
Journal of Engineering Volume13 December 2007 Number4

 4411

COMPUTER VIROLOGY: SELF-DEFENSE SYSTEM

Hamid M. A. Abdul-Hussain & Hamed Mizher Shabib

Computer Engineering Dept.

College of Engineering, University of Baghdad

ABSTRACT
 Based on the biological human models in defending human body against viruses, a new

approach in designing the anti-virus system is introduced. This approach is called SDS(Self-

Defence System). The principle of the SDS is that each executable program is responsible of

defending itself against viral-attacks. In this system, each executable program is injected with

basic anti-virus component which is called Self-Defence Routine. This routine, together with

dedicated anti-virus loading program are used to construct the SDS which protects the computer

system from virus invasion.

INTRODUCTION
 Today, the computer virus pandemic becomes a serious security threat to causal home

computers and large corporate networks. Over the years, the anti-virus industry has had to keep

pace, as virus writers have become more sophisticated. Therefore, the effort to combat the

computer virus must continue until an ideal, universal anti-virus system is designed.

Researchers have taken many approaches, and some of the newest and most promising anti-

virus technology is modeled on the way the human body fights viruses [1].

 Based on the similarities between human and computer viruses (both types of viruses

latch onto a host, use its resources to reproduce, and cause a range of symptoms). The objective

of this work is to build computer immune system. The proposed system is called Self-Defence

System (SDS). The SDS mimics the characteristics of human immune system by distributing

the anti-virus components through the computer in the same way the human immune system

distributes the anti-bodies. The concept of the SDS is to vaccinate each executable program

with special anti-virus component that will detect and eradicate any foreign code attached to the

executable. The vaccinated executable is loaded and executed by special centralized anti-virus

program which is designed to prevent virus infection and damage to the computer system.

 In part this research has been a follow-up on the two papers; the first titled “Computer

Virology: Formal Analysis of Computer Viruses” [7], and the second titled “Computer

Virology: Toward Designing an Ideal Anti-virus System” [4]. Some terms, classifications, and

concepts presented in this research are thoroughly explained in the above papers. For example

the efficiency of the SDS is determined according to the analysis criteria described in the

second paper mentioned above.

SELF-DEFENCE CONCEPT

The self-defense concept is that: “Every executable program must be capable of

protecting itself against viral attacks by detecting and eradicating any virus attached to

its body”. Accordingly, special part of each executable must be reserved for the self-defence

task. This part is called “Self-Defence Routine (SDR)” and defined as: “The part of the

H. M. A. Abdul-Hussain Computer Virology: Self-Defense System

H. M. Shabib

 4411

executable that is specifically designed to protect the executable against viral attacks”.

SDR is the first basic anti-virus component in SDS, which is embedded, as integral part of an

executable E. E will be called the “protected executable” along this research. The second

basic anti-virus component in SDS is a special OS program called “Load and Execute Program

(LEP)”. LEP is used to load executables into memory and execute their SDRs secretly by using

a special secret communication protocols. LEP and SDR cooperate to satisfy the requirements

of the IAVS.

The communication between LEP and SDR consist of two phases (PHASE-ONE and

PHASE-TWO). During PHASE-ONE, LEP must transfer control to SDR without giving the

attached virus “if any” the opportunity to execute. If SDR detect a virus infection, it will try to

eradicate the attached virus and repair the protected executable using the Foreign Block

Eradication Algorithm (FBEA). If FBEA failed, SDR must alert LEP to switch to PHASE-

TWO. In PHASE-TWO, LEP will execute the virus in a virtual computer system. After the

virus execution is completed, SDR will try to eradicate the virus and repair the infected

executable using Virus Follower Eradication Algorithm (VFEA). The following sections will

discuss how SDR and LEP are designed, and the communication protocols they use in PHASE-

ONE and PHASE-TWO.

SECRET ENTRY POINT

Most viruses tacks themselves into an executable program and ensure that they will

execute before their host, therefore, they must redirect the executable standard entry point to

point to the virus entry point. The standard entry point is the location to which the OS transfers

control when deciding to execute the executable. The standard entry point is considered the

most vulnerable spot for viral attacks.

 In PHASE-ONE, LEP must execute SDR without giving the opportunity to any

attached virus “if any” to execute. Clearly, this cannot be done by transferring control to the

standard entry point of the executable because viruses know where the standard entry point of

the executable is, and they always redirect it to ensure that they will get the opportunity to

execute before the infected executable. There is only one way to ensure that SDR will get the

opportunity to execute before any attached virus. That is, by using a nonstandard or secret entry

point. This kind of entry point is called trapdoor: “The Trapdoor is a secret entry point to the

executable [2]”. Fig.1 shows how the trapdoor can be used.

In fact, the secret entry point will be used to solve the standard entry point problem.

Therefore, the trapdoor location must vary from one executable to the other. For example, while

the trapdoor of the executable ‘E1’ is located at offset ‘X1’, the trapdoor of the executable ‘E2’

must be located at offset ‘X2’, where ‘X1X2’. Because the same standard entry point problem

will be faced again, if the trapdoor location is standardized for all executables. For example, if

the trapdoor location is standardized to be at offset ‘X1’ for all executables, then: “The virus

will know that there is another entry point to the executable located at offset ‘X1’.

Consequently, it will redirect to this entry point to ensure that it will get the opportunity

to execute before its host”. Therefore, a new technique that will enable LEP to find or mark

the trapdoor while, at the same time, viruses cannot find the trapdoor. The following sections

describe how LEP mark the trapdoor, the standard SDR module format, and how different LEPs

can exchange protected executables between each other.

TRAPDOOR MARKING

LEP can find the trapdoor location of a given executable by using special type of

information stored in the executable itself. This special type of information will be called the

“Trapdoor Mark” and defined as “A special code or string of characters whose location

(LOC) or value (TMV “Trapdoor Mark Value”) can be used to find the trapdoor”.

LEP must calculate the TMV and store it into LOC using criteria known by LEP only.

This criterion differs from one LEP to the other. Therefore, viruses cannot estimate in advance

which trapdoor mark is used by a randomly selected LEP. For example, if LEP1 and LEP2 are

used in two different computers PC1 and PC2 respectively. LEP1 define (TMV= “HMS”), and

Journal of Engineering Volume13 December 2007 Number4

 4411

define the first byte position which follow the 3’rd character as the trapdoor

(Trapdoor=LOC+3), while LEP2 define (TMV=666) and (Trapdoor=LOC+2). Since the virus

cannot estimate in advance in which computer it exist, in PC1, PC2, or some other computer, it

cannot estimate in advance whether the TMV is, “HMS”, 666, or any other number or string.

The efficiency and reliability of the secret entry point depend on the TMV type and the method

used to generate it. In general, two TMV types can be defined:

FIXED TMV

In this type, the same TMV used for all executables in the system. The generation and

searching formulas are very simple in this case. There is, however, a vulnerable spot in this

case. Since the TMV is used in all executables, it will be the common code between all

executable. Viruses can determine the fixed TMV by comparing two or more executables to see

which code is common between them. This code might be the TMV. Note that if each

executable in the system uses the suggested self-defence technique efficiently, no virus will get

the opportunity to execute and therefore it cannot perform the comparison described above.

Variable TMV

In this type, a different TMV used for each executable in the system. Only LEP knows

how to generate and find this TMV for a given executable. Two general techniques can be used

to generate a variable TMV:

A- Value-Based Technique: “In this technique, TMV is calculated using a predefined

formula and stored in LOC”. The general Value-Based generation formula can be

defined as follow: “TMV= f(g(EBV), LBC)”. Where:

 EBV “Executable-Based Variable”: This value is constant with respect to a given

executable. But it differ from one executable to the other. Therefore, LEP can ensure that

TMV will change from one executable to the other.

 LBC “Loader-Based Constant”: This value is constant with respect to a given LEP.

But differ from one LEP to the other. This ensures that the TMV will change from one

LEP to the other even if both use the same EBV, g, and f.

 f and g : Functions (arithmetic or logical relation).

