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ABSTRACT

Cracks may appear in structures due to manufacturing processes and some time are appeared in the
structure product from casting, these struetures may be used but in the life less than the design life
according to crack propagation on it.

In this research a thick cylinder has one crack or more is investigated to estimate the life under
pulsation internal pressure. Finite element method with J-integral approach has been used to
evaluate the numerical strain energy release rate (I) for the thick cylinder and the stress intensity
factor (SIF

J-integral method is most accurate method to evaluate the SIF for the elastic-plastic materiel by
considering the local plastic zone near crack ap.

Software developed using the FEM: J-integral; SIF and Paris formula to estimate ‘the life of the
component 1s presented with many working examples. :
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INTRODUCTION
Mechanical failures have caused many injuries and much financial loss. Fatigue has accounted for
many of these mechanical failures; most of these are unexpected fractures.
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Fatigue failure is characterized by three stages crack initiation, crack growth, and fast fracture. A
fatigue crack usually starts at the surface perpendicular to the maximum tensile stress. Under the
repeated action of the tensile stresses, the crack grows, weakening the section. As the section
gradually weakens, the crack grows faster until sudden fracture occurs.
The word “fatigue” was first introduced in 1840s and 1850s to describe failures occurring due to
repeated stresses. In Germany, during the 1850s and 1860s Wohler performed many fatigue tests
under repeated stresses. He showed from stress versus life (S-N) diagrams how fatigue life
decreased with higher stress amplitudes and that below a certain stress amplitude, the test specimen
did not fracture. Thus, Wohler introduced the concept of (S-N) diagram and the life limit. He
pointed out that for fatigue, the range of stresses is more important than the maximum stress.
In 1920, Griffith published the results of his theoretical calculations and experiments on brittle
fracture using glass. His results gave the critical tensile stress &, = J2Ey /ma , in which the quantity,
v, referred to the specific surface energy of the material, E, to the Young’s modulus of elasticity
and, a, represented the crack length. By introducing line cracks of length 2a in a given material and
recording the various loads at incipient fracture, Griffith had shown that the product o, m
remained essentially constant.
In 1957, [Irwin] contribute another major advance by showing that the energy approach is
equivalent to the stress intensity approach, i.e. failure occur when the stress intensity factor reaches
its maximum value denoted by Kec.
Paris [Paris] in the early of 1960s showed that crack growth rate (da/dN) could be best described
using the stress intensity factor range (AKI). On the other hand, Paris argued that the growth rate
should be a function of the stress intensity factor on the ground that this factor defines the elastic
stress field around the crack tip.
The application of principles of fracture mechanics to practical problems requires knowledge of
crack size, the service stress, the appropriate properties of the materials, and the stress intensity
factor. In practical problems, structural geometry and loading are often so complex that the
available stress intensity factor solutions are inadequate.
Although FEM is a powerful technique in determining the values of displacement, strain and stress
at any point in the domain of elasticity problems, but the results of which are rather distorted at the
zones very closed to the crack tip due to the singularity of the solution there, where the values of
stresses tend to infinity. So the subsequent determination of the stress intensity factor based on
these result are not reliable enough, especially when precise and accurate stress intensity factors are
required in important and expensive engineering applications.
So the need of an effective technique appears. It was the J-integral method, which represents the
energy release rate or the rate of change of potential energy. It was proved that its value is equal to
the rate of energy required for crack extension.
The path independence of the J-integral expression allows calculation along a contour remote from
the crack tip. Such as a contour can be chosen (o contain only elastic loads and displacements.
Thus, an elastic plastic energy release rate can be obtained from an elastic calculation along a
contour for which loads and displacement are known.
J-Integral were first be driven by Eshelby [Eshelby] in 1956. Cherepanor [Cherepanor| and Rice
[Rice] were apply such an integral to crack problems, Rice used it in 1968 as a fracture criterion,
and as a technique for calculating stress intensity factor, since under linear elastic fracture
mechanics (LEFM) conditions, the I value may be equated to the strain energy release rate, G,
which can be related by simple expression to the stress intensity factor, K.
In 1975, Knott [Knott] showed that the J-integral approach could be employed to characterize
fracture in some ways, which may be open to discussion, but should be tested by experiment.
In 1993, Azodi and Bachmann [Azodi] investigated and analyzed the fatigue crack growth in
pressure vessel under cyclic loading using FE analysis based on the calculation of the J-integral.
Comparing the results to a standard solution, high accuracy was obtained.
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AL-Edani [)\L~Edani] in 1996 developed a method of implementing the rotational effects in the J-
integral equation. This method was based on applying the integration by parts theorems to the
equilibrium equation in terms of internal displacements and their derivatives.

