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ABSTRACT

The two-dimensional, incompressible, and turbulent boundary layer flow over a flat plate
with suction or blowing from a spanwise slot is examined numerically. The mathematical
modeling involves the derivation of the governing partial differential equations of the
problems. These are the continuity, the momentum, the energy and the (K-¢) turbulence
model. Besides, the perfect gas law is also used. A numerical solution of the governing
equations is approximated by using a finite volume method, with staggered grid and modified
SIMPLE algorithm. A computer program in FORTRAN 90 is built to perform the numerical
solution.The developed computational algorithm is tested for the flow over a flat plate (4m)
long with uniform suction or blowing velocity ratios of (V/U., == 0.0185, £ 0.0463 and
+0.0925 m/s) are imposed on the slot for Reynolds number of (1.36 x 10" ), based on the plate
length. The position of the slot change in the range of (X/L=1/4, 1/2 and 3/4) from leading
edge and also, change width of slot in the value equal (0.12, 0.2 and 0.28m).The plate
temperature is (70 °C), with the free stream velocity and temperature are (8.6m/s) and (25 °C)
respectively. In addition, the effects of pitch angles on the flow field are investigated in the
range of (30° <& < 150%.The numerical results show that, for a uniform blowing, location of
slot equal (X/L=1/4) from leading edge, a significant reduction of skin friction coefficient,
wall shear stress and boundary layer thickness [displacement and momentum] to occur.
While, an increase in boundary layer shape factor. Reynolds stress (uv) is more decreased
than [(uu) and (vv)], mean velocity profiles in wall coordinates and dimensionless distance
(U", y") decreases. When slot location is moved downstream to locations (X/L=1/2 or 3/4) a
similar behavior can be said and most effective slot is obtained as (slot at X/L= 3m) from
leading edge. While width of slot equal (0.28m) is better than values equal (0.12m and 0.2m).
An opposite observations for the case of suction. The numerical results are compared with
available numerical results and experimental data and a satisfactory results are obtained.
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INTRODUCTION

A turbulent boundary layer is one of the wall turbulence flows that affected by the
presence of solid wall. According to experimental data, a turbulent boundary layer
made up of inner and outer regions. The effects of wall suction or blowing have been
studied experimentally and numerically, the physics of a blowing or suction boundary
layer is in fact mostly a no slip boundary layer that is perturbed slightly by the
addition / extraction of a small amount of fluid. Literature survey reveals that several
methods have been done to investigate the effect of suction and blowing numerically
and numerically by the authors:

Park and Choi [1999] studied the effects of uniform blowing and suction over a
flat plate on a turbulent boundary layer flow using the direct numerical simulation
technique. The integration method used to solve Navier-Stokes equations. The
magnitudes of blowing or suction are less than 10% of the free- stream velocity. The
skin friction and near- wall turbulence intensities are significantly changed by
blowing and suction. In the case of uniform blowing, the skin friction on the slot
rapidly decreases. The streamwise vortices above the wall are lifted up by blowing,
and thus the interaction of the vortices with the wall becomes weaker. Accordingly,
the lifted vortices become stronger in the downstream due to less viscous diffusion
(above the slot) and more tilting and stretching (downstream of the slot), resulting in
the increase of the turbulence intensities as well as the skin friction downstream of the
slot. The opposite is observed in the case of uniform suction. For both cases of
blowing and suction, the streamwise turbulence intensity recovers quickly from
blowing or suction, while other components of the turbulence intensities and
Reynolds shear stress recover in a longer downstream distance.
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Kim and Sung [2003] investigated the effects of time-periodical blowing through a
spanwise slot on a turbulent boundary layer. The blowing velocity was varied in a cyclic
manner from 0 to 2A* (A*= 0.25, 0.50, and 1.00) at a fixed blowing frequency of f
=0.017. The effect of steady blowing (SB) was also examined, and the SB results were
compared with those for periodic blowing (PB). PB reduced the skin friction near the slot,
although to a slightly lesser extent than SB. PB was found to generate a spanwise vertical
structure in the downstream of the slot. This vortex generates a reverse flow near the wall,
there by reducing the wall shear stress. The wall- normal and spanwise turbulence
intensities under PB are increased as compared to those under SB, whereas the streamwise
turbulent intensity under PB is weaker than that under SB. PB enhances more energy
redistribution than SB. The periodic response of the streamwise turbulence intensity to PB
is propagated to a lesser extent than that of the other components of the turbulence
intensities and the Reynolds shear stress.