In general, LEP must search for the trapdoor mark location (LOC) using TMV. The

general Value-Based searching formula can be defined as follow: “IF ([P]=TMV) THEN

(LOC=P)”. Where:

 P= Address Pointer

 [P]= Content of the location at address P.

For example, the executable file name can be used as EBV, because it is constant for a

given executable file. The TMV generation formula will be: “TMV= f(g(Executable

Name),LBC)”. Let us define the following, for LEP1 and LEP2:

Component LEP1-Definition LEP2-Definition

g ASCII of the 1st Character +

ASCII of the 2nd Character +

ASCII of the 3rd Character

ASCII of the 2nd character -

ASCII of the 4th character

LBC 6 305

f g + LBC g  LBC

Tab.1 shows the TMV generated for three different file names by using the definitions shown

above. LEP1 can find LOC for HAMED.COM using the following algorithm:

 Calculate :TMV=72+65+77+6=220

 P=0

 IF ([P]=220) THEN (LOC=P) ; GO TO 6

 P=P+1

IF (PSize of HAMED.COM) THEN 3

H. M. A. Abdul-Hussain Computer Virology: Self-Defense System

H. M. Shabib

 4411

 End.

B- Condition-Based Technique: “In this technique, TMV is selected so that a predefined

condition satisfied”. The general Condition-Based generation formula can be defined as

follow: “Select TMV To Satisfy: f(LOC,LBC1)=g(LOC,LBC2)”.

The general Condition-Based searching formula can be defined as follow: “IF

(f(P,LBC1)=g(P,LBC2)) THEN (LOC=P)”. For example, the following can be defined:

LBC1 f(P,LBC1) LBC2 g(P,LBC2) Condition

 0 [P]+LBC1 0 P+LBC2 [P]=P

1 [P]+LBC1 2 P*LBC2 [P]+1=P*2

19 [P]-LBC1 0 P[P-1]+LBC2 [P]-19=P[P-1]

Tab.2 shows the TMVs generated to satisfy the condition “[P]=P+3” for the three

executables shown in Tab.1. The following algorithm can be used by LEP to search for LOC,

assuming that f, g, and LBC are defined as shown above:

 P=0

 IF ([P]=P+3) THEN (LOC=P) ; GO TO 5

 P=P+1

 IF (P<Size of HAMED.COM) THEN 2

 End.

However, it is very important to test the influence of virus infection on the selected

condition. For example, if the condition [LOC]=LOC+3 used, and a virus inserts 256-bytes in

the start of HAMED.COM and, hence, shift the contents of HAMED.COM by 256-byte. In this

case the “TMV=503” will be shifted from location 500 to location 756. Clearly, the condition

will be not satisfied in location 500 and location 756. Conditions that link the content of LOC

with the contents of its predecessor or successor locations are not affected by the virus

infection. For example, the condition:[LOC]=[LOC-1]+[LOC+1].

SDR Module Standard Format

The SDR module consists of the SDR code/data and trapdoor marking information.

Two problems must be considered before defining the standard format of the SDR module:

Pseudo Trapdoor Mark: “The pseudo trapdoor mark is any value satisfy the searching

formula and cause LEP to transfer control to an incorrect location”. The increased

probability of pseudo trapdoor mark in the value-based technique is the great

disadvantage of this technique. For example, in Tab.1 the TMV associated with

HAMED.COM is 220 with respect to LEP1. Clearly, this value may exist more than

one time within the code or data of HAMED.COM. Moreover, viruses may consider

this as a vulnerable spot for attack. For example, TMV will range from 0 to 255 if

represented as one byte storage location. The virus can insert a table that contains all of

the expected values (from 0 to 255) in the start of the infected executable. When LEP

search the infected executable, it will find a pseudo trapdoor mark in the virus table and

transfer control accordingly. This transfer will activate the virus to start its execution.

The probability of finding a pseudo trapdoor mark in the condition-based

technique is less relative to the value-based technique. Because it searches for a value

that satisfy a condition. For example, in Tab.2, even though the value 503 may exist

many times within the code or data of HAMED.COM, it will be considered as a

trapdoor mark only if it exists at offset address 500.

In general, the solution to the pseudo trapdoor mark problem is to use two

TMVs associated with special integrity check information. Tab.3 shows the suggested

standard format of the SDR module. According to Tab.3, LEP can find the SDR module

as follows:

1. P=0

Journal of Engineering Volume13 December 2007 Number4

 4414

2. IF (f11(P,LBC11)=g11(P,LBC12)) THEN 6

3. P=P+1

4. IF P<Executable_Size THEN go to 2

;Trapdoor not found,

5. Display Alarm Message “Cannot Find the Trapdoor”.

;Test if the second condition satisfied

6. IF (f12(P,LBC13)=g12(P,LBC13)) THEN go to 8

;TMV2 Not exist, continue the search

7. Go To 3

;Perform checksum test

8. LEN= f13
-1

([P+08H])

9. Using CHKS-ALG1, Set C= Checksum of the block

(P+10H+LEN)

10. IF C=[P+0CH] THEN go to 12

;Checksum Error, Continue The search

11. Go To 3

;Trapdoor Mark Found

12. LOC1=P

 Destruction: Destruction can be caused by a virus infection. If the virus, for example,

inserts part or all of its code between TMV11 and TMV12, between the header and the

SDR module, or inside the SDR module. The solution to this problem is to use

redundancy. That is, two SDR modules must be used so that if one of them destroyed

the other one can be used. The first SDR module (shown in Tab.3) will be called the

“Primary SDR Module” and the second SDR module will be called the “Redundant

SDR Module”. The redundant SDR module is shown in Tab.4.

LEP-To-LEP Communication

 As mentioned earlier, each LEP uses its own standard to generate and search for TMV

and LOC. Users may ask what happens when the protected executable ‘E’ copied from the

environment of LEP1 to the environment of LEP2. That is: “How LEP2 can find LOC1 and

LOC2 of ‘E’, without giving viruses the opportunity to find them”. Clearly, there must be a

standard and secure communication protocol between LEP1 and LEP2. There are many ways to

do this.

First, the communication can be done by using a global TMV, say “HMS”. When the

user asks LEP1 to copy ‘E’ to be used by LEP2, LEP1 must store “HMS” at LOC1 and LOC2.

When the user asks LEP2 to execute ‘E’ for the first time, it will search ‘E’ for the global TMV

(i.e. HMS) to find LOC1 and LOC2. Once “HMS” is found LEP2 will recalculate LOC1,

LOC2 and reorganize the SDR locations according to its formula. The advantage of this method

is its transparency for users. The great disadvantage of this method is its vulnerability. Viruses

know that the global TMV used in copies is “HMS”, therefore, they can easily find LOC1 and

LOC2 of the protected executable.

Second, the communication can be done through the computer user. The user can ask

LEP1 about the value of LOC1 and LOC2 of ‘E’ after copying the executable to a new diskette.

The user must give the value of LOC1 and LOC2 to LEP2 (i.e. manually) when he wants to

execute ‘E’ for the first time. The advantage of this method is that it is secure, because there is

no way that a virus will know the value of LOC1 and LOC2. The disadvantage of this method is

that it depends on the computer user responsibility. A serious problem arises when the user

decides to copy a large number of executables. For example, if the user wants to copy 100-

executable from DISK1 to DISK2, then, he must ask LEP1 about the value of LOC1 and LOC2

for each one of these executable, keep these (200-Value) values in his mind, and give them to

LEP2.

Third, the best suitable method is to use Message-Files. When the user asks LEP1 to

copy the 100-executable (E1, E2,… E100) from DISK1 to DISK2, LEP1 will ask the user about

H. M. A. Abdul-Hussain Computer Virology: Self-Defense System

H. M. Shabib

 4411

the message file name to store the values of LOC1 and LOC2 in it. Assuming that the user uses

the name MESSF.LOC. LEP will create a message file with the name MESSF.LOC in DISK2,

and insert 100-entry in this file. Each entry represent one executable. The standard entry format

is shown in Tab.5. LEP2 can use the message file to find LOC1 and LOC2 of each executable

individually or all executables at once. Regardless of the number of executables being copied,

the user needs to remember only the message file name.

