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ABSTRACT

Knapsack problems aré a class of common but difficult (NP-complete or NP — hard ) problems.
Since, it is believed that no knapsack problem algorithm can be constructed whose computation
time optimality increases as any polynomial function of the problem size. There is a variety of
knapsack—type problems in which a set of entities, together with their values (profits) and sizes, is
given. and it is desired to"select one or more disjoint subsets so that the total of the sizes in each
subset does not exceed given bounds and the total of the selected values is maximized.Diploid
representation and dominance operator are advanced operators that attempt to improve upon the
power of traditional genetic algorithms. Pseudo — Meiosis Genetic Algorithm (PsM GA) is one
form of genetic algorithms that incorporate diploidy structure and dominance mechanism in their
genetic search. The goal of this dissertation is to present the application of PsM GA in one of the
promising combinatorial optimization problems - the Knapsack Problem (KI’). Resulls obtained
concern two types of KP: the 0/1 KP and the Multiple Container Packing Problem. MCPP,
Moreover, several aspects are considered in experiments such as. the algorithm used for evaluation
of the individuals (fitness evaluation), the number of items (i.e., search space size), the correlation
between the weights and the profits of items, and the capacity of the knapsack.
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INTRODUCTION

Knapsack problems are a class of common but difficult (NP-complete or NP-hard ) pmhiemq
Since, it is believed that no knapsack problem algorithm can be constructed whose computation
time optimality increases as any polynomial function of the problem size [Gra95] [Hop79].

There is a variety of knapsack—type problems in which a set of entities, together with their values
(profits) and sizes. is given, and it is desired Lo select one or more disjoint subsets so that the total of
the sizes i: each subset does not exceed given bounds and the total of the selected values is
maximized [Mic99]. ;

The (/1 knapsack problem can be defined in terms of the following simple ;EH<1|{!“"; For a given set
of weights wiil. profits 1| 1. *and capacity W, the task is to find a binary vector x (x| 7] ... x[»]).
such that:

S il wlil< w, Sty

and for which

L
f)=3 x[i]-v[i] 2)
is maximum.[Mic99][Sim01].
Hence, the well-known single-objective 0/] knapsack problem (KP) is: given a set of items (n).
each with a weight w[i] and a profit v[/], with i=1,..,n. The goal is to determine the number of each
item to include in the knapsack so that the total weight is less than some given limit W, and the
total profit is as large as possible.
The 0/1 knapsack problem can be seen as the variant of the Multiple Container Packing Problem
(MCPP) with only one containgr. The MCUPP is a combinatorial optimization problem which
involves finding the most remunerative assignment of # items with given weights and values to
W containers such that each item is assigned to one container or remains unassigned. and the
tolal weight of each container does not exceed o given maximum. In detail. it can be formulaed as
fullows: :

maxlmlze:f ZZ VX, (3)

=] j=|
subject tonu <lif=l..n @)
and
C
Zw_uxi_i aW.. isl T (5)
1=]

Xi & ML S W =L s
With “"I' = {}. 1".’ - U, lIIl:l'l'llrr.l..'_ll' :-h U- 0
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Let w;, be the weight and v, be the value of item j. The variables searched for are x,; (i =1, ..., (. j =
1, ..., n): If item j is assigned to container i, x; 15 set to 1, otherwise to (. The goal is to maximize
the total value of all assigned items (1). The » constraints in (4) ensure that each item is assigned 1o
one conlair. 2r al maximum. According to (5). each of the (' containers has a total maximum weight
W Which must not be exceeded by the sum of the weights of all items assigned to this
container.[Rai98]. s :

Looking at the previous knapsack tormulations, one may be inspired to ask “do functions like these
ever come up in practice?”. The answer is resounding *Yes!™ It is enough for the reader 1o imagine
some real applications. For example. in Bin Packing Problem (BPP). the goal is w0 minimize the
number of containers necessary (o pack all # iteris while not violating any weight constraint. The
values of items do not play a role. Like the KP. the BPI* in its general form is NP-hard. Note that
the MCPP can also be seen as a complex combination of the KP and the BPP, since the MCPP can
be divided into two strongly depending parts which must be solved simultaneously: (a) Select items
for packing, and (b) distribute chosen items over the available containers.