Munem [2004] developed a general method for numerical solution of the steady state, two
dimensional and incompressible turbulent flow over a flat plate with uniform suction or
blowing. Turbulence effect was handled through considering K-¢ model.The solution
algorithm SIMPLE in cartesion coordinates system with staggered grid technique was used
to solve the Navier- Stockes equations with continuity equation. The results show that, for
uniform blowing, the skin friction rapidly decreases near the slot and increases in the
downstream of the slot, the most effective pitch angle is obtained as (o= 60°) which gives
the maximum reduction of skin friction coefficient. Near the blowing slot, the velocity
fluctuations and Reynolds shear stress decrease, because their profiles are shifted away
from the wall. An opposite observations are obtained for the case of suction velocities.
Results were compared with available numerical and experimental data show a good
agreement.

Krogstad and Kourakine [2000] investigated the effects of localized injection through a
porous strip on a turbulent boundary layer at zero pressure gradient conditions
experimentally. The magnitude of the injection velocity were kept very small (less than 1%
of the free-stream velocity) to prevent separation near the injection strip and to keep the
perturbations small. It was found that, the injection increases all the Reynolds stresses and,
this perturbation dies out very slowly as the affected layer is sandwiched between the outer
edge of the incoming boundary layer and a new layer that develops at the wall. A study of
the anisotropy tensor indicated no effects of the blowing rate on the flow anisotropy
downstream of the injection region.

Park, Park and Sung [2003] performed an experimental study to investigate the effect of
periodic blowing and suction on a turbulent boundary layer. Partical Image Velocimetry
(PIV) was used to probe the characteristics of the flow. Local forcing was introduced to
the boundary layer via a sinusoidally — oscillating jet issuing from a thin spanwise slot.
Three forcing frequencies (f *= 0.044, 0.066, and 0.088) with a fixed forcing amplitude (A"
= 0.6) were employed at Reo = 690. The effect of three different forcing angles (a = 60°,
90° and 120°) was investigated under a fixed forcing frequency (f * = 0.088). The PIV
results showed that, the wall- region velocity decreases on imposition of the local forcing.
Inspection of the phase- averaged velocity profiles revealed that, spanwise large- scale
vortices are generated downstream of the slot and persist father downstream. The highest
reduction in skin friction was achieved at the highest forcing frequency (f = 0.088) and a
forcing angle of (a = 120°). The spatial fraction of the vortices was examined to analyze the
skin friction reduction.
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The present work deals with the calculation of the steady, two dimensional, incompressible
and turbulent boundary layer over a flat plate with uniform suction and blowing,The main
objective of the present work will be as follows:
- Investigation of the important parameters of the boundary layer (skin friction coefficient,
displacement thickness, momentum and shape factor) in upstream and in the downstream of
the slot.
- Using different positions of the slot in the range of (X/L= 1/4, 1/2 and 3/4) from the
leading edge with a different slot widths (0.12, 0.2 and 0.28m).
- Using different blowing and suction velocity ratios with a different pitch angles
(30° < @ <150°).
- Studying the profiles of time- mean velocity component at several streamwise
locations for different blowing and suction velocity ratios.

