respectively - 

x , y , z Cartesian coordinate system m 

z Distance from neutral axis m 

  Fiber orientation angle Degree 

  ,    Coefficient of thermal 

expansion of composite material 

   or 

    

ρ Density (kg/m3) 

    ,     ,      Strain components m/m 

    ,     ,      Stress components GPa 

 

 

 

 

 

 

 

 

Figure 1. Shell281 geometry [ANSYS 13 Program]. 
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Figure 2. Comparison of the present solution with the numerical solution of [Reddy .J.N, 1982] 

of two-layer cross-ply (0/90) square plate under suddenly applied sinusoidal loading (a/h=5). 

 

Figure 3. Comparison of present study with [Hui-Shen Shen et al 2003] for laminated square 

plate under thermal loading condition at (∆C
0
). 

 

 

Figure 4. Operating principle of TMA. 
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Figure 5. TMA PT1000 device. 

 

Table1. Experimental value of mechanical and thermal properties of fiber –polyester composite 

plate for fiber volume fraction= 0.3 changed with temperature. 

T 

C 

   

Mpa 

   

Mpa 

   =   =     

Mpa 

   

E-6/K 

   

E-6/K 

20 24627.0 5588.04 1551.77 14.57 47.81 

30 23343.30 4123.11 1618.65 9.03 31.7 

40 21775.40 1550.22 2505.75 7.20 29.36 

50 15219.80 1515.37 623.423 4.79 25.79 

60 6475.41 566.8 114.2336 3.20 21.38 

70 2990.82 458.59 113.535 3.18 15.60 

80 2555.71 289.27 130.48 3.22 15.59 

90 1471.90 210.49 158.83 3.08 15.19 

100 903.90 193.84 138.48 2.91 12.58 

110 741.31 191.75 131.74 2.75 11.57 

120 674.40 187.53 125.23 2.57 10.47 

130 644.70 186.51 122.56 2.48 9.34 

140 629.01 185.19 117.59 2.45 7.67 

150 612.02 182.66 107.81 2.44 5.28 

160 597.61 181.88 100.28 2.44 4.19 

170 592.41 173.50 95.414 2.44 3.90 

180 592.22 164.55 95.04 2.45 3.88 

190 591.02 163.91 85.71 2.46 3.66 

200 590.57 153.3 83.64 2.47 3 
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Figure 6. Central deflection of four layers symmetric angle-ply (45/-45/…) laminated plates for 

variant sinusoidal dynamic load without temperature change. 

 

 

Figure 7. Central deflection of four layers symmetric angle-ply (45/-45/…)  laminated plates for 

variant uniform dynamic load without temperature change. 
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Figure 8. Central deflection of four layers anti-symmetric angle-ply (45/-45/…) laminated 

plates for variant sinusoidal dynamic load without temperature change. 

 

 

Figure 9. Central deflection of four layers anti-symmetric angle-ply (45/-45/…) laminated 

plates for variant uniform dynamic load without temperature change. 
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Figure 10. Central deflection of four layers symmetric angle-ply (45/-45/…) laminated plates 

for step uniform dynamic load with temperature change. 

 

 

Figure 11. Central deflection of four layers symmetric angle-ply (45/-45/…) laminated plates 

for step sinusoidal dynamic load with temperature change. 
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Figure 12. Central deflection of four layers anti- symmetric angle-ply (45/-45/…) laminated 

plates for step uniform dynamic load with temperature change. 

 

 

Figure 13. Central deflection of four layers anti- symmetric angle –ply (45/-45/…) laminated 

plates for step sinusoidal dynamic load with temperature change. 
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Figure 14. Effect of lamination angle on central deflection of four layers (/-/-/) laminated 

plates for sine uniform dynamic load with temperature equal to 50C. 

 

 