-The Communication Standards

Before describing the communication protocols used in PHASE-ONE and PHASE-

TWO; and the operations of LEP and SDR in each phase, the standard data blocks, variables,

and flags used in the system must be defined and described. Fig.2 shows an overview of the

communication system and its individual components. Each data block, variable, and flag used

for specific purpose. The following sections will describe these components and explain the

purpose of using them.

- Image Information Block (IIB)

In PHASE-ONE, LEP must prepare the Image Information Block (IIB) before

transferring control to the SDR. The IIB describes the status of the disk and memory images of

E. The standard format of the IIB is shown in Tab.6.

MIS=DIS for COM and SYS files. But MISDIS for EXE and OVL files, because the

header exist in the disk image but not loaded with the memory image. MIS and DIS are used by

the detection algorithm. TOA is used by the detection and eradication algorithms as will be

explained later. EPN (Executable Private Number) is generated by LEP for each executable

before executing it. EPN of E is considered, by LEP, as the “identifier” or “Secret Name” of E.

While in PHASE-TWO, the SDR of E must pass the EPN of E associated with the other

identification information to LEP, so that it can get the permission from LEP to access the disk

image of E. LEP-TRAP is a pointer to a special trapdoor within LEP. This trapdoor is used to

ensure that the SDR can communicate with LEP secretly while in PHASE-TWO.

- Detection and Eradication Information

The SDR must know the following information about the protected executable:

1- Executable Critical Bytes: “The critical byte is any byte which is virtually

guaranteed to be changed after a virus infection”. The executable size, the first three

bytes of a COM or SYS, and the EXE or OVL file header are considered as critical

bytes. Determining the critical bytes of a given executable, require a deep

understanding of how the computer virus infect it. In general, the following components

are calculated and stored in the SDR of E during the protection process “see section 5”:

1. CMIS= Correct Memory Image Size (CMIS)

2. CDIS= Correct Disk Image Size (CDIS)

3. The correct values of any other critical byte. Such as the first

three bytes of COM and SYS files and the header of EXE

and OVL files.

- Integrity Check Information (Checksum): The SDR is assumed to view the executable

memory image as group of N-Blocks (BLK1,BLK2, ... BLKN) “see Fig.3”. The block

size (BLKS) is equal for all blocks and stored in (BLKS). A CheckSum Number (CSN)

calculated for each block using the algorithm CHKS-ALG, and stored in a special SDR

table. Also, a given block ‘BLKi” is assumed to be valid (i.e. has a correct checksum) if

the following condition satisfied: “CHKS-ALG(BLKi, CSNi)=0”.

- Position Test Information: The position test information (SOF and EOF) are used (with

TOA, and MIS) by the FBEA to find the virus block position relative to the SDR

module as show in Tab.7. Fig.3 shows how the protected executable appear in memory.

SOF and EOF represent the position test information and defined as follow:

Journal of Engineering Volume13 December 2007 Number4

 4411

 The Start Offset (SOF): Is the offset of the SDR trapdoor relative to the

start of the memory image.

 The End Offset (EOF): Is the backward offset of the SDR trapdoor

relative to the end of memory image.

- SDR Internal Flags

 SDR uses two internal flags:

1- Executable Infection Flag (EIF): SDR set this flag if it detects a virus infection. The

status of this flag is returned to LEP at the end of PHASE-ONE.

2- Executable Repair Flag (ERF): SDR set this flag if it can repair the infected executable.

The status of this flag is returned to LEP at the end of PHASE-ONE, and the end of

PHASE-TWO through LEP-TRAP.

2.4 The Secret Identification Block (SIB)

The SIB passed by the SDR of E to LEP during PHASE-ONE. When LEP switch to

PHASE-TWO, it can use SIB to distinguish the SDR of E from the SDRs of the other

executables and viruses. The standard format of SIB is described in Tab.8.

3- PHASE-ONE Communication

PHASE-ONE starts when LEP receives a request to execute an executable. Assuming

that LEP receives a request to execute the executable E, the following sections describe the

sequence of operations:

 Locating and Executing SDR

The following steps describe loading the executable by LEP and preparing the IIB:

Step-1: “Loading the executable memory image”

1. Find the disk image of E.

2. Store DIS in the IIB.

3. Assign EPN to E and store it in the IIB.

4. Store LEP-TRAP in the IIB

5. Reserve a memory block to store the executable memory image. And

store the start address (SMI) in the IIB.

6. Load the executable memory image into the reserved block.

7. Store the MIS in the IIB.

Step-2: “Finding the Trapdoor”

1. Search for the trapdoor of the primary SDR module.

2. IF (the trapdoor found) THEN go to 6

3. Search for the trapdoor of the redundant SDR module.

4. IF (the trapdoor found) THEN go to 6

5. LEP cannot find any one of the trapdoors. This can happen if the

executable is not Self-Protected, the executable is new in the system, or

both SDR modules are destroyed due to a virus infection. In either case,

LEP must display alarm message to the user, and ask him what to do.

Depending on the user response, LEP must proceed as follow:

 If E is not self-protected, then execute it in a virtual computer

(explained later).

 If E is new, then prepare it using the message file.

 If E destroyed by a virus infection, then, avoid executing it

6. Store the offset of the trapdoor in TOA.

7. Store TOA in the IIB.

Step-3:”Execute and Wait”

H. M. A. Abdul-Hussain Computer Virology: Self-Defense System

H. M. Shabib

 4414

LEP can transfer control to the SDR trapdoor using a far call instruction, and

wait until the SDR return control again. What happens when the SDR receives control is

explained in the next section.

 SDR Operation in PHASE-ONE

The SDR operation can be described by two cycles: “Self-Test Cycle, and Self-Repair

Cycle”. Both cycles are described in the following sections.

 Self-Test Cycle

This cycle initiated each time SDR executed, in this cycle SDR must decide whether E

is infected or not. If E is infected, SDR will set EIF, and clear it otherwise. The status of EIF

returned from SDR to LEP as shown in Fig.2. The following algorithm describe the self-test

cycle:

;Size test

 IF DISCDIS THEN go to 13

1. IF MISCMIS THEN go to 13

;Critical byte test

2. IF (Any critical byte changed) THEN go to 13

;Checksum test

3. i=1

4. C=CHKS-ALG(BLKi, CSNi)

5. IF C0 THEN go to 13

6. i=i+1

7. IF i  N THEN go to 5

;Position test

8. IF SOFTOA THEN go to 13

9. IF EOFMIS-TOA go to 13

 “The executable is clean”.

10. EIF=0

11. Return to LEP.

“The executable is infected”.

12. EIF=1

13. Go to the Self-Repair Cycle.

 Self-Repair Cycle

In this cycle, SDR will try to eradicate the virus and repair the protected executable.

SDR will set ERF if the protected executable repaired properly and clear it otherwise. A new

eradication algorithm (Foreign Block Eradication Algorithm “FBEA”) will be used. FBEA

capability depends on how the virus distributes itself within the infected executable. The FBEA

described below can eradicate SBD viruses efficiently, and can be upgraded to eradicate CBD

viruses as well. However, because the CBD idea not used by viruses yet “see [3]”, the

discussion will be limited for the SBD viruses only. Assuming a simple virus distribution, the

eradication algorithm can be divided into the following steps:

Step-1: “Find the virus block position relative to the SDR”

In general, if the virus block inserted after SDR, the infected executable memory

image will take the form of image ,, or  in Fig.4. Therefore, the search must start

from BLK1. If the virus block inserted before SDR, the infected executable memory

image will take the form of image ,, or . Therefore, the search must start from

BLKN. Finding the virus block position relative to SDR can be done by using the

position test information TOA, MIS, SOF, and EOF as shown in Tab.7.