PROPLEM DESCRIPTION

In the present study, a direct numerical simulation is performed to study the
effect of uniform blowing or suction from a spanwise slot on a turbulent boundary

layer over a flat plate see Figure (1). The free stream velocity (U, ) was (8.6 m/s) over
a flat plate of (4m) long with imposed uniform suction or blowing velocity ratios on

the slot with range of (UL = +0.0185, +£0.0463 and +0.0925) for Reynolds number of

0

(1.36 x10") based on plate length .Also, the effects of pitch angles on the flow field
are investigated in the range of (30° < a < 150°).
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Fig. (1) Schematic diagram of computational domain

-MATHEMATICAL MODEL

The ensemble-mean equations of motion for steady state, two dimensional and
incompressible flow over flat pate can be written in cartesian coordinates as follows
[Awbi 1991]:

- Continuity Equation
a(pJ) o(pV) _

+ 0 1

~ .y 1)
-Momentum Equations
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- Energy Equation
The conservation of thermal energy in the control volume [Awbi 1991]:

0 0 0 oT 0 oT
—(PUT) +—(VT) =— ([T —) +— (g —) (4)
X oy OX oXx oy oy

- Equation of a Perfect Gas
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P=pRT (5)
- Standard K-¢ Model
2 2 2
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Table (1) Empirical constants in the (K-g) [Lai and Makomaski 1989]

Cy Ci: | Ca oK o; c ot
0.09 1.44 1.92 1.00 1.30 0.7 0.9

- BOUNDARY CONDITIONS

1. Upstream Boundary Conditions:

K 15

up  0.005h up

Uyp =Us Vgp =0 ¢ 003U _)° (8)

2. Downstream Boundary Conditions:

Normally the velocities are known only where the fluid enters the calculation
domain. At downstream, the velocity distribution is decided by flow field within the
domain. For incompressible flow, the gradients normal to the downstream surface of
all quantities are assumed :

NI = PNI-1,3
3. Wall Boundary Conditions:

The wall is the most common boundary encountered in confined fluid flow
problems. In this section, a solid wall parallel to the u-direction is considered. The no-
slip condition (u=v=0) is the appropriate condition for the velocity components at
solid walls [Versteeg and Malalasekera 1995].In the case of turbulent flow, the
calculation of shear stress near the wall needs a special treatment. This is due to the
existence of boundary layers, across which steep variation of flow properties occurs
and the standard (K-¢) model becomes inadequate. In order to adequately avoid these
problems, it would be necessary to employ a fine grid near the wall, which would be
expensive. An alternative and widely employed approach is, to use formula which
known as “wall function”

4. Free Stream Boundary Condition:
At y=0:

ou
U =UOO,5=O,P= Po. T =T,
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NUMERICAL SOLUTION

For the case of steady state, incompressible and two-dimensional turbulent
flow, the general equation [Patanker 1980 ]:

%(P‘JCD)+§[,DVCD]:§;|:F®§}+§{F(D%:|+S® (9)
Where:

b, 0 )
—(pu®)+— (pva) =Convection term
OX oy
D D e .
z{rq) a_} + E[F(D a—} = Diffusion term
ox ox | oy oy
So= Source term.

The source term (S,) often depends on the dependent variable (¢). According to
[Patanker 1980 ] the source term can be expressed as a linear form: S, =S, +S ¢,

A control finite volume method developed by [Versteeg and Malalasekera 1995]
is used to discretize the governing equations. These discretization equations are
solved by using SIMPLE algorithm with hybrid scheme

- the final discretised algebraic equation:
Apdp = Agde + Aydy + ANIN + AsPs +Su (10)

Where:

A =Ac+A +A+HA =S,

Where:
Ae = [[0,De-0.5F]]+[[-Fe,01]
Aw=  [[0,Dw-0.5FJ]+[[Fw,01]
An = [[0,Dn-0.5Fn]]+[[-Fn,0]]
As = [[0,Ds-0.5F]]+[[Fs,0]]

- FURTHER NUMERICAL CALCULATION

The most important parameters for boundary layer flow, skin friction

coefficient Cs, displacement thickness 6, momentum thickness 6, and shape factor
H. these parameters are defined by the following equations [Schlichting 1968]:

Ci=—>m—,0 =[|1-—|ldy , 0=]—|1-—|dy H=— (11)
pU® 0\ Ug OU,\ Uy 0
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B 0.376x

Rexo'2

- the displacement thickness (5*) is computed :

5 = jj[l—uijdy = [ (%)

0

Where: )

a numerical integration methods used which is called Trapezoidel rule (or
integration with unequal segments) can be used.