THE BASIC EQUATIONS
Griftith Equation may be rearranged in the form [Mare]:
wola

e )

The lefi-hand side in eq (1) has been designated the energy release rate, G, and represents the elastic
energy per unit crack surface area that is available for infinitesimal crack extension. The right hand
side in eq (1) represent the surface energy increases that would occur owing to infinitesimal crack
extension, and is designated the crack resistance, R.

It follows that G must be at least equal to R before unstable crack growth occurs. If R is constant,

this means that G must exceed a critical value G, .

&
Or in other words, fracture oceurs when:

B opeued
RO d yidcing g
= 4 = GC = R (2)
E E :

Where the critical value &, can be obtained by measuring the stress o, required fracturing a plate
with a crack of size 2a.

Owing to the practical difficulties of the energy approach Irwin made a major advance when he
developed the stress intensity approach. First, from linear elastic theory, Irwin showed that the
stress in the vicinity of a crack tip take the form:

% = e (0)+.... (3)

Where:

r, & are the polar coordinates of a point with respect to the crack tip.

K is a constant that gives the magnitude of the elastic stress field. It is called the stress intensity
factor,

Irwin then demonstrated that if a crack is extended by amount da, the work done by the stress field
ahead of the crack when moving through the displacement corresponding to a crack of length
(a +da) is formally equivalent to the change in strain energy Gda. Thus the achievement of a

critical stress intensity factor, K, is exactly equivalent to the Griffith-Irwin energy balance
approach which requires the achievement of a stored elastic strain energy equal to G .
For tensile loading, the relation between G and K are [Marc]:

2
G == plane stress

c

K? . (4)
G, = ”‘EL (1 - U”) plane strain

Or in general, it was proved:

Gr_ = I_J’i[(f (5)
8
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A is either equal to (3-v)/(1 +v)for plane stress, or equal to (3—-4v)for plan strain

Fatigue crack Growth curve, da/dN — AK

Linear elastic fracture mechanics concepts are most useful to correlate fatigue crack growth
behavior. The form of this correlation for constant amplitude loading is usually a log-log plot of
fatigue crack growth rate, da/dN, in m/cycle, versus the opening mode stress intensity factor range
AK, or (AKI) in Mpa m where AK, is defined as

‘\

AKI T AK = Kmax ﬁKmin
- 6
= Yamax .‘/E Vi Yo-mm \/;a ( )

If omin is taken as zero:
A=

Sigmoid shaped of da/dN -- AK curve

A typical complete log-log plot of da/ AN versus AK is shown in Fig (1) This curve has a sigmoid
shape that van be divided into three major regions Region I indicates a threshold value AKth, below
which there is no observable crack growth. Below AK(h, fatigue cracks behave as non-propagating
cracks Region II shows a linear relation ship between log da/dN and log AK, which corresponds to
a large number of formulas, but first suggest by Paris [Paris]

da ”
s A(AK) (7)

Here, m is the slope of curve and A is the coefficient found by extending the straight line to AK = 1
Mpa Vm. In region Il the crack growth rates are very high and little fatigue crack growth life is
involved. Region IIT may have the least importance in most fatigue situations. The fatigue crack
growth behavior shown in Fig (1) is essentially the same for different specimens taken from a give
materials, because AK is the principal controlling factor in fatigue crack growth. Knowing the stress
intensity factor expression, KI for a given component and loading, the fatigue crack growth life of
the component can be obtained by integrating eq(7), for example, between limits of initial crack
size and final crack size. The greatest usage ol Fig (1) data has been in-fail-safe design of aircraft
and nuclear energy systen.

