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ABSTRACT 

The present paper presents an approach to optimize tooth contact analysis (TCA) of spiral 

bevel gear drivin by controlling the machine-tool settings that directly affects the shape of tooth and 

behavior of meshing and contact for mating gears. The proposed settings provide a pre-designed 

parabolic function of transmission errors and the desired location and orientation of the bearing 

contact. The main goal of detecting the pre-designed parabolic function of transmission errors is to 

reduce the gear noise which can be done by absorbing the linear function of transmission errors that 

are caused by gear misalignment. The model is generated with means of CAD software package 

and solid works program, the basic input design data imported by Gleason works standards. 

 
 الخلاصة:

في هذا البحث تم تقديم وسيلة لإيجاد أفضل تحليل لتلامس الأسنان للمسنن المخروطي الحلزوني وذلك بواسطة التحكم 
بضبط موقع الأداة لماكنة القطع الخاصة بهذا النوع من المسننات والتي تؤثر بشكل مباشر على شكل السن وسلوك المحاكاة 

إن الضبط المقترح لأداة القطع سوف يأخذ بنظر الاعتبار الأخطاء المتولدة من جراء آلية نقل  والتلامس بين المسننات المتعاشقة.
إن الهدف الرئيسي من هذا البحث هو تقليل الخطأ الحاصل  وكذلك موقع التحميل ومنحى التلامس الحاصل بين الأسنان. الحركة

نات المتعاشقة، وذلك لتخفيض مستوى الضوضاء المتولدة منها من جراء آلية نقل الحركة والمتسبب من عدم التطابق بين المسن
تم استخدام برنامج جاهز لتوليد النماذج الخاصة بهذا النوع من المسننات وفقاً ولغرض الشروع في هذه الدراسة،  عند التعشيق.

 لبيانات إدخال قياسية استخدمت لهذا الغرض.
 

 

KEYWORDS: Gear, Spiral, Bevel, Tool, Setting, TCA. 
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INTRODUCTION 

Tooth Contact Analysis (TCA) is a computational approach for analyzing the nature and 

quality of the meshing contact in a pair of gears. The concept of TCA was originally introduced in 

early 1960s as a research tool, and applied to spiral bevel gears. It is a powerful tool for the design 

and analysis of spiral bevel gear drives. Typical outputs of TCA are the graphs of contact patterns 

and transmission errors. 

TCA can simulate gear meshing contact characteristics under light and heavy loads. TCA 

program have been widely employed by gear engineers and researchers in their design of high 

strength and low noise spiral bevel gear drives. 

Application of TCA technology resulted in significant improvement in the development of 

bevel gear pairs, under given contact conditions (Lelkes and Marialigeti , 2002). 

Basically, machine tool setting means the guide to design and manufacture the gear drive. In  

the present work, a developed approach has been proposed to control and design suc a gear drive by 

simulating the meshing and changing the machine-tool settings to get optimal TCA. 

There are two methods for manufacturing spiral bevel gears, face milling and face hobbing. 

Both of which are widely employed by the gear manufacturing industry and can be implemented on 

modern CNC bevel gear generators (Litvin and Lee , 1989). 

Fig.(1) shows a 3D geometric model of spiral bevel gear. 

 

MACHINE-TOOL SETTENGS AND TCA 

 

Gear Machine-Tool Settings 

 

The proposed design provides the following: 

The gear-generating surface by ∑ G, the generated gear surface by ∑ 2, the pinion-generating 

tool surface by ∑ P, and the generated pinion surface ∑1. 