The general form of this method of integration is:

_p 0T T0) 1O TOY) Ly T TOn ) (12)

|
1 2 2 2 n 2

using the same numerical method to compute the momentum thickness.

- RESULTS AND DISCUSSIONS

Fig. (2) shows that the skin friction coefficient is changed significantly close to
the region of local suction and blowing.In the case of no forcing, it is seen that, the
skin friction coefficient decreases with the flow direction due to the decrease of the
velocity gradient at the wall.

In the case of uniform blowing ,the skin friction on the slot rapidly decreased
.The near —wall streamwise vortices were lifted up by blowing, and thus interaction of
the vortices with wall become weaker .Accordingly, the lifted vortices became
stronger in the downstream due to less viscous diffusion (above the slot ) and more
tilting and stretching (downstream of the slot), resulting in the increase of the
turbulence intensities as well as the skin friction downstream of the slot.

In the case of uniform suction, the skin friction on the slot increased
significantly. The near-wall streamwise vortices were drawn toward the wall by
suction, and thus viscous diffusion became very effective near the slot, resulting in
weaker streamwise vortices in the downstream of the slot. Therefore, the turbulence
intensities as well as the skin friction decreased downstream of the slot. A similar
trend were observed for blowing and suction for channel flow simulations by [Park
and Chio 1999] for turbulent boundary layer flow.

Fig. (3) show that the reduction of skin friction increases with increasing the
velocity of blowing. Moreover, the reduction of skin friction may be related to the
role of the large scale vortical structure in the vicinity of the wall. Therefore, the
largest skin friction reduction is obtained at the higher blowing velocity ratio. While
suction shows that, the reduction of the skin friction increases with decreasing the
velocity of suction.

Fig. (4) examine the effect of the pitch angle on the reduction of skin
friction..The most effective pitch angle is obtained as (0=90°), which gives the
maximum reduction of skin friction reduction. While the skin friction reduction is
insignificant when (a) is larger than (90°) in the case of blowing. An opposite effect is
observed in the case of suction.

Fig. (5) show the variation of the skin friction coefficient at various position of
the slot over a flat plate. For uniform blowing at locations 1m or 2m (X/L=1/4 or 1/2)
from leading edge a significantly reduction in skin friction is created, but when the
blowing is moved downstream to location at 3m (X/L=3/4) from leading edge, a
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maximum reduction in skin friction coefficient is seen. While the uniform suction
shows an opposite observations.

Fig. (6) show the variation of the skin friction coefficient at different values for
width of slot. For uniform blowing, the maximum reduction of skin friction is
observed at width of slot (0.28 m). On the other hand, an opposite behavior is detected
for suction case.

Fig. (7-11) show that, the shape factor increases with uniform blowing and
decreases with uniform suction, as compared to that of the unperturbed flow. From the
variation of the shape factor shown in these figures, it can be said that, uniform
blowing shows the characteristics of adverse pressure gradient flow, while uniform
suction shows that of favorable pressure gradient flow. The value of shape factor is
different from the normal range (1.2 - 2.4) because the distribution of velocity
effected by suction or blowing. Near the exit of the computational domain, the shape
factors for the cases of suction are nearly the same as that of the unperturbed flow. On
the other hand, the shape factors for the cases of blowing are still different from that
of the unperturbed flow, meaning that the recovery distance for the shape factor due to
blowing is longer than that due to suction. For uniform blowing the shape factor
increases with increasing the velocity ratios, pitch angle, width of slot and when the
slot moves downstream. An opposite observations are obtained for the case of suction.
This is consistent with observation of numerical results of Park and Chio [1999].