Journal of Engineering Volume13 December 2007 Number4

 4411

Step-2: “Starting the block checksum test”

For example, let us assume that the virus is inserted after the SDR, therefore, the

block checksum test must start from BLK1. The following algorithm can be used in this

case:

1. i=1

2. IF BLKi contain any critical byte, then repair the critical bytes.

 “Only BLK1 in image , , and  affected by this step”

3. C=CHKS-ALG(BLKi, CSNi) ;Calculate the checksum of BLKi

4. IF C0 THEN go to Step-3 ;Invalid block

5. Move BLKi into BUF ;Valid block

6. i=i+1

7. IF i  N THEN go to 2

Arriving to this point means that the virus has inserted all of its added bytes at

 the end of the infected executable, as shown in image .

 Go to Step-6

“Note the difference between (go to 3) and (go to Step-3)”

Step-3: “Reversing the block checksum test order”.

Arriving to this step means that the virus inserts its added bytes after SDR but

not at the end of the infected executable. In this case, the infected executable memory

image expected to take the form of image  or . Because BLKi is not found, the

searching processes must be reversed. The following algorithm can be used:

1. j=0

2. m=N-j

3. IF BLKm contain any critical byte, then, repair the critical bytes.

4. C=CHKS-ALG(BLKm, CSNm) ;Calculate checksum number of BLKm

5. IF C0 THEN go to Step-4 ;Invalid checksum

6. Move BLKm into BUF ;Valid checksum

7. IF m=i THEN go to 10

8. j=j+1

9. Go to 2

Arriving to this point means that the virus block inserted between two

consecutive blocks (BLKi-1 and BLKi) without destroying any one of them, as

shown in image . Because the blocks (BLK1, BLK2, ..., BLKi-1) are moved

into BUF in Step-2. And the blocks (BLKi, BLKi+1, ... BLKN) are moved into

BUF in Step-3. Therefore, all blocks are moved into BUF.

10. Go to Step-6

Step-4: “Repairing the damaged block”

Arriving to this point means that the virus has inserted its block inside BLKi and,

hence, destroyed this block. This is shown in image . Two routines to repair the

destroyed block BLKi will be discussed:

REPAIR1:

Inputs:

 i= Block number

 S= Start offset address of BLKi which contain the virus block.

 E= End offset address of BLKi which contain the virus block.

 Z= MIS-CMIS=NAB

 P= Offset address of a byte that is guaranteed to exist in the virus block.

Outputs:

 C=0 ;BLKi cannot be repaired

 C=1 ;BLKi repaired properly and stored in the buffer BBK

H. M. A. Abdul-Hussain Computer Virology: Self-Defense System

H. M. Shabib

 4411

The Idea: REPAIR1 assumes that the virus block start at P and define: “VS (Virus-

Start)=P, and VE (Virus-End)= VS+Z-1”. And then, moves the bytes at block (S-

To-(VS-1)) and block ((VE+1)-To-E) into the buffer BBK. If the checksum test on

BBK fails, REPAIR1 assumes that P is not the actual start of the virus block. That is,

there is at least one byte belong to the virus block and exist before P. Therefore,

REPAIR1 shift VS and VE up by one byte position, and repeat the test process.

Algorithm:

1. VS=P

2. VE=VS+Z-1

3. IF {VE(E-1)} THEN {[VS=VS-(VE-(E-1))] AND [VE=VS+Z-1]}

“This ensures that VE(E-1). Note that, the byte at E must belong to BLKi,

because, otherwise, all of the content of BLKi exists above the virus block.

And this can happen only if BLKi wasn’t destroyed by the virus infection”.

4. Move the bytes at block (S-To-(VS-1)) into BBK

5. Move the bytes at block ((VE+1)-To-E) into BBK

6. C=CHKS-ALG(BBK, CSNi)

7. IF C= 0 THEN go to 12 ;Valid block

“Arriving to this point means that VS is not the actual start of the virus. That is,

there is at least one byte belong to the virus but exist above VS. Therefore, VS

must be decremented and the checksum must be calculated again”.

8. VS=VS-1

9. VE=VS+Z-1

10. IF VSS THEN go to 4

11. C=0, and RETURN “BLKi cannot be repaired”

12. C=1, and RETURN “BLKi repaired properly and stored in BBK”

REPAIR2:

Inputs:

 i= Block number

 S= Start offset address of BLKi which contain the virus block.

 E= End offset address of BLKi which contain the virus block.

 Z= MIS-CMIS=NAB

Outputs:

 C=0 ;BLKi cannot be repaired

 C=1 ;BLKi repaired properly and stored in the buffer BBK

The Idea: REPAIR2 is based on the fact: “If BLKi destroyed by one sequential

virus block, then, the byte at S and the byte and E must belong to BLKi. Because

otherwise, if the byte at S(E) belong to the virus block, the entire virus block

must exist above (below) BLKi, and this can happen only if BLKi wasn’t

destroyed by the virus block insertion”. REPAIR2 moves one byte starting from S

and (BLKS-1) bytes starting from E into BBK. If the checksum test on BBK fail,

REPAIR2 repeat the process by moving 2-bytes starting from S and (BLKS-2) bytes

starting from E into BBK.

Algorithm:

1. k=S

2. j=k+Z+1

3. Move the bytes at block (S-To-k) into BBK.

4. Move the bytes at block (j-To-E) into BBK.

5. C=CHKS-ALG(BBK, CSNi)

6. IF C=0 THEN go to 10 ;Valid block

7. k=k+1

8. IF k (BLKS-1) THEN go to 2

Journal of Engineering Volume13 December 2007 Number4

 4411

9. C=0, and RETURN “BLKi cannot be repaired”

10. C=1, and RETURN “BLKi repaired properly and stored in BBK”

The advantage of REPAIR2 over REPAIR1 is that it can work without using P.

However, the number of trails or the time needed by REPAIR1 is, in general, less than

the time needed by REPAIR2. Which routine “REPAIR1 or REPAIR2” the SDR must

use, depend on the prepared input arguments. The input arguments can be prepared as

follow:

1. S= (i-1)*(BLKS) ;The number of bytes in all blocks before BLKi.

2. E= S+Z+BLKS ;To understand how S and E calculated see Fig.5.

3. The SDR can use REPAIR1 only if it can prepare P. Otherwise, it must use

REPAIR2. Two ways are suggested to determine P:

a) The entry point of the virus code within BLKi can be found

from the standard entry point of the executable. For

example, for COM files the displacement of the near jump

instruction which is found in the first three bytes of BLK1

can be used to find the virus entry point. After finding this

entry point, set P= Virus code entry point.

b) If the virus code entry point cannot be found, the following

fact can be used: “IF (ZBLKS) THEN (The point at

“S+(E-S)/2” must be in the virus block)”. Therefore: IF

(ZBLKS) THEN (P=S+(E-S)/2)”.

If P prepared, the SDR can proceed as follows:

1. CALL REPAIR1

2. If C=1 THEN go to 6 ;BLKi repaired properly using REPAIR1

3. CALL REPAIR2

4. IF C=1 THEN go to 6 ;BLKi repaired properly using REPAIR2

BLKi cannot be repaired using REPAIR1 or REPAIR2.

5. Go to Step-5

6. Move the contents of BBK into the gap of BLKi in BUF.

7. Go to Step-6

Step-5: “Return Error Code and SIB to LEP”.

Arriving to this step means that the SDR cannot repair E properly. Therefore, the

SDR must return the following information:

1. EIF=1 ;The file is infected

2. ERF=0 ;The file is not repaired

3. SIB

4. Go to Step-7.

Step-6: “Repair the Infected Disk Image of E”

Arriving to this step means that BUF contain all blocks (BLK1, ... BLKN) of the

protected executable. The content of BUF represent a clean memory image of the

executable, therefore, it can be used to repair the infected disk image of E. The following

algorithm describes how this can be done.

1. If the infected executable is an EXE or OVL file, then, put the correct file

header in the start of BUF.

2. Overwrite the disk image of E by the content of BUF.

3. ERF=1 ; Executable Repaired Properly.

4. Go to Step-7

Step-7: “Return To LEP”

H. M. A. Abdul-Hussain Computer Virology: Self-Defense System

H. M. Shabib

 4411

The SDR can return control to LEP now. PHASE-ONE terminated at this point.