One more related problem, which can be seen as a more general form of the BPP, is known under
the term General Assignment Problem (GAP). A set of jobs (i.e., items) must be assigned to a set of
agents (i.e.. containers). Each possible assignment has its individual capacity requirements and
costs. and each agent has its individual capacity limits. The goal is to distribute all jobs in a way to
pay minimal costs while suyslying all constraints [ Rai98].

Additionally. a variety of industrial probiems can be reduced to knapsack problems. including cargo
loading, stock cutting. project selection, budget control. air baggage handling and many other
important sectors of economy. Typical cases being the steel bar cutting siock problem. For
example, the two — dimensional cutting problem requires cutting a plane rectangle into smaller
rectangular picees of given sizes and values 10 maximize the sum of the values of the picces cut.
This version ol the proeblem appears in the problem of cutting steel or ehiss plates into required
stock sizes 10 minimize waste. By taking the value ol a piece to be proportional 1o its area. we can
formulate the waste minimization problem as one ol maximizing the value of the pieces cut. The
problem also appears in cutting wood plates to make furniture and paper board to make boxes
(6Ada76][Chr77].

CHARACTERISTIC COMPONENTS OF PsM GA

The Pseudo-Meiosis Genetic Algorithm (PsM GA) has a meiosis-like procedure to generatc a
phenotype from a pair of functionally different chromosomes, unlike a conventional diploid GA
with dominance. Additionally, it provides a mechanism for re—pairing the two chromosomes of an
individual for the next generations. Below is a detailed explanation of PsM GA.

Individual Representation ’

Fach imdividual has two slots 1o hold a pair of chromosomes; a chief sior and an assistant slot, The
chromosome in a chiel slot is called a chiel chromosome. and the dne in an assistant slot is called an
assistant chromosome, Chicl and assistant properties do not change during gencration. The names.
chief and assistant, come [rom their functions, The chiel chromosome is related 1o the principal
search cycle of the GA, whereas the assistant one works only for its chiel pair inside the individual
[Yos94].

Diploid Stage 1 (Pseudo—Meiosis (PsM) Mapping) and Fitness Evaluation

The Pseudo—Meiosis otcurs inside an individual with probability P,.., in order to generate a post-
meiosis (haploid) chromosome. While for individuals that bypass pseudo-meiosis operation, a copy
of the chief chromosome is treated as a post-meiosis one. Consider the following example where
Probability = P
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The below example is for Probabilinv = 1,

Post — Meiosis
chromosome

Chief -
chromosome

1{of 1]

]ﬂll]ﬂll}llll

Assistant — L“
chromoserme

Haploid Stage (Selection, Crossover, and Mutation)

This step is very similar to that of ordinary haploid GAs. except that GA operations are applicd only
lo the post-meiosis chromosomes’ population. The post-meiosis chromosomes:are first evaluated
and then selected and reproduced based on their fitness values. The oftspring chromosome
undergoes crossover. with probabilite 2 and matation. with probabiline 12,

Diploid Stage 2(Haploid — to — Diploid Re—-Pairing Mechanism
Each offspring chromosome is pulled back to the chief slot of its parent individual. 1'he chiel slot of
an individual whose post-meiosis chromosome became extinct because of selection is filled with
reproduced, and therefore promising, offspring.

Each assistant chromosome undergoes mutation with probability £,,.. Note that, apart from
mutation, there is no destructive operation for assistant chromosomes.

The Pseudo—Meiosis GA Layout

The Pseudo-Meiosis mapping, selection. crossover, mutation. and re—pairing form one generation
cycle of the PsM GA. The generation (as depicted in the Fig. (1)) is repeated until some terminating
condition is satisfied. ’
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[ post-

Repairing

Fig. (1) Genetic operations of the pseudo-Meiosis GA.

