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ABSTRACT 

 This paper presents the design of a sliding mode controller for an uncertain model of a 

TORA system (Translational Oscillations with a Rotational Actuator) as a two DOF underactuated 

mechanical system. The switching function is selected to make the TORA system an asymptotically 

stable mass-spring system with a nonlinear damping effect when the sliding mode controller 

constrains the state to the sliding manifold. This sliding mode controller is derived here according to 

a new formula consisting of continuous and discontinuous parts. The main obstacle in the controller 

design is the uncertainty in the switching function, which appears in the controller formula. The 

sliding controller is found effective in bringing the system state to the neighborhood of the 

equilibrium point in spite of the uncertainty in the switching function. In addition, the chattering 

problem is solved via the use of approximate signum function. 

 

 :الخلاصة

حقى . راث دسجخقيٍ نهحشيقت كًُوىيقت ححقج انقذ    TORA ألحصًيى يسيطش رو شكم يُزنق  نًُوىيقت انبحث هزا يخُاول  

خطي ورنك عُذيا يحذد انًسيطش انحانت  لاَابط يسخقشة ي  يخًذ -كًُوىيت كخهت  TORA  ألاخخياس دانت انخبذيم نخجعم يُوىيت 

ء يسقخًش و جقزء ريقش  قي هقزا انبحقث حبعقا نصقيةت جذيقذة حخكقىٌ يقٍ جقز صقيةت انًسقيطش انًُزنق  اشقخقاقحى . زلاقلاَسطح ا إنى

وجذ انًسيطش انًُزنق  . نعقبت الأكبش  ي حصًيى انًسيطش هي انةًىض  ي دانت انخبذيم وانخي حوهش  ي صيةت انًسيطشإٌ ا. يسخًش

بالإظا ت إنى رانك حى حم . انةًىض  ي دانت انخبذيمعهى انشرى يٍ  الاسخقشاسيُطقت حجاوس َقطت  إنى عالاً  ي جهب حانت انًُوىيت 

  .شيبيت نذانت الإشاسةيشكهت الاسحجاج  باسخخذاو دانت حق

 

KEYWORDS: under actuated mechanical system, sliding mode controller, uncertainty  

 

INTRODUCTION 

Underactuated system is a mechanical system with number of actuators less than the number 

of configuration variables that describe the mechanical system behavior according to Euler-

Lagrange equation. The TORA system is a two DOF mechanical system where the mass-spring 

system is actuated via the rotation of an eccentric mass, as shown in Fig. 1. During the past decade 

many nonlinear controller design techniques were applied to the TORA system. Jankovic et. al. 

(Jankovic et. al. 1996) applied a passivity-based approach to the TORA system. Olfati-Saber 
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(Olfati-Saber 2001) transformed the underactuated system to a normal form that depends on the 

relative degree, and then applied known control strategies like the backstepping. The same approach 

of Olfati-Saber was applied by Qaiser et. al. (Qaiser et. al. 2007) to the TORA system. Zhong-Ping 

J. and Kanellakopoulos I. (Zhong-Ping and Kanellakopoulos 2000) proposed an observer/controller 

backstepping design in which one of the unmeasured state appears quadratically in the state 

equation. The backstepping approach applied to a nonlinear system assume exact system model. A 

complicated formula may result due to the application of the backstepping approach as reported in 

reference (Jankovic et. al. 1996).  

 

 

 

 

 

 

   

 

 

                      

 

 

   
The systems considered thus far are assumed certain systems. However, uncertainty is a 

major problem that has not been considered in controller design of underactuated systems thus far. 

Application of uncertainty is a unique, challenging and interesting research area (Spong 1997). In 

this work, the sliding mode controller design is accomplished for an uncertain TORA system model 

after transforming it to a form known as the regular form (Luk'yanov and Utkin 1981). A suitable 

switching function for the sliding controller is selected to constrain the system state to its zero-level 

(sliding manifold). A successful design implies that the dynamic of the underactuated system at this 

manifold is asymptotically stable. 

Uncertainty in system parameters of an underactuated system leads to many problems like 

the non-linearizability, difficulty in selecting an attractive surface and the uncertainty in switching 

function. An attractive switching surface is proposed in reference (Hameed 2007) based on the 

flatness property of the TORA system. In addition, using uncertain switching function in controller 

formula ensures only the state is constrained in a region about the equilibrium point (Hameed 

2007).   
The organization of this paper is as follows: the mathematical model is derived in section 

two. Section three is devoted to the design of a sliding mode controller which includes the selection 

of switching manifold based on flatness theory, the effects of using approximate signum function 

and the presence of uncertainty in switching function. The new sliding mode controller formula is 

presented in section four and the derivation are given in appendix (A). Section five presents the 

results and discussion of four numerical simulation tests and finally the conclusion is presented in 

section six. 