- PHASE-TWO Communication

LEP starts PHASE-TWO after the SDR execution, in PHASE-ONE, is completed.

Once in PHASE-TWO, LEP will test the status of EIF and ERF returned from SDR. The

executable is clean if (EIF=0). Therefore, LEP can execute the executable through its standard

entry point. The executable was infected but repaired properly by SDR if (EIF=1 and ERF=1).

Therefore, LEP must load the executable disk image again. And, then execute it through its

standard entry point.

The executable is infected and SDR cannot repair it if (EIF=1 and ERF=0). Therefore,

the Virus Follower Eradication Algorithm (VFEA) must be used to eradicate the virus. VFEA

is based on the fact that shell type viruses, “See [7]”, always repair the infected executable

memory image before executing it. Therefore, VFEA use the following eradication approach:

“The infected executable must be executed through its standard entry point so that the

attached virus will get the opportunity to execute. The virus will repair the memory image

of the executable and execute it. SDR will receive control again and test the memory

image. If the memory image repaired properly by the virus, SDR must alert LEP to use

the current memory image of the executable to replace the infected disk image of the

executable”.

 However, giving the opportunity to the virus to execute is very critical. Therefore,

before executing the virus, LEP must prepare a trusted environments “Virtual Computer

System” to ensure that the virus cannot cause any damage or infection. Preparing the virtual

computer system and executing the SDR in PHASE-TWO is described in the following

sections:

 The Virtual Computer System

The idea of the virtual computer system is described in [4]. In general, the virtual

computer system must be designed to satisfy the following requirements:

1- Protecting System Disks: Prevent the virus from infecting or destroying any target

site/cell in the system disks.

2- Protecting System Memory: Prevent the virus from reserving memory space and hide

itself there, that is, stay resident in system memory.

3- Deceiving the Virus: The virtual computer system must give the virus the illusion that it

is running in a normal system. Because, if the virus knows that it exists in a virtual

computer system, it may try to use special methods to bypass or deceive the virtual

computer system; or it may terminate its execution without repairing its host, therefore,

VFEA cannot repair the protected executable.

Satisfying these requirements depend on the computer system hardware (i.e. Real-

Mode or Protected-Mode PC) and software (i.e. DOS or WINDOWS). As a case study,

preparing a virtual computer system in DOS machines will be explained in what follows:

1- Protecting System Disks: In order to prevent the virus from infecting/destroying target

sites/cells in the system disks, it must be prevented from writing to these disks. First of

all, LEP must ensure that all of the disk related interrupt vectors points to special

handlers. Therefore, LEP must redirect the following vectors:

1. Vector 13H (BIOS Disk Interrupt INT 13H).

2. Vector 21H (DOS-API Interrupt INT 21H).

3. Vector 25H (DOS: Absolute Disk Read Interrupt INT 25H)

“see [5]”.

4. Vector 26H (DOS: Absolute Disk Write Interrupt INT 26H).

Under DOS, if the virus knows that it exists in a virtual computer system, it

may try to use direct hardware access method to bypass the virtual computer handlers.

The virtual computer can use one of the following methods to prevent viruses from

accessing the disk: First, the handler of the virtual computer can reject any write to disk

request by returning some error code which indicates that the requested operation

Journal of Engineering Volume13 December 2007 Number4

 4411

cannot be performed because, for example, the drive is not ready. Rejecting all writes to

disk requests can help the virus in deciding whether it is working in a virtual computer

system or not. Second, the virtual computer system can trick the virus to believe that the

requested write to disk operation is performed while it is not. This can be done by

returning a no error code that indicates the requested operation performed properly,

without performing the actual operation. If this method used, the virus can decide

whether it is working in a virtual computer system or not by using the following trick:

1. Send a request to write the data block (BLK) to disk (C:).

2. Read the data block from disk (C:) into (BLK1)

3. If BLKBLK1, then, the data wasn’t written to the disk.

Therefore, the system is a virtual computer system.

Finally, all disk read/write operation can be redirected to a special RAM disk

instead of the actual disk. In this way, the virtual computer system can trick the virus to

believe that the requested write to disk operation was performed and the data written to

the disk properly, while the data was written to the RAM disk. If the virus request the

data later, the virtual computer can read it from the RAM disk. This means that the

virtual computer must handle both disk read and write operations, this explains why

vector 25H was redirect above.

2- Protecting the IVT: The virtual computer system must save the content of the IVT

before executing the virus, and restore it once the virus execution completed. This

ensures that any redirection to the IVT vectors by a resident type virus is fixed once the

virus execution is completed.

3- Protecting System RAM: Protecting the PC system RAM can be done as follow:

 Save the amount of the available URAM (the word at 0:0413H) before

executing the virus. And restore the content of 0:0413H once the virus

execution completed. This ensures that the virus cannot decrement the

amount of URAM and install itself at the end of the URAM.

 If the virus tries to allocate a memory block using function 48H of

INT 21H, then, the virtual computer must store the address of the

allocated memory block so that it can release this block once the virus

execution completed. Therefore, it must redirect vector 21H.

 Save a map of all memory control blocks “see [5”] before executing

the virus. And restore them once the virus execution completed. This

ensures that the virus cannot allocate memory by directly accessing

the memory control blocks.

 Redirect vector 66H to special handler before executing the virus. INT

66H is used to access the Expanded Memory Manger functions. This

interrupt must be handled only if the system uses expanded memory.

If the virus allocate a page (or pages) in the expanded memory, the

handler must store the handles reserved by the expanded memory

system for the allocated pages. This handle can be used to release the

reserved pages when the virus execution completed. Expanded

memory expands RAM beyond the 640KB limit, for more information

see [5].

 Extended memory exists in AT machines (the memory beyond the 1

MB limit “see [5]”). Because the eXtended Memory Manager

functions are called through a FAR CALL instruction, instead of the

special interrupt, the virtual computer cannot intercept requests to

the extended memory function. Therefore, the virtual computer must

ensure that all of the extended memory is free before executing the

virus. And free it again after the virus execution completed, to ensure

that viruses cannot allocate memory in the extended memory area.

H. M. A. Abdul-Hussain Computer Virology: Self-Defense System

H. M. Shabib

 4411

Execute SDR and Wait

After preparing the virtual computer system, LEP can execute E through its standard

entry point and wait until it receives a special call which indicate that the virus execution was

completed and SDR was executed. Note that LEP can switch from the virtual computer system

back to the normal system only after ensuring that the virus execution was completed.

Receiving the call is the clue that indicates to LEP that SDR is the currently active program.

Because viruses always try to disable or circumvent the protection mechanism, the following

requirements must be satisfied:

1- The virus cannot mask the call: Therefore, in the PC system the software interrupt

mechanism cannot be used to perform the call. Because the virus can redirect all of the

interrupt vectors to its own handler, therefore, it can mask the call and preventing it

from arriving to LEP. The call must be direct, that is, by using jump or call instructions.

This explains why LEP passes a pointer (LEP-TRAP) to its trapdoor to SDR in

PHASE-ONE.

2- The virus cannot deceive LEP: In order to deceive LEP by a tricky call, the virus must

know where to send the call and which information to pass with it. Therefore, the virus

cannot deceive LEP through LEP-TRAP, because it doesn’t know the correct values of

LEP-TRAP, EPN, and SIB. Since these variables passed from LEP to SDR in PHASE-

ONE and the virus was inactive at that time, therefore, there is no way to know these

variables by the virus.

SDR Operation in PHASE-TWO

When the SDR receives control in PHASE-TWO it will proceed as follows:

1. IF EIF=1 THEN go to 3

;E is clean

2. Continue the execution of E normally

;E is infected, start the repair cycle using VFEA

;Perform checksum test

3. i=1

4. C=CHKS-ALG(BLKi, CSNi)

5. IF C0 THEN go to 12

6. i=i+1

7. IF iN THEN go to 4

;All blocks are valid.

