. Number 3 Volume 11 September 2005 Journal of Engineering

COMPARISON BETWEEN FPGA CO-P |
ROCESSOR&TMS320C641X DSP FAMILY IN IMPLEMENTING
DIF FFT ALGORITHM

Asst. Lecturer N. H. Abbas Asst. Lecturer A, M, Ragib
Dept. of Elect. College of Eng. Dept. of Mechatronic AL khawarizmy
Eng. — University of Baghdad

ABSTRACT

The Decimation in Frequency Fast Fourier Transform (DIF FFT) is a computationally intensive
digital signal processing function widely used in applications such as imaging and wireless
communication. Historically, this has been a relatively difficult function to implement optimally in
hardware, leading many software designers to use digital signal processors (DSPs) in soft
implementations. Unfortunately, because of the function’s computationally intensive nature. such
an approach typically requires multiple DSPs within the system to support the processing
requirements. This is costly from a device and board rcal-estate perspective as well as power
intensive.

Field-programmable gate array (FPGA) co-processors have become an extremely cost-effective
means ol off-loading computationally intensive algorithms to improve overall system perlormance
while reducing development time, cost and risks. This paper will describe two DIF FET
implementation approaches, one implemented as an FPGA co-processor and the other using only an
external TMS320C641X DSP Family. It will then examine the advantages and disadvantages of
these approaches from performance. cost, power consumption and ease of implementation
perspectives.

-

Auadlal)
Jie Bad) 5LV plles clindss b aadiy Le 188 (DIF FFT) 2350 ade a8 Jyne
G ¢ gale LSS B 5) gean el dms Caila s 1S 680 Ly 0 ASLE CVLSY el
haall ¢ gud oS0y o el b Auad 5LV e padiad Jal e gl ol asae e 20 8
Jal e Ul s Jal Slatles sae U e Sl 535S 5e Lol Leile o pall il gll)68 s

LS50 Gipeay 4558) bl CalSe e) 1y Aadleadl lilliie G
Oasd Jal (e paiis (FDGA Co-processor) Jaell dae 5 & g0 i 5 2%y g3 20 Lisall mlladll
el (i pl sl 5 gdinall 03a , Hlaladl s AdlSH 5 dadlaall (e (e Jliy ALeld 5) geay plaill el
(FPGA) Mol daa s Ul g i p dadiuy IV (DIF FFT) 220 aude aypudl 550 Jsae

e =T R e T ~ COMPARISON BETWEEN FPGA CO-P
| N.H. Abbas & A, M. Ragib ROCESSOR&TMSI20CO41X DSP FAMILY IN IMPLEMENTING |
| : __DIF FFT ALGORITHM

S8 (sslay 8 iias Wi (TMS320C641X DSP Family) 4sed i 8 LEY1 pllae Hlasioly 4l
celll A ggun g Al i pa ¢ ASH ¢ eIV Aals e i Sl

KEY WOEDS
FFT, FPGA, DSPs, Simplest Implementation, Cost, H /W Parallelism. Power Consumption.

INTRODUCTION

FFTs are very common, computationally intensive signal processing functions found in a large
number of signal processing systems. An example communication syslem that relies heavily on
FFTs to perform a lot of its base signal processing is orthogonal frequency division multiplexing
(OFDM). OFDM systems require large amounts of FFT computing ability to handle the required
data rate of all transmit and receive channels passing through the network.

Typically. designers building OFDM 1ransmitters and receivers have relicd on DSPs as their device
of choice for implementing these signal processirig functions, DSPs typically come with a range ol
basic, assembly-optimized signal algorithms like FFTs and finite impulse response (FIR) filters,
making these functions easier to implement compared to an ASIC or FPGA hardware-based
approach. Unfortunately, the evolution in performance of DSPs has not been able to keep up with
the demands of current and future communication system requirements. This forces the designer to
implement arrays of DSPs simply to satisfy the data rates and vast number of channels needed by
the system. A common challenge arising from this approach involves handling shared memory
between the processors and ensuring that data does not get overwritten from one processor to
another. These arrays also tend to take up a lot of board real estate and the large number of DSPs
required can dramatically increase overall system cost,

An alternative approach to address this computational burden is to implement co-processors to
speed up the computation of these functions using hardware accelerators. DSP vendors like Texas
Instruments have started to add dedicated hardware co-processors to their DSP device offerings as
seen in the C6416 DSP, which has dedicated on-chip Turbo and Viterbi co-processor hardware,
primarily targeted at 3G wircless applications [T 20011, While this approach is beneficial for 3G
applications. other users may not find these coprocessors particulirly switable for their needs, DSP
vendors, on the other hand, are driven 1o implement co-processors suitable [or a broad-based market
that is relatively mature.