  

MATHEMATICAL FORMULATION 

As shown in Fig. 1, the TORA system consists of translational oscillating platform, which is 

controlled via a rotational eccentric mass. The inertia matrix, potential energy and the force vector 

(one-form) assume the following form (Olfati-Saber 2001); 
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Fig 1: The TORA system. 
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The dynamical equation of the TORA system are (Hameed 2007): 
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 Corollary (3.1) in reference (Hameed 2007) proves that the TORA system is a flat system 

since 11m  is constant for the actuated shape variable. The flat output is given by; 
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Differentiating eq.(2) twice and with the aid of eq.(1) yields the underdetermined differential 

equation, i.e.; 

x
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Eliminating x  from eqs. (2) and (3), the underdetermined equation assumes the following form; 
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 The design of the sliding controller in the next item assumes the following statements; 

i. The output y  and its derivatives are assumed to be known precisely, which is an essential 

assumption. 

ii. The rest points for the TORA system in terms of the configuration variables  ,x  is the rest 

point set       ,:,0 .  

According to statement (ii), the controller must be able to translate the state from any condition (any 

perturbed condition) to the rest point set described here only. 

 

SLIDING MODE CONTROLLER DESIGN 

 The work reported in this section is based on the results of three propositions; namely 

propositions (4.2), (5.7) and (5.5) and lemma (5.1) of reference (Hameed 2007). The interested 

reader may refer to reference (Hameed 2007) for the proof of these propositions and the lemma. For 

convenience, however, only the proof of proposition (5.7) is presented here due to its importance. 

  

Selection of Switching Manifold  

 Selection of the switching manifold is the subject of proposition (4.2), (Hameed 2007). It 

states that; The selection of the function s ,where 
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will globally asymptotically stabilizes the 2DOF flat underactuated mechanical system with sliding 

mode controller provided that: 0,)( 21 kki , and   00,0)( 00  oqqfii . 

A TORA system with this switching manifold becomes globally asymptotically stable 

(GAS) according to proposition (5.7), (Hameed 2007). The statement of this proposition is; 

Proposition: Consider the TORA system dynamic given by eq. (1), the sliding controller u  that use 

the following switching function: 

yce

ees
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Render the TORA system GAS system, where c  is a design parameter in the error function, which 

has a damping effect. 

Proof: To prove the validity of the switching function in eq. (5), first it is needed to show that y  is 

asymptotically stable (AS) with 0e , i.e., if we write  eyyfy ,,    at any e , then 

 0,, yyfy    is AS. Then it is required to show that the upper sub system given by eq. (4) is (ISS) 

with e  regarded as a disturbance. Finally it is required to show that the selection of s  will not lead 

to a singularity in input channel i.e. 0sLg  at any point of  ,x . The underdetermined equation 

y  given by eq. (4) may be written in state space form as; 
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Now let the Lyapunov function be given by; 
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Therefore, V  is negative semi definite when A  is chosen as 
21 mm

K
A


  and V  is a proper 

Lyapunov function provided that the only equilibrium point is at the origin. To show that the TORA 

system is ISS, re-write eq. (5) with 0e , i.e.; 
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Clearly 2y  is globally Lipstize function. It means that  21 ,, yyeg  is a bounded quantity defined 

as;  
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The TORA system is ISS because the following integral 


0

ed  is bounded since 
 




e
t ,0
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 stt ,0 . It is GAS according to theorem (4.4) in reference (Hameed 2007). Finally, sLg  is greater 

than zero as will be shown later on when the controller is designed.         

 

Approximate Signum Function 

To avoid chattering, the approximate form of the signum function will be used. It is given 

by; 
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The effect of the approximate signum function on the attractiveness of the sliding manifold is 

governed by lemma (5.1), (Hameed 2007). It states that; The use of the approximate signum 

function in eq. (12) guarantee the existence of the following attractive boundary layer around the 

switching manifold 0s : 

00   s                                                                                                                                  (13) 

Using  appssgn  guarantees only the attractiveness of a region bounded by a boundary layer in eq. 

(13). 
 