To set up the gear machine-tool settings, the following data should be given: 

Γ: shaft angle 

N2: gear tooth number, N1: pinion tooth number 

γ 2: gear root angle 

A: mean pitch cone distance 

β: mean spiral angle 

ψG: blade angle for gear cutter 

dG: average diameter of gear cutter 

wG: point width 

 

The gear pitch angle is represented by (Faydor L. Litvin and Alfonso Fuentes, 2004): 
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The pinion pitch angle is: 

 

μ1 = Γ- μ2   (2)  

The dedendum angles are: 

 

δ1= μ1- γ1 and δ2= μ2- γ2 (3)  

 

Gear Cutting Ratio 

The process of gear generation is based on the imaginary meshing of a crown-gear with the 

member-gear (Qi Fan 2006). 

The instantaneous axis of rotation by such meshing coincides with the pitch line axis ZP, as 

shown in Figs. (3) and (4). 

The generating surface ∑G which may be imagined as the surface of the crown gear, and be 

generated gear surface ∑2 contact each other at a line at every instant. The ratio of angular 

velocities of the crown gear and the being generated gear (the cutting ratio) remains constant while 

the spatial line of contact moves over surfaces ∑G and ∑2 . 

 The gear cutting ratio can be represented as follows (Litvin and Lee 1989): 
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Cutter Tip Radius, Radial Setting, and Cradle Angle 

 

From Fig.(5), it can be obtained the inside and outside tip radii of the head-cutter as follows 

(Litvin and Lee 1989): 
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Also, from the relation between the lengths and angles of the triangle OmOcMG of the same 

figure, it can be expressed the radial setting SG and cradle angle qG as follows: 
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DETERMINATION ANALYSIS OF THE MEAN CONTACT POINT 

The gear and pinion surfaces of spiral bevel gears are in point contact at every instant. The 

mean contact point is the center of the bearing contact and its location is selected generally at the 

middle of the working depth on gear tooth. Fig.(6) shows a gear tooth surface. Section AD is the 

gear tip, section BC is the pinion tip and it is parallel to the root line of the gear, and the working 

area is within ABCD (Faydor and Alfonso 2003). 

The mean contact point is located on a line which passes through the middle point of the two 

points at which the normal section of the gear surface intersects line AD and line BC respectively. 

In addition, the mean contact point must be on the gear surface. This means that is must satisfy the 

equation of meshing for the gear being generated by the tool. From these two requirements, the 

location of the mean contact point is determined (Joseph  and Thomas  2003). 

 

RELATION BEWEEN DIRECTIONS OF THE PATHS OF THE MEAN CONTACT POINT 

OVER THE GEAR AND PINION TOOTH SURFACES 

Fig.(7) shows the tangent plane to the gear and pinion surface at the mean contact point B. 

The relation between angles υ1 and υ2 depends on parameters in motion and the principal curvatures 

of the gear tooth surface. 

This relation can be expressed as follow (Gosselin C, Cloutier L and Brousseau J., 1991): 
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PINION MACHINE – TOOL SETTINGS 

There are five machine-tool settings mp1, Em, Lm, sp, and qp to be determined. The key to the 

solution of this problem is the determination of the cutting ratio mp1 (Lelkes M. and Marialigeti J., 

2002). 

 

Determination of Pinion Cutting Ratio 

Consider that surfaces ∑1 and ∑F are equivalent, and that surfaces ∑p and ∑Q are equivalent. 

Also the following data must be given ( Lelkes and Marialigeti  2002): 

1- The principal curvatures of the pinion surface at the mean contact point, Ik1  and IIk1 . 

2- The principal directions of the pinion surface at the mean contact point, Ie1


 and IIe1


. 

3- The coordinates of the mean contact point. 

4- The unit normal at the mean contact point. 

5- The coefficients a11, a12, and a22. 