Altera’s approach is to provide the user with the flexibility to implement their co-processor on an
FPGA [Lim 2003]. These co-processors can be suitably designed to fit virtually any function or
application the user is targeting owing to the flexible nature of the FPGA’s device fabric,
Additionall ;, the user is able to customize and construct their function in a way that fully exploits
the parallel nature of a hardware implementation within the FPGA, enabling better channelization
(useful in communication systems), and ultimately, greater data throughput.

The following sections of this paper serve to provide an understanding of the process of
implementing an FFT algorithm in both a single DSP as well as an FPGA co-processor.
Subsequently, both approaches will be evaluated and anal yzed from the following design
considerations and perspectives; ease of implementation, cost and performance, and power
consumption. This comparison employs a TMS32006416 DSP from Texas Instruments and a
Stratix FPGA device from Altera. as well as their respective design tools and sofiware.

IMPLEMENTING AN FFT ALGORITHM IN. A DSP

DSP algorithms for functions like corrclators, FFTs and FIR filters are pencrally supported by
design tools and software that accompany the various DSP architectures. For example. Texas
Instruments provides a selection of optimized, C-callable DSP library functions that is freely
available for the C64x DSP family like DSP fir r8 and DSP_ffiléx16r for FIR filtering and FFTs,
respectively. These functions tend to run much faster than equivalent code written in ANSI C, since

534

i @ Number 3 Volume 11 September 2005

Journal of Engineering

thev are hand-optimized by the processor vendor using assembly language. for a targeted DSP
architecture. These library functions arc also preverificd by the vendors. thereby reducing overall
system development time and allowing the developer to tocus on improving and differentiating
their system [T1 oct.2003].

Typical performance for a 1024-point 16-bit complex FFT running on a 720 MHz Cé4x family DSP
is about 6526 cycles or about a 9.06 us transform time [T1 oct.2003].

IMPLEMENTING AN FFT ALGORITHM AS AN FPGA CO-PROCESSOR
The following actions describe a typical flow to develop an FPGA co-processor:
- = Profile the application to identify high-load software algorithms suitable for off-loading to a
coOprocessor. |
+ Integrale co-processors from available off-the-shelf intellectual property (IP) functions or
develop custom co-processor blocks.
- Consider viable co-processor system architectures.
» Select a suitable interface to the main processor.
-« System integrate the hardware and software components.
* Verify system in hardware [Lim 2003]. [Al aug.2004].
For the purposes of this paper, we have seleeted an FE'T algorithm for implementation as an FPGA
coprocessor. The actions listed above. however. can be applied to any application that has
computationally intensive functions. Fig. (1) shows the block diagram of an FFT co-processor
implemented within an Altera Stratix FPGA and connected to a Texas Instruments TMS320C6416
DSP via the 32-bit external memory intertace (EMIF).

¢ i) - Adlavkc nlsafecs

Fig.(1). FF'I.' FPGA Co-processor block diagram

The FPGA Ci'!-|.'ll'.t.‘lk'u.:1'.‘.-.l.'ll' cireuitry consists of fawr main sections: the EMIF/TIFO interface. the
transmit FIFQ buffer. receive FIFO buffer and the FF1° MegaCore function. which performs the
FFT computation. The EMIF/FIFO interface handles the translation of the EMIF dala and control
signals to Atlantic data and control signals. All signaling between the various blocks within the
FPGA co-processor is done using the Atlantic interface. The Atlantic interface is a flexible interface
for high-throughput packet-based data transmission of arbitrary length. It provides a synchronous
point-to-point connection between two blocks of logic with flexible flow control for master-to-slave
and slave-to-master directions [Alt june2002]. The flexible nature of the Atlantic interfaces allows
the designer to insert one or more co-processor modules between the Atlantic slave source and the
Atlantic slave sink.