Uncertainty in Switching Function s 

The effect of using uncertain switching function in the sliding mode controller design will now be 

considered. The uncertainty in switching function is due to many reasons like the measurement 

error and/or the uncertainty in the output function calculation and its derivatives. Since the 

switching function is constructed from these quantities, then this function becomes uncertain. The 

uncertainty in switching function s is treated by proposition (5.5), (Hameed 2007). It states that: 

Consider the underdetermined equation for a system given in the following form 

   uxgxfx                                                                                                                          (14) 

then the use of uncertain switching function in the controller design renders the system stable and 

stay in a bounded region around the origin if and only if the underdetermined equation is ISS. 

 

SLIDING CONTROLLER FORMULA 

An approach is developed in reference (Hameed 2007) for formulating sliding mode 

controller law for the dynamic system given by eq.(14) with scalar input u. The approach utilizes 

bounded estimation for the uncertainty in the Lie derivative of the switching function s  with 

respect to f and g respectively. Starting from the time rate of change of the switching function s  

with respect to the system dynamic of eq. (14) as; 

 usLsLs gf                                                                                                                             (15) 
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where sL f  and sLg  are the lie derivatives of s with respect to f and g, respectively. Re-writing 

sL f  terms of its nominal value as follows; 

        sLsLsLsLsLsL fnomfnomffnomff                                                           (16) 

where,    sLsLsL fnomff   , and; 

     
nomfffnomff sLsLsLsL                                                                                (17) 

Similarly, for sLg  and noting that 0sLg
; 
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where  
nomf sL  and  

nomg sL  are the sL f  and sLg  at the system nominal parameter values and 

f  and g  are the percent estimation of the variation of sL f  and sLg  from their nominal 

values, respectively. Now the design of the controller law can be implemented using proposition 

(5.1), (Hameed 2007). The proposition states that: Consider the uncertain dynamical model 

described by eq. (14), the sliding mode controller that constrains the state to the switching manifold 

takes the following form; 
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The estimation of the upper and lower variation of sL f and sLg  is not an easy task, it 

requires that each parameter variation should be considered separately. To overcome the problem of 

the uncertainty in system model, the Lie derivative of the switching function sL f  is decomposed 

into uncertain and certain terms. Also, the uncertain term is decomposed to l terms as:  
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This approach is suitable for a more complicated type of system, which frequently appear in 

the underactuated mechanical system. Let each of the uncertain terms satisfy the following bounded 

formula: 
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The difference  
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where  lf  ,........,min 1 . Add the absolute value of the certain term to the right hand side 

of the inequality above we get; 
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Hence, the following estimation is obtained; 
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Note that    
nomfnomf sLsL   and because of this inequality requirement the certain part of 

sL f  is added.  

The following general formula for the sliding mode controller design in the presence of 

uncertainty in system parameters can now be stated. This is the subject matter of proposition (5.2), 

(Hameed 2007); it states that: Consider the dynamical system given in eq. (14). Assume that the Lie 

derivative of the switching function  xss   with respect to f  given by the form in eq. (22) and 

each of its i
th

 component satisfy inequality (23), then the sliding controller that render the 

dynamical system AS in the presence of uncertainty in system model is given by: 
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Appendix (A) presents sliding mode controller design details for the TORA system and the 

control law is given by eq. (A.22). 

 

SIMULATION RESULTS 

 The results of a set of numerical experiments using the designed sliding mode controller 

were carried out and Figs. 2 to 15 summarize the results. Throughout the simulations, the 

parameters value are taken as: 25.101 m , 97.02 m , 02.1r , 1I , 17.5K , and the 

initial conditions are;    0,0,0,1,,,  xx . The units of the physical quantities are taken as meter, 

kilogram and Newton for length quantity, mass and force, respectively. 

Responses shown in Figs. 2 to 7 are carried out with 1c (eqs. (5) and (7)), exact signum 

function and without uncertainty in switching function. Figure 2 shows the position x  with time 

where a damping like behavior is obtained with 1c . This is due to the selection of the error 

function where the  sin  term (after reaching 0e ) provide the damping effect. This effect 

stabilizes the mass-spring system. The system is highly undamped and the settling time is of the 

order of 200 seconds. The plots of x ,  , and   with time are shown in Figs. 3, 4, and 5, 

respectively.  
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Fig. 2: Displacement versus time. 
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Fig. 3: Velocity versus time. 
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Fig. 4: Angle of eccentric mass versus time. 
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                                          Fig. 5: Angular velocity versus time. 