 

The procedure to determine mp1 is as follows (Robert Handschuh 1997): 

 

Step 1: The angular velocity of the pinion is represented by  
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The angular velocity of the pinion cutter is represented by: 
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Therefore, the relative angular velocity )1( p


 can be obtained as follows: 
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Step 2: Representation of  pI

p en
 )1(  

 

The scalar  pI
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Step 3: Representation of  PII

p en
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Step 4: Representation of )1( pV


 

The velocity )1(V


 may be obtained by: 
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The velocity )( pV


 may be obtained by: 
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So, the sliding velocity )1( pV


 is described by: 
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Step 5: Representation of )1( p
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By using Eqs. (17), (18), and (19): 
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Also, it can be deduced that: 
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By considering only the x component in Eqs. (16) and (21): 
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Also by considering only the z component in Eqs. (16) and (21): 
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By multiplying Eq. (22) by cosδ1 and Eq. (23) by sinδ1, and adding the resulting equations: 
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Then, substituting Eq.(24) into Eq.(22): 
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Step 6: Representation of )1( pV


 
The matrix form of Eq.(21) may be represented by: 
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By substituting Eqs. (24) and (25) into Eq.(26): 
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Step 7: Representation of  )1()1( pp Vn
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Step 8: Representation of ).( )1()()()1( VxVxn pp
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Now, substituting Eqs.(14) and (27) into Eq.(32): 
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Vector )( )()1( pVx
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Vector )( )1()( Vxp
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  is represented by: 
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Subtracting Eq.(35) from Eq.(34): 
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Step 9: Representation of mp1  
Using Eqs. (12) and (25), the equation of a13 may be represented by: 
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(50)

 

 

Determination of Parameters Em and Lm 

Parameters Em and Lm of the pinion machine-tool settings have been shown in Figs.(3) and 

(4). Since the pinion cutting ratio mp1 has been determined, it is easy to find these two parameters 

(Litvin et.al 2001). 

By using Eq.(27) to determine vector )1( pV


 and applying Eq.(16): 
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Also: 
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Determination of Pinion Radial Setting and Cradle Angle 

The determination of the pinion radial setting and the cradle angle is based on the 

consideration that the position vectors of the pinion tooth surface and head-cutter must coincide at 

the mean contact point.  

 

For a straight-edged cutter( Lelkes and Marialigeti  2002 ) 

pppmfypp uEBqs  sinsinsin 
 

(53)
 

pppmfzfxpp uLBBqs  cossincossincos 11 
 

(54)
 

For a curved-edged cutter (Theodore  1981) 
 

PI

pp

mfypp
k
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(56)

 

Using sin
2
qp+cos

2
qp= 1, and eliminating qp then solving for pinion radius sp. Also eliminating 

sp, it can be solved the pinion cradle angle qp. 
 

NUMERICAL EXAMPLE 

The synthesis above is used to determine the machine-tool settings for a pair of spiral bevel 

gear drive, and then TCA computer program is developed to simulate the meshing of this pair under 

alignment and misalignment conditions, Fig.(8) represent the flow chart of the TCA computer 

program which has been developed in this work. 

 The major blank data is represented in Table (1), these data imported from standard Gleason 

works (Theodore 1981). 

 The straight blade is used to cut the gears and curved blade is used to cut the pinion, and 

Table (2) shows the input design data. Tables (3) and (4) show the output for the pinion machine-

tool settings. 

 Two conditions of misalignment are considered when the TCA is applied to simulate the 

meshing. They are the shift of pinion along its axis, which is denoted by ΔA, and the error of pinion 

shaft offset, which is denoted by ΔV. 

 The output of TCA program is shown in Figs. (9 to 18) and from these figures, its clear that 

there is a reduction in the transmission error for the case of using curved edged blade, where the 

value of the transmission error for the case of straight-edged blade with ΔA = − 0.05 mm, [Fig.(10)] 

is about (8 sec.) but for the case of using curved-edged blade with ΔA = − 0.05 mm, [Fig. (16)] is 

about (7 sec.), i.e. reduction ratio about (12% →15%). Also, the same tendency can be seen when 
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ΔA = + 0.05 mm, [Fig. (10) and Fig. (15)] and when ΔV = − 0.05 mm, [Fig. (13) and Fig. (18)], or 

ΔV = + 0.05 mm, [Fig. (12) and Fig. (17)]. 