The transmit and receive FIFO buffers act as storage buffers that handle the transfer of the data
packets between the EMIF and the FFT MegaCore. For a 1024-point FFT, the transmit and receive
FIFO buflers are set to a depth of.2048 to avoid any overflow of data that might occur when writing
to the FIFOs. The FF1 MegaCore function is an optimized, parameterizable 11? block available from
Altera [Alt june2004]. The EMIF was chosen as the connection medium for the FPGA co-processor
due to the data wansfer rates available and the possibility ol using the enhanced direct memory
access (EDMA) controller integrated within the TMS320C6416 DSP. Table 1 shows the peak data-

535

= it ! COMPARISON BETWEEN FPGA CO-P
| N.H. Abbas & A. M. Ragib ROCESSOR&TMS320C641X DSP FAMILY IN IMPLEMENTING
| DIF FFT ALGORITHM

transfer rates based on the given EMIF clock rates. In practice. lower overall rates will be achieved.
e.g., when transferring data between two resources that share the EMIF.

Table (1). EMIF Peak Data Rates

| ok Peak Transfer (MB ps) |
66MHz | 100MHz | 133MHz
32-bit Asynchronous' 53 80 106
32-bit Synchronous 264 400 332
64-bit Synchronous

EMIF Modc

The DMA controller within the TMS320C6416 DSP transmits packets of data to be processed via a
Synchronous EMIF to the EMIF/FIFO interface on the Stratix FPGA. The EMIF/FIFO interface
translates the EMIF signals to Atlantic-based signaling so that appropriate data packets can be
loaded into the transmit FIFO buffer. The control logic surrounding the transmit FIFO buffer
monitors the fill level of the transmit FIFO to determine when a new input data packet of 1024
samples is available for processing by the FFT function. When the transmit FIFO buffer is almost
full, the ransmit FIFO can start sénding data across the Atlantic interface to the FFT.

The output of the FFT is buffered by the receive FIFO buffer to allow for periods when the EMIF is
busy. A DMA transfer is requested when a whole packet of processed dala is available 10 be read
from the receive FIFQ) buffer by the TMS320C6416 DSP. This oceurs when the receive FIFO
buffer is almost full. Table (2) shows how packets ol data are scheduled through the hardware
blocks in the sysiem.

Table (2). FI'T Co-Processor Data Scheduling

Action Step
e o 4 5 6 o]
EMIF Wwrl | - Wrl - Rd0 | Wr2 | Rdl | Wr3
Transmit FIFO Buffer - | In0 - Inl - - In2 -
FI'T MegaCore Function - = | FEIO] < 1 FFT] - - FFT2
Receive FIFO Buffer - - - Ouwd - Out] - -

The software that was implemented with the FFT co-processor design was built using the DSP
functions and BIOS libraries included with the Texas Instruments-Code Composer Studio software
to configure the EDMA controller and interrupts, The software was used to stream blocks of data.
generated using a sine wave generator luorithm. through the FEFT co-processor. The sine wave
generator 1s implemented using a double precision cordic algorithm on the DSP [Glob 2003]. The
output values can be graphed within the Code Composer Studio workspace for visual verification.
Two DSP eneral purpose I/O (GPIO) pins are dedicated for use as event triggers to the EDMA
one for transmitting data from the DSP to the co-processor and one for receiving data from the co-
processor to the EDMA on the DSP. The co-processor requests a new transmit DMA whenever the
FFT function is free and when the transmit credit register (TX_CREDIT) is non-zero. The DSP
must write to TX_CREDIT before the co-processor can begin operating. This way, the DSP can
signal to the co-processor that the data buffers are ready.

When the FFT has completed processing the data and the data is available in the receive FIFO
butfer, the co-processor control logic requests a receive DMA from the DSP. Each time a DMA is
completed, the EDMA sends an interrupt request to the DSP. The software tracks the number of

536

, . Number 3 Volume 11 September 2005 Journal of Engineering
L AR

packets transmitted and received. When a pre-defined number of packets have completed
processing, the software calculates the average performance of the FFT co-processor across packets.
The software that was created performs the following tasks within the main() routine:

-+ Sets up timer0Q for performance measurement.