8. ERF=1 ;The memory image is repaired properly

9. SMI= Start of the repaired Memory Image

10. MIS= Size of the repaired Memory Image

11. Go to 15

;BLKi is invalid

12. ERF=0 ;The memory image cannot be repaired

13. Prepare SIB

14. EPN= Executable Private Number that was received from LEP in PHASE-ONE

;Transfer control to LEP through LEP-TRAP

15. JMP FAR PTR LEP-TRAP

Receiving Control from SDR

The virtual computer system prevents any program from writing to the system disk to

ensure that viruses cannot replicate themselves. However, the question is how the SDR of E can

repair the infected disk image of E. LEP can give the permission to the SDR to perform disk

write operations. SDR must call LEP through LEP-TRAP with the proper EPN and SIB to get

this permission. Giving this permission to SDR can be done in one of two ways:

Journal of Engineering Volume13 December 2007 Number4

 4414

1- Filtering: In this case, the virtual computer must be capable of distinguishing between

the SDR write to disk requests and the other requests. This can be done, for example,

by sending EPN and SIB with each request.

2- Restoring the IVT: LEP can restore the IVT content when receiving EPN and SIB

through its trapdoor. Therefore, SDR can access the disk as desired by using DOS and

BIOS services.

However, giving the permission to SDR to access the disk is not a good idea, because,

the virus exist in system memory and may, in some way, interfere with the SDR operation, so

there is a possibility that the virus will get the opportunity to access the disk. Therefore, the

following method is suggested: “Instead of giving the disk access permission to SDR, LEP

can repair the disk image by itself after receiving the necessary information from SDR”.

Therefore, as shown above, SDR return SMI and MIS to LEP through LEP-TRAP.

After receiving this information, LEP can proceed as follows:

1. Compare the received EPN with the one that was given to SDR in PHASE-ONE, if

not equal go to 6

2. Compare the received SIB with the one that was received from SDR at the end of

PHASE-ONE, if not equal go to 6

3. IF ERF=0, THEN, switch to normal mode “SDR cannot prepare a clean backup

image”.

“A clean backup image is available and LEP must use it to replace the infected disk

image, as follows:”

4. Use the MIS-byte block that starts at (SMI) to replace the executable whose private

number is EPN.

5. Switch to normal mode.

6. The SDR identification information (EPN or SIB) are invalid, therefore, reject the

call, and display alarm message.

4.5 Switching to Normal Mode

LEP can switch to normal mode after receiving the SDR request through LEP-TRAP

and repairing the infected disk image if necessary. LEP must do the following so that it can

switch to normal mode:

1. Restore the IVT

2. Release any memory block allocated during the virus execution using DOS function

48H, URAM, memory control blocks, expanded memory, and extended memory.

3. Release the memory allocated for E, to ensure that the viral code which exist at this

memory area will be destroyed.

4. Release the RAM disk memory area.

5- Vaccination

There is a large number of executables in the world. All of these executables are

developed without any built-in SDR. Clearly, some way must be found to convert these

executables to self-protected executable. Vaccination can be used to do this. In this research,

vaccination is defined as: “The process of converting an executable into a self-protected

executable by injecting the SDR module inside it”.

“Note: Some references (see [6]) refer to ‘Vaccination’ as one of the protection methods that

was suggested by IBM. Some anti-virus programs are designed to inject themselves inside the

executable files, and then operate like a ‘Benign Virus’ when the vaccinated program

executed. The injected anti-virus creates a signature (finger-print) of uninfected executable, and

display an alarm if the signature or executable size changed. Unfortunately, the alarm generated

after the virus execution. The difference between the suggested SDR and the Vaccine of IBM,

is that the SDR executed before any attached virus and uses sophisticated techniques to detect

and eradicate the virus”.

H. M. A. Abdul-Hussain Computer Virology: Self-Defense System

H. M. Shabib

 4411

In fact, the idea of vaccination is borrowed from viruses. A special program “called the

INJECTOR” will inject the executable by the vaccine (i.e. SDR). However, there is no

searching, or infection routine in this vaccine, therefore, the vaccine cannot replicate itself. The

word “injection/inject” is used instead of the word “infection/infect” to distinguish vaccination

from virus infection. The following steps can describe the algorithm used by INJECTOR to

inject SDR into an executable E.

Step-1: “Injecting SDR in the executable E”

This is similar to what the virus infection routines do, that is:

1. Store the contents of the standard entry point of E in SDR.

2. Attach SDR to E.

3. Redirect the standard entry point of E to point to the entry point of SDR.

After this injection, E will take the form of image  in Fig.6. From now, image

 is considered the correct executable image. If SDR receives control through the

standard entry point and after the completion of its execution, it can repair the image of E

to take the form of image  so that it can execute properly.

Step-2: “Preparing the SDR Module”

As shown in Fig.6, the correct image of E is image  from the SDR point of

view. Therefore, INJECTOR must prepare SDR with respect to this image. After

calculating and storing SOF, EOF, CDIS, CMIS, and the other critical bytes, INJECTOR

must divide image  into block (BLK1, ... BLKN) and store the checksum numbers in

the SDR table see fig. 3. Preparing the SDR header can be done easily if INJECTOR

knows which algorithms and functions are used by LEP. Otherwise, INJECTOR must

store the values of LOC1 and LOC2 in a message file so that LEP can prepare the SDR

module header.

- Efficiency Analysis

The efficiency of SDS must be analyzed to see whether it can satisfy all of the

requirements of IAVS or not. The efficiency of the SDS is determined according to the analysis

criteria presented in [4] . In what follows, SDS will be analyzed with respect to detection,

prevention, eradication, and damage control.

1- Detection: SDR classified as a Target-Based detection.

a- VGS= Max.: Because SDR knows every thing about the protected executable, it

can detect any change to this executable. Viruses cannot avoid detection by the

SDR, because, they cannot infect the executable without changing its contents.

Even stealth type viruses “see [7]” cannot deceive the SDR, because, they

cannot get the opportunity to execute before the SDR. Therefore, SDR

detection capability is independent from the virus generation date and VDC.

Also, if LEP cannot find any one of SDR modules, it concludes that the

protected executable was changed, and it might be infected by a virus.

b- TGS=1: Because SDR designed to detect viruses attached to the protected

executable only.

c- Capability: The following is concluded from a & b: “SDS can satisfy the

requirement of ideal Target-Based detection”.

- Prevention: Both VEP-Based and VIP-Based prevention can be used in SDS.

 VEP-Based Prevention: SDR classified as a VEP-Based prevention anti-

virus, because, it can detect the infection without giving viruses the

opportunity to execute.

a- VGS= Max.: SDR prevention is independent from the virus generation date and

VDC.

b- TGS= Max.: SDR will prevent the detected virus from infecting any target site

within its environment.

Journal of Engineering Volume13 December 2007 Number4

 4411

c- Capability: The following is concluded from a, b, and the fact that the SDR is

ideal with respect to detection: “SDS can satisfy the requirement of ideal

VEP-Based prevention”.

 VIP-Based Prevention: LEP classified as a VIP-Based prevention anti-virus,

because, it can prevent the detected virus from infecting a new target site

when executed in PHASE-TWO by using the virtual computer system.

a- VGS: It was mentioned in section 4.1 that the direct hardware access is the most

vulnerable spot that the virus can use to penetrate the virtual computer system.

Maximizing VGS thoroughly depends on the system that will implement the

SDS. VGS can be maximized, if SDS is implemented on a computer system

that provides hardware protection level (i.e. protected mode PC) with a

permission or privilege level that will prevent an unauthorized program to

direct access the hardware resources. Otherwise, VGS cannot be maximized.

B- TGS= Max.: LEP will try to prevent the detected virus from infecting any

target site within its environment.

c- Capability: The following is concluded from a & b:

 “SDS can satisfy the requirement of ideal VIP-Based prevention

if used on a system that provides hardware protection level (i.e.

Protected Mode PC)”.

 “SDS cannot satisfy the requirement of ideal VIP-Based

prevention if used on a system that lacks the hardware protection

level (i.e. Real Mode PC)”.