CONCLUSION 

The main conclusions obtained from present work can be summarized as follows: 

1- A developed approach to simulate the optimal meshing and contact of spiral bevel gear 

drives has successfully applied by controlling the machine-tool settings. 

2- A new approach of TCA has been proposed. 

3- A computer program to evaluate the pinion machine-tool settings and function of 

transmission errors has been developed. 

4- The results of this computer program show the effect procedure which followed and leads 

us for controlling the bearing contact by reducing the errors of misalignment. 
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Fig.(1): Face Milling And Face Hobbing Generation Processes 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Fig.(2): 3D Geometric Model Of Gear And Pinion Created By Solid Works Program 
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Fig. (3): Top And Front Views Of Left-Hand Gear Generator 
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Fig. (4): Top And Front Views Of Right-Hand Gear Generator. 
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Fig.(5): The Front View Of The Installation Of The Head Cutter 
 

 

 

 

 

 

Fig. (6): Gear Tooth Surface 
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Fig.(7): Common Plane At The Mean Contact Point 
 

 

 
 

Fig.(8): Flow Chart Of Tooth Contact Analysis (TCA) Computer Program 

Start 

Input Design Data 

Γ, N2, N1, γ2, A, β, ψG, dG, wG 

Equations of tooth Surfaces 

(1 – 4) 

Calculate Pinion Machine – Tool Settings 

Equations (5 – 13) 

Simulate The Meshing (TCA) 

Equations (37 – 49) 

Types of 

cutter edge 
Straight Curved 

Equations 23, 55, 56 

Output: 

1- Path of contact 

2- Function of transmission errors 

End 

Equations 22, 53, 54 

Output: 

1- Path of contact 

2- Function of transmission errors 

End 
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Fig.(9): TCA Output, Straight- Edged 

            Blade, Alignment 

Fig.(10): TCA Output, Straight- Edged  

               Blade, ΔA= +0.05 Mm 

Fig.(14): TCA Output, Curved- Edged 

               Blade, Alignment. 

Fig.(13): TCA Output, Straight- Edged 

               Blade, ΔV= -0.05 Mm 

Fig.(11): TCA Output, Straight- Edged 

              Blade, ΔA= -0.05 Mm 

Fig.(12): TCA Output, Straight- Edged 

               Blade, ΔV= +0.05 Mm 
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Table (1): Blank Data 
 

 Pinion Gear 

Number of Teeth 10 41 

Diametric Pitch 141.199 mm 

Shaft Angle 90
ο
  

Mean Cone Distance 81.940 mm 

Outer Cone Distance 96.418 mm 

Whole Depth 8.509 mm 

Working Depth 7.671 mm 

Clearance 0.838 mm 

Face Width 28.931 mm 

Root Cone Angle 12
ο 

72
ο 

Mean Spiral Angle 35
ο 

Hand of Spiral R.H L.H 
 

Fig.(16): TCA Output, Curved- Edged 

               Blade, ΔA= -0.05 

Fig.(15): TCA Output, Curved- Edged 

               Blade, ΔA= +0.05 

Fig.(17): TCA Output, Curved- Edged 

               Blade, ΔV= +0.05 

Fig.(18): TCA Output, Curved-Edged 

               Blade, ΔV= -0.05 
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Table (2): Input Data 
 

 Gear Convex Side Gear Concave Side 

Gear Blade Angle 20
ο 

Gear Cutter Average Diameter 152.399 mm 

Gear Cutter Point Width 2.032 mm 

First Derivative of Gear Ratio - 0.0037 0.0055 

Semi major Axis of Contact Ellipse 4.343 mm 4.343 mm 

Contact Path Direction Angle 90
ο 

75
ο 

Radius of Blade 1016 mm 1270 mm 
 

 