-« lmitializes the memory buffers for the EDMA.

-+ Calculate the data values for the input sine wave.

- » Resets the FPGA co-processor and synchronous FIFO buffer

+ [nitializes the DSPs chip support library.

- » Calls initEdma() to initialize the EDMA controller

-« Calls initHwil) o crable EDMA interrupls

« Starts the timer

* Increments TX_CREDIT

» Waits witil all blocks have been processed

« Calculates average time to process one FFT

Each time a transmit or receive DMA interrupt occurs edmaHwi() is called to handle the interrupt.

L}

1

DESIGN CONSIDERATIONS
The following subsections attempt to evaluate and analyze the advantages and disadvantages of
both methods from an ease of implementation, cost and performance, and power consumption
perspective. These are some of the main factors designers consider when deciding on the best
implementation for their systems.

Ease of Implementation — Evaluation and Analvsis

For most generic DSP functions like FIR filters, FFTs and correlators, the [jSP-mlIy approach
significantly reduces the implementation’ effort with the availability of pre-built; assembly
optimized, C-callable library functions. Even if the designer requires a custom function that is not
available with generic library functions. complexalgorithms are generally casier 1o implement in a
high-level language like C or C++. Challenges may arise while trying to optimize the performance
of the function for a particular DSP, often requiring an in-depth knowledge ol the processor
architecture and assembly instructions. Nevertheless. the designer remains within the same familiar
development environment, and is not required to build additional hardware functions to
complement the desired system.

On the other hand, the FPGA co-processor approach currently requires a certain amount of
hardware knowledge to assemble the various components of the FPGA co-processing system,
consisting of the EMIF/FIFO interface. transmit and receive FIFO bufters, and the actual co-
processing function itsell. The transmit and receive FIFO buffer sizes will have to be individually
parameterized to suit each co-processor within the svstem. The availability of parameterizable.
architecturally optimized pre-built IP functions from FPGA vendors like Altera, however. aids in
the implementation of the co-processor, reducing the overall design and verification time of the
system. With the FPGA co-processor approach. lamiliarity with DSP sofiware development
environments, as well as hardware design methods, is necessary lo suceessfully integrate both
elements of the syvstent, Despite this apparent hurdle. the futare of FPGA co-processing looks bright
with the continuous evolution of betler and betler system integration tools like Altera’s SOPC
Builder which may eventually support built-in interfaces to D5SPs like Texas Instruments” EMIF
and Analog Devices’ Link Port interface.

Cost and Performance — Evaluation and Analysis

It was established in section 2, that a 720 MHz TMS320C6416 DSP is capable of compléting a
1024-point 16-bit fixed-point complex FFT in about 6526 cycles or about 9.06 ps. A similar FFT
configuration running on a Stratix FPGA is capable of achieving transform times of up to 4.64 s
(1291 cloek cycles at 278 MHz), while consuming about 15% of the entire FPGA.

537

COMPARISON BETWEEN FPGA CO-P
ROCESSOR&TMSI20CH41X DSP FAMILY IN IMPLEMENTING
____DIFFFT ALGORITHM

—

| N.H. Abbas & A. M. Ragib

The FPGA co-processor example used here is capable of completing a 1024-point. 16-bit complex
FFT in about 13.6 ps at 133 MHz on a 64-bit synchronous EMIF configuration (9.7 us transform
time + 3.9 us data transfer time). Taking the 10,000 unit volume price of the Stratix 1S25F672C8
device at $33 per unit and multiplying that by the resource usage gives an effective cost of $4.95
against the $115 per unit cost of the TMS320C6416 DSP at the 10,000 unit volume price
[DSP 2004]. Overall, the FPGA co-processor shows a 15.5 times improvement from a relative
price/performance perspective.