The effect of mean load on fatigue crack initiation and propagation behavior can studied by using
the stress ratio parameter, R, where R is equal to

R = O inin i min_

o K

mnax max

Available experimental data shows no systematic change in tatigue crack growth rate with changes
in R value from 0 to 0.82 [Newman]. The data also show that this change in R value has negligible

effects on the rate of crack growth. The best equation that indicates R effect is Forman equation
[Marc].

da  A(AK)"
AN [ AK ®)
h Kc J
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Fig (1) Schematic sigmoid behavior of fatigue crack growth rate

J-INTEGRAL METHOD
From [Rice] it can obtain, the expression for J-integral as:

J= ft ol edy -1 Xy
g2 ox

The boundary T, can be divided into a number (ne) of the sub boundaries using piecewise
discretization concept and the J -integral can be evaluated as:

M"\ l @z-( ;
J=3 [(co'edy - T' P oais)
hop g ox

e=
o

ne

Or: F= ZJH
=]

Where, Je is the J-integral ever e elements and can be written as:

To evaluate Je, a boundary element is required to be defining over I'.. An n- nodded isoparametric
boundary efement is represented by n nodes, which lie on the same boundary within the x-y plane.
The element may be transformed into a straight line of unit length in the intrinsic space and the
parametric equations of the transformation of the element can, therefor, be expressed as Follows:

X@=3 x [(¢)

&=, L)

Using Lagrange interpolation function, it can be shown that;
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[';(5) _ I”—[ (n— ]_)ig‘:;ﬂ(r' =)

r#i
Hence it can proved that:

.t:' . - !] . _.{
@:ix, L) o &3 Jau;(g)
dg 3 d¢ d¢ L d¢

Where, the derivative of L&) with respect to the intrinsic coordinate (£) can be shown as:

dLE)- 1 (n=DE=(r =D
d& _;i—sﬂ i—r

S#£I ri
res

The directional cosines of the outward normal to the surface Tcan define as follows:
dy / dx ) ds

[ =—/— 'y Sl
* T qE df RNgE dE
Evaluation of ], not possible unless the valves of g, £ and u are given at the boundary nodes of the

* element. Let the e™ element be n- nodded element as described before.
Using isoparametric equations, it can be proved that:

dO=Yg k&) m a&=Yele)

Also, the displacement component along the boundary element can be expressed like above. From

the equations of & (£), oy, Oy, Ty are known at any (&) hence, the tractions in x and y directions
respectively can be evaluated as:

TH(&) =10, (E) +1,(E)7,, (&)
TVE) = 1,(E)7,, (&) +1,(E)a, (£)

Finally the form of the J., can be shown as:

Jez% o's e - jz T, 2yl

The above equation can be evaluated numerically using modified Gaussian quadrature, then: -

ny |

J,=Y [ALE)

g=1 g
Where:

‘el —(T. % +T, -——)JI}

AJ, =¢C, (
|

1
2
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Cq : is the Gaussian’s weight factor.
&q : is the Gaussian’s argument factor.

CASE STUDIES

To demonstrate the proficiency of two-dimensional J-integral program for LEFM, which are
developed in this woik for analysis of cracked structure, validation cases with known analytical
solution and other case study have been performed.

Pressurized cylinder with outer crack

The geometry and dimensions for this case are shown in Fig (2). Because of the symmetry around
the x and y-axes, only one quarter of the thick cylinder domain has been analyzed. The mesh of the
structure for this analysis is indicated in Fig (3); it consists of (100) isoparametric 8-node element
and (341) nodes. :

Fig (4) shows the SIF for different crack length to thickness ratios, it is clear that the accuracy of J-
Integral program is better than ANSYS results, whenever (a/w) high. The analytical solution for this
case is taken from [Rooke].

When the 1sad is consider to be pulsating load then the fatigue crack growth rate can be calculated
from Paris equation where AK=K. The results are shown in Fig (5) for alloy steel 4340 and for two
different loads (P=10 Mpa and P=20 Mpa). It is clear that the two curves have the same trend and
slop, from this it can be say that for different loads or crack length the slop of the curve is remain
constant at certain K and it will function of material only. :

RI=130 mm
R2=230 mn
= 10 Mpa

Fig (2) Pressurized cylinder with F_lg (3) Finite clement mesh for
external crack thick cylinder with external crack
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Fig (4) Stress intensity factor for thick Fig (5) Fatigue crack growth rate for
cylinder with external crack thick eylinder with external crack
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Pressurized cylinder with internal crack

Fig (6) shows the geometry with all the information required to carry out a finite element analysis.
Fig (7) shows the SIF for different crack length to thickness ratios. It is clear that the J-integral
results have a good agreement with analytical results and the maximum error equals to 8 percént, it
can be assuined that the error is high but it is better than the ANSYS results. The analytical solution
of this case is taken from [Rooke].