Figure 6 shows the switching function response with time. The figure shows that the time 

required to reach zero-level is less than one seconds. In order to reduce the reaching time to the 

switching manifold a higher discontinuous gain value is required. However, this causes a high 

chattering effect. Also, the state is constraint to the switching manifold with very small amplitude of 

oscillation around it and this is because of the very small switching time interval used in the 

simulation. Indeed a larger value of the switching time interval causes an oscillation with higher 

amplitude around the switching manifold and consequently the motion is known as "zig-zag" 

motion (Drakunov and Utkin 1989).  
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The sliding control action is shown in Fig. 7. From this figure, it can be noticed that the 

discontinuous action nature is clear through the black region. In addition, the amplitude of the 

controller reduces to zero with time and it is guaranteed due to the use of variable amplitude 

 sLsL gf  (eq. (27)).  
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Fig. 6: Switching function versus time. 
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Fig. 7: Control action (torque) versus time. 

  For a certain model of the TORA system, Olfati-Saber (Olfati-Saber 2001) designed a 

nonlinear controller based on backstepping technique with certain parameter values. By utilizing 

these nominal values in this work, it is deduced from Fig. 8 that the displacement x  is similar to 

those of Olfati-Saber. However, in reference (Olfati-Saber 2001) the maximum torque required do 
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not exceed mN. 3 , while in Fig. 7 the control action reaches mN. 01 . The increase in torque is 

mainly due to the uncertainty taken into account in the controller design. 

Increasing the damping effect by selecting 5c  will greatly improve the response, as can 

be clearly seen in Figs. 8 and 9. Figure 8 shows the plot of displacement x  with time where the 

settling time is reduced to about 60 seconds. While Fig. 9 plots the control u  with time. The 

maximum controller action increases due to higher damping property required. A comparison 

between Figs. 7 and 9 clearly shows the torque has increased by about 100%.  
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Fig. 8: Displacement versus time. 
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Fig. 9: Control action versus time. 
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A series of numerical tests were carried out where instead of the signum function the 

approximate one is used with 5c . The plot of displacement x  with time (Fig. 10) is unaffected 

due to the use of approximate signum function in comparison with the exact signum function shown 

in Fig. 8. Figures 11 and 12 show the switching function plot. A smooth sliding mode controller 

action versus time is obtained due to the use of the approximate switching function.  

It can be observed from Fig. 11,  the state stays at the switching manifold without chattering, 

that is smooth system behavior. A comparison between Figs. 9 and 12 reveals that the maximum 

torque has been reduced to approximately 10 N.m. This is because of the discontinuous part 

amplitude near the switching manifold is smaller due to the use of the approximate signum function. 

 

                     
0 20 40 60 80 100

Time, s

-1.0

-0.5

0.0

0.5

1.0

D
is

p
la

c
e
m

e
n

t 
x
, 
m

 

Fig. 10: Displacement versus time. 
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Fig. 11: Switching function versus time. 
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Fig. 12: Control action versus time. 

 The uncertainty of the switching function (proposition (5.5), (Hameed 2007) (section (3.2))) 

is also tested. Figures 13 to 15 summarize the main results.  Figure 13 shows the plot of 

displacement x  with time while Figs. 14 and 15 show the plot of the switching function s  and the 

controller u  with time, respectively. The results shown in Figs. 13, 14, and 15 show that the 

system is AS in spite of the presence of the uncertainty in the switching function (the nominal 

parameter values is used in the calculation of switching function). On the other hand, the boundary 

layer does not appear clearly in the plot of the switching function in Fig. 14 due to the small 

uncertainty assumption in system parameters ( %5 ). 
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Fig. 13: Displacement versus time. 
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Fig. 14: Switching function versus time. 
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Fig. 15: Control action versus time. 

 

CONCLUSIONS 

The present work shows the effectiveness of the sliding mode control theory for the design 

of a nonlinear controller for the TORA system as a two DOF underactuated mechanical system with 

model uncertainty. When the sliding controller force the state to the sliding manifold, the TORA 

system behaves like a spring–mass system with nonlinear damping effect due to the actuation of the 

eccentric mass. A numerical simulation shows that the proposed controller is robust with respect to 

the disturbances and uncertainty in system model. In addition the sliding mode controller is found 
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effective in spite of the uncertainty in the switching function. Finally, these simulations prove the 

applicability of the new sliding controller formula in equations (28) and (29). 
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NOMENCLATURE 

 

Symbols 

AS:  Asymptotically Stable. 