Running the EMIF at higher clock rates (133 MHz rather than 100 MHz) or at a higher bandwidth
(64-bit synchronous rather than 32-bit synchronous) could potentially increase the performance of
the FPGA coprocessor assuming that the performance bottleneck is caused by the latency in data
transfer. The use of FIFO buffers in the transmit-and-receive paths enables the FFT
(or any other co-processing function) to run at higher clock speeds from the EMIF. This is useful
tor system optimization if the co-processor function is found to be the performance bottleneck. The
co-processor function can then be run at a higher speed compared o the EMIF 1o decrease the
processing lime. Table (3) shows the average throughput achicved with pipelining when running
the EMIF and co-processor and different clock rates.

Table (3). FFT Co-Processor Computation Time at Varying Clock Rates

Co-processor Block Synchronous Clock Rates (us)
32-bit 64-bit 64-bit
100MHz 133 MHz | 266 MHz
EMIF Interface& TxFIFO Buffer 10.2 3.9 &
__FFT MegaCore Function 12.9 9.7 4.8
| EMIF Interface & Rx FIFO Buffer 10.2 3.9 1.9
[Average Throughput 23.1 13.6 .

Power Consumption — Evaluation and Analysis

Power consumption on a DSP and FPGA is a function ol the underlying CMOS process used to
fabricate th> devices. The basic formula used to. evaluate power for a CMOS circuit is Power. P
(Watts) =1/2*C*V2*f, where C is the load capacitance in Farads. V is the supply voltage in volis
and f'is the operational clock frequency in Hertz. From this formula it is easy 1o see that by reducing
any one of the

three main components, capacitance, voltage or operational frequency, we are able to reduce the
overall 0

power consumed by the device.

Power consumption in a DSP is attributed to a few or all of the following factors: the type of
instructions being implemented by the processor (This affects the switching from a logic 0 to a logic
I and vice versa on the device. which in turn, affects power consumption, since the more frequently
switching occurs, the larger the capacitance on a signal path. causing more power to be consumed.),
the clock frequency the processor is running at, the operational voltage of the processor. and the
number of peripherals being used or enabled [DSP 2004). The power consumption reported for the
Cé4x DSP tamily running at 720 MHz for typical activity is approximately 1.2 Watts
(for internal logic only) . Based on the information provided in [DSP 2004]. this estimate can and
will vary depending on the type of application being performed on the DSP.

Not unlike a DSP. the power consumed by an FPGA is alsa subject 1o similar factors such as
operating voltage, operational clock frequency, and the number of logic 0 to logic 1 and logic | 1o
logic 0 crossings (also known as toggle rate). Along with operational voltage, the FPGA also has an
additional source of power consumption known as leakage or core power. This is the amount of
power required to “tun on” or enable the underlying FPGA fabric and configuration memory to

538

! @ Number 3 Volume 11 Scpifmber 2005 Journal of Engineering

| P —— A R A L —— et -

maintain proper FPGA operation. This core power consumption occurs whether or not the FPGA
has been configured and is puiurmw- its programmed tasks. The power consumed by the operation
of an application on the FPGA is subject to the same factors and conditions as a DSP or any other
application running on'a CMOS-based 1echnology.

The Quartus !l soltware by Altera that supports the Stratix device fanuly has a bwlt-in power
estimator that reports the approximate power consumed by a particular application for a given set of
stimuli. The stimuli or vectors used for this power estimation are important, since the toggle rate of
data is a key componeat in power consumption. The designer has 1o be careful that the vectors used
in the estimation are indicative of the signals that will be passing through the system during actual
operation to get more accurate representations of the power that will be consumed in the field.
Approximate power estimates for a 1024-point 16-bit complex FFT built using the FFT MegaCore
function was obtained using the Quartus 11 sofiware version 4.1. Table (4) shows the power
estimation numbers for operating clock frequencies of 100 MHz, 133 MHz and 275 MHz (the
highest clock rate achievable by the FI'T MegaCore on a Stratix device with these parameters).