Yoshida and Adachi applied their PsM GA to a non-stationary problem Traveling Salesman
Problem (1SP) only and they demonstrated that their results were preliminary, and more
investigation is needed to use the PsM GA framework for other problems domain.,

PsM GA FOR THE MCPP
Following subsections present PsM GA diploid individual representation éducate for MCPP, (itness
evaluation, PsM GA evolution stages. and finallv experimental resulis,

Problem Intialization

Three randomly generated sets of data are considered that correspond to the correlation between
profits and weights of items which in turn affect on the difficulty of the KP problem.
[Mic99][Sim01]:

uncorrelated

both vectors w([i] and v[i] are generated at random, using a uniform distribution:

w[i]: = (uniformly) random ([1..r]), and

v[i]: = (uniformly) random ([1..7]). (6)

Where r is any constant integer number.

Most programming language libraries provide a lunction to generate normally distributed random
numbers. '

weakly correlated
veetor wli] is created at random. however, veetor v/ is ereated with some correlation with ] (]

wlil: = (uniformiy) random (] 1./ |}, and
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vlil: = wli] + (uniformly) random ([ =2, ... #2]).  (7)
(if, for some /, v[i] < 0, such profit value is ignored and the calculations are repeated until v|i] > 0),
Also, ri and r2 are any constant integer numbers,

strongly correlated:

wlil]: = (uniformly) random (J1.. ). and

Vil =wli]l +r Sudk
Where rand v are any constant integer number.

Also, knapsack type can be one of the following depending on how its capacity generated:
restrictive knapsack capacity

A knapsack with the capacity of W,,.= 2u. In this case the optimal solution contains very few
items. An area, for which conditions are not fulfilled, occupies almost the whole domain.

- .
average knapsack eapacity

A knapsack with the capacity W,,.,, —-G.iz:'_l w[i]. In this case about half of the items are in the

optimal solution.

Individual Representation

For MCPP. two schenres can be used 1o represent a1 solution vector | [ Raivg|

1- A solution is encoded as a vectors ol # genes aff= 1, ... . ). Bach geng § represeiis the number
ifi=1, ..., C) of the container to which item j 1s supposed to be assigned or the special value 0 if no
assignment 1o any container should be done. see Fig. (2).

B ik h kS e n
. : :
Chfﬂfﬂﬂﬂﬂ"tz PEE G R !
container a; ) | ' -
|
Fig. (2) Direet Encoding Scheme J
2- A solution is represented using order based encoding. where the vector a is represented by o
permutation ofall items /= 1. ... o stored in a chromosome b by, . b see F ig. (3-7).
A T
Index } % et o R
Chrumusnme=lte+ | n | 1 | i e e ! 4
| |
]
TR ; | .
Container { or unassigned Unassigne
1 2 5, d

Fig. (3) Order Based Encoding Scheme
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For our purpose, we implement the first scheme (i.e., direct encoding scheme) as the solution or
chromosome representation with the following consideration:

As an PsM GA individual consists of two slots, a chief slot and an assistant slol. then it can be
represented as two vectors ol # genes cach. One vector for chief slot and the second vector is for
assistant slot, see Fig. (4) follows.

Item ji

Container ’. _ i ! C hiel =Sl
Jee Himulogons

Chief jor 0 e o | chromosomes
r-l:-f P, GA

. individual
Container Assistant - Slot
assistant jor 0

Itcmj'

Fig. (4) PsM GA Individual with Direct Encoding Sheme

For the individual example illustrated in the above figure, one can see that chiet slot hold a solution
in which container number 1 contains items: number 3 and n. container number 2 contains item
number 1. container number 3 contains item number 2. while item number 4 dose not exist in any
container. and so on. The same explanation can be applicd 1o the assistant slof

Fitness Evaluation

For the individual representation illustrated in the previous section, the next step is how to evaluate
each PsM GA individual (i.e. how to evaluate individual's fitness).