DOF: Degree Of Freedom. 

GAS: Globally Asymptotically Stable. 

ISS: Input-to-State Stable. 

og : Acceleration due to gravitational attraction (
2

0 8.9 smg  ). 
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I : Moment of inertia of the eccentric mass about its own center. 

K : Spring constant [ mN ]. 

sLsL gf , : Lie derivative of switching function with respect to f and g vector felids respectively.  

   
uncfcerf sLsL , : Certain and uncertain parts of sL f   

1m :  Platform mass [ Kg ]. 

2m : Eccentric mass [ Kg ]. 

r : Rotor radius [ m ]. 

sgn() : The signum function. 

 
app

sgn : Approximate signum function. 

 

GREEK SYMBOLS 

 : Determinant of the inertia matrix ( Mdet ). 

f  , g : percent estimation of the variation of sL f  and sLg  from their nominal values, 

               respectively. 

c, : controller design parameters 

 

APPENDIX A 

 

Computing Controller Formula For The Tora System  

To compute the control action u  for the TORA system the rate of change of the switching 

function is computed first as: 

    1

2

1 tantan   cye                                                                                                  (A.1) 

 2
1 







e                                                                                                                             (A.2) 

 

  

  22

2

2

1

2

1 














e                                                                                                           (A.3) 

where yccy  2  then; 

 

 

    222

2

2
11

2

1 






















s                                                                                      (A.4) 

In addition sL f  and sLg  are given by; 

           

   

 

 

    222

2

2

0221

22
2

2

11

2

1

sin

coscossin












































rgmmm

xrKmrm
sL f

                                     (A.5) 













 21 mm

sLg                                                                                                                       (A.6) 

Following eq. (21), sL f  is decomposed to the following form; 
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   
cerf

i
iuncff sLsLsL 



3

1
,

                                                                                                    (A.7) 

where,  

 
 

 

    222

2

2
11

2

1 






















cerf sL                                                                       (A.8) 

   
    2

2

2

1,
cossin  




rm
sL

uncf                                                                                      (A.9) 

   
 x

rKm
sL

uncf cos2

2, 
                                                                                                   (A.10) 

   
 sin0221

3, 




rgmmm
sL

uncf                                                                                    (A.11) 

The nominal parameter values
1
 are 101 m , 122  Irm , 5K  (Olfati-Saber 2001), 

81.90 g . Assuming the maximum/minimum variation values are bounded by %5  of its 

nominal values, then   
nomiuncf sL

,
,  

nomf sL  and  
nomg sL   are; 

  
  

    2
21,

cossin
sin21

1

















nomuncf sL                                                               (A.12) 

  
  

 xsL
nomuncf 


cos

sin21

5
22, 









                                                                        (A.13) 

  
  

 


sin
sin21

110
23, 











nomuncf sL                                                                              (A.14) 

 

          

    

 

    222

2

22

2

11

2

1sin21

sin110cos5cossin
































 x
sL

nomf  

                                                                                                                                                      (A.15) 

 
  2

sin21

11




nomg sL                                                                                                         (A.16) 

For  
nomf sL , compute first i , 3,2,1i of the bounded estimation for each component of 

 
uncf sL  with   2sin81.007.18min   as in the following; 

      
     

    2
22

4

1,1,
cossin

sin21

1

sin81.007.18

05.1
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

nomuncfuncf sLsL

        
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    
   
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2

244

sin21
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





 
 

                                           
1
  Throughout the simulations in this work the units of physical quantities is taken as meter unit for length quantity, 

kilogram for mass, and Newton for force. 
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However, 
        

  
12

244

42.0
sin81.007.18

sin81.005.107.182105.1
max 









  at    1sin  . Then we 

have: 

       
nomuncf

nomuncfuncf sLsLsL
1,1,1,

42.0                                                                  (A.17) 

In the same way, we get; 

       
nomuncf

nomuncfuncf sLsLsL
2,2,2,

29.0                                                               (A.18) 

       
nomuncf

nomuncfuncf sLsLsL
3,3,3,

35.0                                                                  (A.19) 

The term sL f
 takes the following form; 
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                 (A.20) 

where     29.035.0,29.0,42.0min,,min 321   f . 

Also for sLg , g  is computed as; 

   
     

   
nomgnomggnomgg sLsLsLsL 23.0
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                                                                                                                                                     (A.21) 

                                 

Now the sliding controller as in proposition (5.2), (Hameed 2007) is given by: 

s
sL

sL
u
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