- Eradication: As shown above, two eradication algorithms (FBEA and VFEA) are used by

SDS:

 FBEA: FBEA uses Analysis-Based eradication technique. It analyzes the

protected executable and eradicates any foreign block.

a- VGS: FBEA eradication capability depend on the virus type, shell or intrusive

“see [7]”, and NAB-distribution method (SBD or CBD). Therefore, the FBEA

described above can eradicate only shell type viruses that use SBD method.

Even though, FBEA can be upgraded to eradicate CBD viruses, the virus

designers can design new strains of CBD-viruses that cannot be eradicated by

FBEA. Therefore, the FBEA eradication capability depends on the virus

generate date. This means that: “FBEA cannot maximize VGS”.

NOTE: FBEA is a good enhancement in the design of eradication algorithms. It is very

efficient eradication algorithm at the present time, because, it can eradicate, almost, all

of the currently available viruses.

b- TGS=1: Because FBEA designed to eradicate viruses from the protected

executable only.

c- Capability: The following is concluded from a & b: “SDS cannot satisfy the

requirement of ideal Analysis-Based eradication”.

 VFEA: VFEA uses Backup-Based eradication technique. In this case, the

infected disk image represents the vulnerable copy, and the repaired (i.e. by

the virus) memory image represents the backup copy.

a- VGS: VFEA can eradicate shell type viruses only and its eradication capability

depend on the virus generation date, this means that: “VFEA cannot

maximize VGS”.

b- TGS=1: VFEA designed to eradicate viruses from the protected executable

only.

c- Capability: The following is concluded from a & b: “SDS cannot satisfy the

requirement of ideal Backup-Based eradication”.

H. M. A. Abdul-Hussain Computer Virology: Self-Defense System

H. M. Shabib

 4414

NOTE: VFEA is a good enhancement in the design of eradication algorithms. It is very

efficient eradication algorithm at the present time, because, it can eradicate, almost, all

of the currently available shell-type viruses.

- Damage Control: SDS system can use Virus-Based, Cell-Based, and Backup-Based

damage control techniques.

 Virus-Based Damage Control: In PHASE-ONE, SDR classified as a Virus-

Based damage control anti-virus. Because it detects the virus before executing

it. Clearly, the virus cannot cause any damage if not executed. Virus-Based

damage control is similar to VEP-Based prevention, therefore, VGS= Max,

TGS= Max, and: “SDS can satisfy the requirement of ideal Virus-Based

damage control”.

 Cell-Based Damage Control: In PHASE-TWO, LEP classified as a Cell-

Based damage control anti-virus, because, it tries to prevent viruses from

destroying any target cell within its environment by using the virtual computer

system. Clearly, direct hardware access is still a vulnerable spot. Cell-Based

damage control is similar to VIP-Based prevention, therefore:

 “SDS can satisfy the requirement of ideal Cell-Based damage

control, if used on a system with hardware protection level”.

 “SDS cannot satisfy the requirement of ideal Cell-Based damage

control, if used on a system with no hardware protection level.

 Backup-Based Damage Control: In PHASE-TWO, LEP can store a backup

copy of the virus target cells such as FAT, RD, BPS, and CMOS RAM before

executing the virus. After the completion of the virus execution, LEP can

repair any target cell that was destroyed by the virus, by using its backup. This

technique is similar to saving the IVT before executing the virus and restoring

it after the completion of the virus execution. In this case, LEP classified as a

Backup-Based damage control anti-virus.

a- VGS= Max.: LEP protection is independent from the virus generation date and

VDC.

b- TGS: TGS depend on the number of target cells selected by LEP.

c- Capability: The following is concluded from a & b: LEP can protect any target

cell in the selected T-group against destruction by any virus, therefore: “SDS

can satisfy the requirement of ideal Backup-Based damage control”.

- SDR Size Optimization

SDR will increase the protected executable size and the time needed to load and

execute it. Therefore, minimizing the SDR size must be one of the design goals. One way to

minimize the code of SDR is to implement the FBEA as a LEP (or OS) service. As mentioned

earlier, the SDR calls the algorithm ‘CHKS-ALG’ with two arguments “Block number ‘BLKi’

and Checksum number ‘CSN’”. Clearly, it is not necessary to implement CHKS-ALG inside

each SDR. Instead CHKS-ALG can be implemented as a global OS service that can be used by

all SDRs. Note that the fact that the block size is different for different SDRs ensures that the

general trend to avoid standard protection is not violated. Assuming that CHKS-ALG uses a

standard CRC method, then, it can be implemented as a global service as follows:

CHKS-ALG

INPUT:

 BLKi= Start address of the block

 BLKS= Block Size in bytes

 CSN= The CRC checksum of the block.

OUTPUTS:

 C=0 ;Valid checksum

 C=1 ;Invalid checksum

Journal of Engineering Volume13 December 2007 Number4

 4411

In the same way, FBEA can be implemented as a global service. In this case, CHKS-

ALG can be implemented inside the global FBEA. The standard Input/Output of the global

FBEA can be defined as follows:

FBEA:

INPUTS:

 SMI, MIS, TOA, SOF, EOF

 N= Number of blocks in the memory image

 BLKS= Block Size

 Checksum Number Table: The table format is shown in Tab.9

OUTPUTS:

 C=0 ;Repair Succeed

 C=1 ;Repair Failed

- Conclusions and Discussion

A new approach in designing anti-virus system is presented in this paper. The proposed

system is called Self-Defence System (SDS). The purpose of this research is to design an anti-

virus system that complies with the requirements of ideal anti-virus system (IAVS) “see [4]. In

[4], it was mentioned that Dependent-Defence System (DDS) couldn’t satisfy the requirement

of the IAVS because of four problems. Now let us consider these problems from the SDS point

of view:

1- Lack of Knowledge: In principle, SDR must be implemented as integral part of the

protected executable during the development process and it must know every thing

about the protected executable. Therefore, SDS can satisfy the requirement of ideal

detection. However, if the SDR injected inside an existing executable using

vaccination, then, it is important to ensure that the executable is clean before injecting

the SDR. If a virus exists in the executable prior to the injection, then, SDR cannot

detect the presence of this virus.

2- Standard Protection: In principle, each SDR is designed and implemented by a different

manufacturer. Therefore, the code and data of SDR will be different from one SDR to

the other. For example, even though more than one SDR may use the FBEA, the block

size (BLKS) selected by each SDR and the location of the checksum number table

might be different. Clearly, viruses cannot deceive SDR without knowing this

information.

3- Intended Vulnerability: In SDS, the SDR capability in coping with viruses is considered

one of the executable quality factors. Good programs are those that can protect

themselves against viruses efficiently. Therefore, any failure in the SDR operation and

any undetectable infection have bad affects on the trustiness between the program

developer and his customers. They may, simply, do not purchase his programs if they

find that the SDRs associated with these programs are vulnerable.

4- Users Responsibility: In SDS, user responsibility is no longer a requirement or a factor

of efficiency, because, the SDR designer cannot claim that his program cannot protect

itself against the computer virus because the user do not use the protection program

properly. SDR is embedded inside the protected program and its operation is, or must

be, transparent for the computer user.

As a summary: “SDS system solves the problems (Lack of knowledge, Standard

Protection, Intended Vulnerability, and User Responsibility) found in DDS”.

H. M. A. Abdul-Hussain Computer Virology: Self-Defense System

H. M. Shabib

 4411

Also, SDS provides a good support to design and use new sophisticated and efficient

eradication algorithms. Even though FBEA is not ideal, it is considered a good enhancement in

the design of Analysis-Based eradication programs, relative to the eradication method used in

DDSs. In DDS, the eradication program can eradicate only ‘Known’ viruses. Any detected

virus must be ‘Identified’ by security professionals, the identification information stored in a

database, and a special eradication program designed to eradicate the virus. In SDS, FBEA

eradicate any foreign block that exists between the protected executable blocks. FBEA doesn’t

care whether the foreign block belong to a known virus, unknown virus, logic bomb, time

bomb, or a Trojan Horse.