With the direct encoding representation, it is easily possible that solutions are generated which
violate constraint concerning the maximum total weight W, of containers. Individual that violate
constraint is said to be lethal individual. The algorithm for decoding and possibly repairing a
(lethal if any) chromosome a is shown in Fig. (5).

Procedure DirectEncoding;
S=0;
For all item 7 in fandom order do
Il = 0 then

If Sg+W, = W, then

A H“.i — F;”i | 1'r;||l"l.:
Assign ilem § W conlainer ug;
Else
a; =0;

done;

Fi:g. (3) Chromosome Decoding with Repair Mechanism
Algorithm
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First, the current weights of all containers (vector S) are initialized with 0. Then. all items are
processed i.1 a random, always different order so that not the same items are favored every time.
Each item j is checked if it fits into the container possibly specified in a,, in which case the item is
actually assigned and the current weight of the container S,.. is increased accordingly. If adding item
J would result in exceeding the total maximum weight W,,,. the value of the corresponding gene g,
is set to 0 meaning that the item is not assigned to any container.

Note that the previously mentioned decoding and repairing algorithm is used to evaluate fitness of
cach PsM GA individual at two different stages. During the diploid stage 1, the fitness function is
evaluated for the post-meiosi¥ chromosome (phenotype of chief and assistant genotypes). Later,
during the haploid stage. we nequire to evaluate the litness of cach haploid chromosome.

PsM GA Diploid and Haploid ’\tﬂg
In the PsM GA., diploid chromosomes have different functions during a search. Chief dllur1u.'niﬂ11u.
participate in the main search course. When Pseudo-meinsis mapping s applicd over the two

parent s chicl and assistint chromosames walh probabilite 2. 0 post mciosis chromosome s
generated. In case ol no Pseudo-meiosis mapping occurs. a copy of chiel chromosome undergoes
selection to be post-meiosis chromosome. The next step. then, is 1o evaluate each post-meiosis
chromosom.e. However, this chromosome (due to post-meiosis process) could hold infeasible
solution. To overcome this problem, the fitness function of each chromosome is evaluated afier
encoding (and possibly repairing) that chromosome.

After that, a copy of all generated post—meiosis chromosomes are translated to a haploid stage in
which  the traditional selection (e.g., tournament with elitism). recombination
(e.g.. one—point crossover) with probability /., and mutation with probability p,, are applied.

When these haploid chromosomes are generated, they finally pulled back to their original diploid
chromosomes through a haploid — to - diploid repairing mechanism and considered as chief
chromosomes for the next generation cycle. However before next generation cycle is started. the
assistant chromosome undergoes a mutation with probability P, contributing. in this way. on

producing a variant of its chief chromosome via pseudo-meiosis diploid - to - haploid mapping.

EXPERIMENTAL RESULTES
‘This section presents experimental resails aller
instances for the PsM GA and MCPP are considered as illustrated in wable | and 2

iaplementing the PsM OA o solve MOPP. several

Table (1)Characteristics of PsM GA Enviroment

*Algorithm Parameter

GA

GA —tyoe

Generational -

Selection —type

Tournament with elitism strategy

Selection - 5:2&:

§=2 i

Pseudo — N‘Iem_qis type

_Pseudo - “Llﬂﬁl’iihdhil Ly

| Haploid Rt..i,m‘rlhm:!tlﬂn—1y;JL =y
| Haploid Htuunbnmtmn — proba I1:I||-.r

]Enl['.lh"lllli mulation —type

H-_lElL‘IIL! mutation — Emh.uhil'u

f Assistant mutation probability
_ i"ﬂEulumn siee

Stopping ultei ia

Runs — per experiment

One ~ point crossover

i P|||._|u = H —’
L

P = U ﬁ
| Flip - mutation_

[Py = 0.1

tﬂ
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Table 12) Characteristics of PsM GA and MCPP Enviroment