Fatigue crack growth rate for different AK is shown in the Fig (8), two different curves are
calculated from applying two pulsating loads (P=10 Mpa and P=20 Mpa). The two curves have the
same configuration (i.e. they have the same slop at any point) this means that the effect of
increasing load makes the fatigue crack growth rate increase but in the same slop, as explaining
before.

To study the effect of mean stress on fatigue crack growth rate by indicated the stress ratio
parameter, R, cyclic load is considered. Fig (9) shows the fatigue crack growth rate for different
AK. It is calculated from Paris equation where the effect of mean stress is neglected and from
Forman equation where the effect of mean stress is consider by indicated the parameter R. In this
case R equals to (0.667) which it is the ratio between (Pmin =10 Mpa) and (Pmax =15 Mpa). It is
clear that the effect of mean stress causes the increase in fatigue crack growth rate but the different
between Paris cquation and Forman equation results is not so much. The percentage error between
cases that consider R or ignored R is not more than 4% and it can be neglected.
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Fig (9) Fatigue crack growth rate for
thick cylinder with internal crack
under cyclic loading

Fig (8) Fatigue crack growth rate for
thick cylinder with internal crack
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Pressurized cylinder with internal and external cracks

The geometry and dimensions of this case are shown in Fig (10), also it is shown all the information
required to carry out the finite element analysis. Cin, Cout and Ctotal are the contours, which are
employed in the SIF evaluation using the J-integral program. %

SIF for different crack length to thickness ratios are shown in Fig (11). It is clear that the SIF
calculated using Cin contour is larger than SIF calculated using Cout contour, this may be came
from load effect, in another words, the load effects on internal crack more than external crack.

Also, it s clear from the figure that there is large different between superposition SIF and total SIF
(SIF calculated using Ctotal contour). The correct SIF is the one that calculated by superposition
because the SIF calculated from Ctotal has a magnitude less than Cin, which is not the real case.
Also, it is known that the selected contour must be continuous in all zone except in the crack
surface may be discontinuous whilst in or case two discontinuous regions are appear and that is
unaccepted in mathematical evaluations. Fatigue crack growth rate for different AK is shown in
Fig (12) using superposition method.

350
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Fig (10) Pressurized cylinder with Fig (11) Stress intensity factor for case 3
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Fig (12) Fatigue crack growth rate for case 3

CONCLUSIONS
The most important conclusions that can be drawn from this work are as follows:
1- Integrity of the developed programs to handle the problems of cracked structures was proved.
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2- The fracture parameters, J-integral and AKI could be utilized to predict the crack growth
behavior of a material such as 4340 alloy steel in a complex test environment. Also the different
between Paris and Forman results at cyclic load is less than 5% for cyclic stress ratios (R= 0-
0.8). This means that the effect of mean stress in these ratios can be neglected. -

3- To determine stress intensity factor for structures have two cracks or more never take total path
for J-integral because it is mathematically illogical, cases like this must be determined using
superposition.
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NOMENCLATURE
Symbol Description
A Paris constant.
da/dN Fatigue crack growth rate,
B Modulus of elasticity.
G Energy release rate.
Ge Critical energy release rate.
J J-integral value.
Ie Critical J-integral value.
K¢ Critical stress intensity factor.
KI Mode I stress intensity factor.
Kmax Max. Stress intensity factor during a fatigue cycle.
Kmin Min. stress intensity factor during a fatigue cycle.
Ix, 1y Directional cosines of outward unit normal vector.
m Paris law exponent.
N Number of cycles.
n Number of nodes.
ne Number of elements.
R Loading ratio (cmin/omax).
iy Traction vector.
u Displacement vector.
X,y Cartesian coordinates.
- Stress intensity correction factor,
r Boundary of the domain.
AK Stress intensity factor range.
Ac Applied stresses range.
£ Strain vector.
EX,EY Strain components in x and y directions.
&M [ntrinsic coordinates,
0 Angular position of point on crack front.
n Shear modulus.
o) Stress vecior.
omax Max. applied stress.
omin Min. applied stress.
OX, Oy Stress components in the x and y directions.
v Poisson’s ratio.
e Specific surface energy.
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Units

mm/cycle
GPa
N/mm
N/mm
N/mm
N/mm
N/mm>?
N/mm>?
N/mm*?
N/mm*?

MPa

min

N/mm>?
MPa

Degree
MPa
MPa
MPa
MPa
MPa

N/mm