Even though VFEA is not ideal, it is considered a good enhancement in the design of

Backup-Based eradication programs, relative to the methods used by DDS. In DDS, for each

target site (vulnerable copy), a backup copy must be stored in the disk. In SDS, VFEA depend

on the virus to generate the backup-copy and then use it to repair the vulnerable copy, therefore,

it has the following advantages relative to the method used by DDS:

 No disk space needed to store backups.

 There is no way that the virus will reside in the backup copy.

 There is no need to update the backup copy

References

-Garber, L., “Antivirus Technology Offers New Cures”, IEEE Computer Magazine,

February, 1998.

-Pfleeger, C., P., “SECURITY IN COMPUTING”, Prentice-Hall Inc., 1989.

-Kaspersky, E., “AVP Virus Encyclopedia”, Version 1.3 (1992-1997).

-Hamid M. A. Abdul-Hussain, “Computer Virology: Toward Designing An Ideal Anti-

Virus System”. Engineering Journal, College of Engineering, University of Baghdad.

Vol.8, No.3, 2002.

Tischer,M., “PCINTERN SYSTEM PROGRAMING”, Abacus, 1992

، د. عامر نزار فايز"فيروسات الكمبيوتر"الأردن، -عمان-جامعة الإسراء - ,1995

- Hamid M. A. Abdul-Hussain & Hamed M. Shabib, “Computer Virology: Formal

Analysis of Computer Viruses”. Engineering Journal, College of Engineering,

University of Baghdad. Vol.8, No.1, 2002.

List of Abbreviations

AT Advanced Technology

BPS Boot (or) Partition Sector

CBD Complex Block Distribution

CDIS Correct Disk Image Size

CMIS Correct Memory Image Size

CRC Cyclical Redundancy Check

CSN CheckSum Number

DDS Dependent Defense System

DIS Disk Image Size

DOS Disk Operating System

EBV Executable Based Variable

EIF Executable Infection Flag

EOF End Offset

EPN Executable Private Number

ERF Executable Repair Flag

FAT File Allocation Table

FBEA Foreign Block Eradication Algorithm

IAVS Ideal Anti-Virus System

Journal of Engineering Volume13 December 2007 Number4

 4411

IBM International Business Machine

IIB Image Information Block

IVT Interrupt Vector Table

LBC Loader Based Constant

LEP Load and Execute Program

LOC Trapdoor mark LOCATION

Max. Maximum

Min. Minimum

MIS Memory Image Size

NAB Number of Added Bytes

NCB Number of Changed Bytes

OS Operating System

PC Personal Computer

RD Route Directory

SBD Simple Block Distribution

SDS Self-Defense System

SDR Self-Defense Routine

SIB Secret Identification Block

SMI Start of Memory Image

SOF Start Offset

TGS Target site/cell Group Size

TMV Trapdoor Mark Value

TOA Trapdoor Offset Address

VDC Virus Deception Capability

VEP Virus Execution Probability

VFEA Virus Follower Eradication Algorithm

VGS Virus Group Size

VIP Virus Infection Probability

Tab.1

 LEP1 LEP2

File Name g TMV=g+6 g TMV= g305

HAMED.COM 72+65+77=214 220 65-69= -4 -307

MUNTHER.EXE 77+85+78=240 246 85-84= 1 304

KARIM.SYS 75+65+82=222 228 65-73= -8 -311

Tab.2

Filename LOC [LOC]=TMV

HAMED.COM 500 503

MUNTHER.EXE 1024 1027

KARIM.SYS 856 859

Tab.3 Primary SDR Module Standard Format

LOC1+ Size(Byte) Content Function/Algorithm Name

00H 4 TMV11 f11(LOC1, LBC11)=g11(LOC1,LBC12)

04H 4 TMV12 f12(LOC1,LBC13)=g12(LOC1,LBC14)

08H 4 CLEN f13(LEN)

0CH 4 CSN CHKS-ALG1

10H LEN SDR SDR code/data

Where:

LEN= SDR Module Length In bytes

CLEN= Coded Length

CSN= CheckSum Number

CHKS-ALG= CheckSum Algorithm

Tab.4 Redundant SDR Module Standard Format

LOC2+ Size(byte) Content Function/Algorithm Name

00H 4 TMV21 f21(LOC2,LBC21)=g21(LOC2,LBC22)

04H 4 TMV22 f22(LOC2,LBC23)=g22(LOC2,LBC24)

08H 4 CLEN f23(LEN)

0CH 4 CSN CHKS-ALG2

10H LEN SDR SDR code/data

H. M. A. Abdul-Hussain Computer Virology: Self-Defense System

H. M. Shabib

 4411

Tab.5 Message File Entry Format

Offset Size (Byte) Content

00H 11 Executable Name (E1, E2, ...)

0BH 4 Value of LOC1

0FH 4 Value of LOC2

Tab.6 IIB Standard Format

Offset Contents Description

00H SMI Start Address of the executable Memory Image

04H MIS Memory Image Size

08H DIS Disk Image Size

0CH EPN Executable Private Number

0EH TOA The SDR Trapdoor Offset Address relative to SMI

12H LEP-TRAP Far pointer to the trapdoor of LEP.

Tab.7

Conditions Description

(TOA=SOF) AND (MIS-TOA=EOF) Clean executable

(TOASOF) AND (MIS-TOA=EOF) Virus block before the SDR

(TOA=SOF) AND (MIS-TOAEOF) Virus block after the SDR

(TOASOF)AND (MIS-TOAEOF) CBD Virus

Tab.8 SIB Standard Format

Address Size (Byte) Content

00 2 Length of SIB in bytes

02 ? SIB contents

Tab.9 “SDR Checksum Numbers Table”

Block Number CRC-Checksum (CSN)

1 CSN1

2 CSN2

. .

. .

N CSNn

Journal of Engineering Volume13 December 2007 Number4

 4411

SDR

Secret Entry Point

(Trapdoor)

Exit Point

Secret

Communication

between LEP and E

V

E
LEP

Fig.1 Secret Vs. Standard Entry Point

Standard Entry Point

 E: Executable

 V: Virus

LEP SDR

Fig.2 Communication between LEP and SDR.

SIBIIB
PHASE-ONEPHASE-ONE

Trapdoor

LOC1 or LOC2

PHASE-TWO PHASE-TWO

Trapdoor

LEP-TRAP

SIBEPNSMIMIS

ERF

EIF

ERF

EIF

H. M. A. Abdul-Hussain Computer Virology: Self-Defense System

H. M. Shabib

 4411

BLK1

BLK2

BLK3

BLKN

BLK4

Trapdoor

SOF= Start offset

SMI

Start of Memory Image

CMIS

Correct Memory

Image Size

EOF= End Offset

Fig.3 The Protected Executable In Memory

End of memory

image

SDR

BLKS

BLK1

BLK2

BLK3

BLK4

"SDR"

BLK6

Virus

BLK1

BLK2

BLK3

BLK4

"SDR"
BLK5

BLK6

BLK1

BLK2
Virus

Start of BLK3

End of BLK3

BLK4

"SDR"

BLK5

BLK6

BLK1

BLK2

BLK3

BLK4

"SDR"

BLK5

BLK6

Virus

Fig.4 Simple Virus Distribution

BLK6

BLK1

BLK2

BLK3

BLK4

"SDR"

BLK5

    

Virus

Start of BLK5

End of BLK5

Virus
BLK1

BLK2

Virus

BLK3

BLK4

"SDR"

BLK5

BLK6



Journal of Engineering Volume13 December 2007 Number4

 4414

BLK1

BLK2

BLK3

BLK4

"SDR"

BLK6

Fig.5 Determining S and E

Virus

Start of BLK5

End of BLK5

MIS

SMI

S

4*BLKS

E

S+Z+BLKSZ

X

Y

X+Y=BLKS
P

E

E

SDR
Trapdoor

SOF

EOF

CDIS, CMIS

After Vaccination Before Vaccination

Fig.6 The Executable E Before and After Vaccination.

 