Fig. (12-23) show the limiting behavior of turbulence intensities (uu and vv) and
the Reynolds shear stress (uv) at the blowing and suction walls. Its clear that, uniform
suction decreases the magnitudes of the velocity fluctuations, while uniform blowing
increases them near the slot. It is also seen that near the slot for suction the profile of
the turbulence intensities shifts toward the wall, and for blowing away from the
wall, but at downstream of the slot, the an opposite behavior is observed. This is
consistent with the results of Chung and Sung [2001]. The increases or decreases in
the maximum values of turbulence intensities and Reynolds shear stress depend on the
blowing or suction velocity ratios. Above the slot, in case of blowing, when increased
the velocities of blowing, the (uu) and (uv) are more decreased than (vv), while (vv) is
more decreased than (uu) and (uv) in the case of suction. The same behavior
opposerved at different pitch angles, different slot widths and different positions of
the slot for uniform blowing and suction.

Near the wall behavior of the streamwise velocity profiles in term of

(U i :ugj are shown in Fig. (24). Here, the local friction velocity [UT = T—W] IS

T p
calculated along the streamwise direction over a flat plate. For the case of blowing,
the velocity retardation at the wall leads to a reduction in the local skin friction
coefficient (Cf) because of the small friction velocity and this reduction is increased
with increasing velocity of blowing. The opposite is observed for the case of the
suction.

Fig. (25) show the streamwise mean velocity profiles for forcing angle in the
range (30°< a <150°). For uniform blowing, the forcing angle of (a < 90°) caused
more significant reduction on (U™), while an opposite behavior is observed in the case
of the suction.

Fig. (26) for uniform blowing, the slot location at 3m (X/L=3/4) from leading
edge gives better results for mean velocity than the locations 1m or 2m (X/L=1/4 or
1/2) from leading edge, but in the same location the flow does not appear significantly
affected by the suction .
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Fig. (27) show the predicted mean velocity profile in wall coordinates at
different values of slot widths. Wider width of slot appears to be the most effective
choice to reduce mean velocity profile; a reverse effect is showed for the case of the
suction.

COMPARISON OF THE RESULTS

The numerical result of the present work is compared with available numerical
result and experimental data. Some of the results show a discrepancy. This difference
seems to be due to different magnitudes of blowing and suction velocities applied and
also due to different widths of blowing and suction areas.

In Fig. (28), the predicted skin friction coefficient is compared with the
numerical data of [Park and Chio 1999]. As displayed in figures, the present
simulation shows good agreement with the numerical data for two cases blowing and
suction.

Fig. (29) show the comparison of the shape factor with the numerical results of
[Park and Chio 1999]. Satisfactory predictions have been obtained with the present
results and a good agreement with available numerical data is observed

It can be seen from the Fig. (30), that the present prediction of skin friction
coefficient is in a reasonable agreement with the carefully reviewed numerical data of
[Munem 2004].
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CONCLUSION

e In the case of blowing, near the slot, the skin friction coefficient decreases and
increases in the downstream of the slot. While a reverse action is observed for
the case of suction.

e The largest skin friction reduction is obtained at the higher blowing velocity
ratios for uniform blowing.
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The most effective pitch angle is obtained as (¢=90°) which gives a maximum
reduction in skin friction coefficient.

For uniform blowing, location of slot at 3m (X/L=3/4) from leading edge is
more effective location for reduction of skin friction coefficient, while a
reverse action is observed for the case of uniform suction.

It was found that, a width of slot equal (0.28m) gives the maximum reduction
in skin friction coefficient for uniform blowing.

Blowing causes a decrease in boundary layer thickness and increase in shape
factor, while suction causes a reverse effect. The increase or decrease is
proportional to the velocity ratios, positions of slot, and widths of slot.

Above the slot, in case of blowing, when increased the velocities of blowing,
the (uu) and (uv) are more decreased than (vv), while (vv) is more decreased
than (uu) and (uv) in the case of suction.

For uniform blowing, [U* ] decrease with increasing velocity ratios, pitch
angles, positions of slot and widths of slot. While a reverse action is observed
for the case of the suction.
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