Table (3): Pinion Mation Settings With Straight Blade 
 

 Pinion Concave Side Pinion Convex Side 

Blade Angle 16.5561
ο 

22.9907
ο 

Tip Radius of Cutter 75.303 mm 77.987 mm 

Radial 76.030 mm 68.525 mm 

Cradle Angle 63.1869
 ο 

54.1910 
ο 

Ratio of Roll 0.229 0.25348 

Machining Offset 4.421 mm - 6.213 mm 

Machine Center to Back + Sliding Base 0.539 mm 1.324 mm 
 

 

Table (4): Pinion Mation Settings With Curved Blade 
 

 Pinion Concave Side Pinion Convex Side 

Blade Angle 16.5561
ο 

22.9907
ο 

Blade Center (293.548, 0, -896.849) mm (499.998, 0, 1244.752) mm 

Tip Radius of Cutter 75.811 mm 77.314 mm 

Radial  75.077 mm
 

69.662 mm
 

Cradle Angle  63.0025 
ο 

54.09 
ο 

Ratio of Roll  0.23157 0.24915 

Machining Offset  3.059 mm -4.782 mm 

Machine Center to Back + Sliding Base 0.429 mm 0.916 mm 
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NOMENCLATUTE 

 

Index 

C tool surface (C = G, P) 

W work surface (W = 1, 2) 

G gear tool surface 

P pinion tool surface 

1 pinion surface 

2 gear surface 

I first principal 

II second principal 

 
Matrices and Vectors 

[A] matrix represents the relation between the principal curvatures and directions for 

mating surfaces 

[B] matrix represents homogenous coordinates of point B 

[Lab] matrix describes the transformation of vector from the Sb coordinate system to Sa 

coordinate system 

[Mab] matrix describes the transformation of coordinates from the Sb coordinate system to Sa 

coordinate system 

[N] matrix represents components of normal vector N


 

[n] matrix represents components of unit normal vector n


 

[ω] matrix represents components of angular velocity vector 


 

B


 Position vector of point B on a surface 

uB


 uB  /


 

vB


 vB  /


 

III ee


,  Unit vectors along the principal directions of the surface at the contact point 

kji


,,  Base vectors along axes X, Y, and Z, respectively 

N


 Normal vector of point B on a surface 
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n


 Unit normal vector of point B on a surface 

un


 un  /


 

vn


 vn  /


 
)(CWV


 Slide velocity of surfaces ∑C and ∑W 

V


 Transfer velocity vector 
)2()1( ,VV


 Velocity vectors of contact point in its motion over the pinion and gear surfaces, 

respectively  




 Angular velocity vector 
)(TQ


 Relative angular velocity vector of surface T  with respect to surface Q  




 Tangent vector 

 

 

Latin Symbols 

A mean pitch cone distance, mm 

A0,A1,A2 Coefficient of a quadratic equation 

B Point on a surface 

Em Machining offset, mm 

Lm Vector sum of machine center to back and sliding base 

mG2 Gear cutting ratio 
)1(

2

)1(

2 , III VV  The projections of vector )1(V


on vectors Ie2


and IIe2


, respectively, mm/sec 

XMCB Machine center to back 

XSB Sliding base, mm 

W Point width, mm 

a Constant 

aij Element of matrix [A] 

b Semi-minor axis of the contact ellipse, mm 

c Clearance, mm 

dg Average diameter of gear cutter, mm 

kn Normal curvature, mm  

q Cradle angle, deg 

r Tip radius of the cutter, mm 

s Radial setting, mm 

t Semi-major axis of the contact ellipse, mm 

 
Greek Symbols 

∑ Surface 

Γ Shaft angle, deg 

α Orientation angle of ellipse, deg 

β Mean spiral angle, deg 

δ Dedendum angle, deg 

є Specified tolerance value 

γ Root angle, deg 

μ Pitch angle, deg  
2G  Angular velocity in relative motion, rad/sec 

2,1  Angles formed between vectors )1(V


 and Ie2


, and )2(V


and Ie2


, respectively, deg. 