Table (4). FFT MegaCore Function Power Consumption

Function ' I‘rmur_(ﬁ_t!_*_n_l_l_l1}[}tlllll1 (mW)

| 100 MHz [133 MHz [275 Mz

FET "-.’h-uu'. ore Function 32074 SO9GU8 | Be3R4 |

From a function to function comparison, we can see that an FPGA FFT implementation generally
utilizes less power than a similar FFT function implemented on a DSP. Even at the maximum
operating clock frequency of 275 MHz, the FPGA FFT implementation still consumes less power
than the DSP processor, In this case, the FPGA is not fully utilized (only about 15% in this case)
and can handle more functions and larger amounts of data in parallel compared to the DSP.
Increased functionality added to the FPGA will most likely increase the toggle rate, the operating
frequency and the amount of logic utilized within the FPGA, all of which will increase the total
amount of power consumed by the FPGA. In return, the designer gets the benefit of a higher
performance system, a trade-off the system designer should take into account. Additionally. with
the FPGA co-processor approach, the designer has to factor in the addition power consumed by the
DSP (now running in a reduced lunction, since a large portion of the processing has been off-loaded
to the FPGA co-processor). in addition o the power consumed by the FPGA co-processor,

SUMMARY AND CONCLUSIONS .

DSP and FPGA co-processor solutions provide designers with a myriad of implementation options
and solutions for today’s system designers. Along with these solutions comes a variety of design
factors and considerations that need to be evaluated to select the best approach, depending on
system requirements like ease of implementation, cost and performance as well as power
consumption.

DSPs can provide thq. simplest implementation for a wide range of DSP algorithms and
applications, but the cost/performance, implementation flexibility and hardware parallelism
provided by an FPGA coprocessor cannot be overlooked. A simple example of this is a basic
OFDM communication system, which requires many FFT operations to be computed for a large
number of channcls al once. Today's DSPs are unable to keep up with the load required of these
systems unless an approach requiring large arrays of DSPs is employed. Integration of these DSPs
within the system is not a trivial, task. The coordination of shared memory between processors is
especially complex.

FPGAs. on the other hand, are capable of |mm[]q_|u|nn the operationh of these functions. re duum__ 1|]L
overall computation time of each operation and arc. therefore, able to support a larger number of

39

h

' COMPARISON BETWEEN FPGA CO-P

N. H. Abbas & A. M. Ragib ROCESSOR&TMSIZ0C641X DSP FAMILY IN IMPLEMENTING
DIF FFT ALGORITHM |

channels within a single device. Additionally, the densities of FPGAs have grown significantly over
the last two years to the point that multiple instantiations of these functions can be implemented
within a single FPGA. reducing the total number of devices required and ultimately board real
estate. :

From a price/performance comparison. FPGA co-processors provide better performance for lower
cost compaied to a single DSP approach. Additionally. since the FPGA is not fully utilized, more
functionality and parallelism could be added 1o the FPGA co-processor to increase the amount of
processing the FPGA is capable of without impacting the cost of the system. Also. from a function-
to-function power comparison, we see that for the same function, an FPGA implementation is
capable of consuming less power than a DSP. For comparable performance to an FPGA, a designer
may be required to implement an array of multiple DSP processors, something which could
possibly increase the cost and power consumption of a system beyond that of an FPGA co-
processor implementation.

REFERENCES
TMS320C6414, (2001),TMS320C6415, TMS320C6416 Fixed-Point Digital Signal Processing Data

Sheet, Texas Instruments, February

Lim S. Lim, and P. Ekas. (2003), Design Methodology for Hardware Acceleration for DSP. Proc.
[nternational Signal Processing Conference, GSPx,

TMS320C64x (2003), DSP Library Programmer’s Reference, Texas Instruments. October.

Application Note 352: (2004). FPGA Peripheral Expansion & FPGA Co-Processing with a T
TMS320C6000-DSP Processor, Altera Corporation. August.

Atlantic Interface Functional Speciﬁcatinn, (2002). version 3.0, Altera Corporation, June.
FFT MegaCore Function User Guide, (2004), version 2.1.0, Altera Corporation, June.
Fast, Continuous, (2003), Sine Wave Generator, GlobalDSP, December.

Stratix FPGA Device Handbook, (2004), version 3.0, Altera Corporation, April,

11 Moves *C64x to 90 Nanometers, (2004), 1GHz, BDTi's DSP Insider. Vol, I[V. No. 2.
. http:/fawew bdt .com/dspinsiderfarchives/dspinsider 040218 htm !

540

	photo88
	photo89
	photo90
	photo91
	photo92
	photo93
	photo94
	photo95