Chromosome K daE Container " |
length {no. of c i | Max - Correlation Weight - Profit of item
: ontainer .
items) | weight
i |
PsM GA 10 =3 T A Uncorelated . |
PsM GA2 10 3 | 100 Weakly (r <[-0.8..-1.2,8.8..12] . v =[5.95])
| PsM GA3 1] 3 | 100 Strongly (r =[0.8..1.2] . v=[5..95]) | ||
| PSMGA4 | 20 fi d I el Uncorrelated |
PSMGAS | 20 9 100 Weakly (r=[-0.8.-1.2,88.12] , v=[5.95]) |
| PsMGAG6 | 10 I 00 | - Swongly (r =[D:8.51.2] . »=[5.93]) |

Since the optimal solution values for most ol these problems are nol know in advance, the guality ol
a final solution is measured by the percentage gap of the PsM GA’s solution value f with respect 1o

ul
the optimal value of the NP-relaned problem f Chis upper bound can casily be deteemined To

any MCPP by sortung all items according to their relative values v /vy and summing up the item
value v, starting, with the best item unti! a lotal weight of CW,,,, is reached. The last item is counted

proportionately. Knowing the LP optimum. the gap is determined by %-gap = %I100(f - f

HEHRY

£ ). [Rai98]. Finally, MMCP for PsM GAG is reduced to 0/1 Knapsack Problem.

As an example, table 3 depicts MCPPs for PsM GA1, PsM GA2. and PsM GAG6.Table 4 through 6
Present maximum, and gap results averaged over ten different runs for each problem instance
(resulls are depicted alter every fifth generation after all first five generations).

Table (3} Tested Knapsack with 14 items

_______ o T PsMGAl L M GAE - T TPaMGAG
fom | Vhlue i Weight | "Value | Weight | Value | Weight
£ S EIADIRER, TN AT o SR g T B Vi
L 46400 GE ) R RN T R S ke [T R |
3 oo [ 4 53800 | 48 | 3To0h 29
3 | 61000 | 34 | 61600 | 56 1o 5 12 |
4 52.000 56 | 67.000 67 38.000 38 |
Bz 48.000 59 37.800 | 42 74.700 W
Lo 44000 | 56 64.800 72 79.200 88 |
7 64.000 85 $400 1 6 9.0000 10 1
L8 8.000 50 57.600 64 | 67.500 75
0.9 r ] isooe s | oa 22.400 28 | 4.0000 & em
(3191 THNN e e o 3 el | 4 |
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Table (4) Experimental Results of PsM GA1 and PsM GA2

de

, (_ru] of Max.

323.4444

1.734593

.“rl\

277.3889

PsM GiA2
Gup of ’HM

1.060671

~337.0000

0.551436

 339.6667

0.551436

339.6667 .

0551436 |

277.8444

1.027802

278.6000

0.823287

 278.6444

0.823287

344.5556

0.551436

350.7778

0. 551436

280.2444

0.823287

283.1667

0.815983

358.7778

0.551436

362.7778

0.433120

283.8111

0.812331

 284.5667

 364.1111

B4 ITL o e
3641111 |
364.1111

0.433120

0.812331

'284.8111

0.812331 |

0.433120

364.1111

 364.5556 .
365.0000

365 0000

365.0000

0.433120

0433120

~ 0.314804
0.314804

0433120
0.433120

" BRT ATTE

285.4556

- 286.7556 |
286.7556

0.812331
0.600512
' 0.600512

0.600512

287.3889

287.4000

287.6000

- 0600512
0600512
0600512

0.314804

287.6000

0.600512

365.0000

0. 3148{]4

365.0000

0.314804

287.6000

0.600512

287.6000

0.600512

365.0000

0.314804

287.6000

0.600512

365.0000

0.314804

365.0000

0.314804 |

287.6000

0.600512

~ 287.6000

0.600512

~ 365.0000

0.314804

287.6000

~0.600512

365.0000
365.0000

365.0000

0.314804

- S 3148[]4

287.6000

287.6000

0.600512

0314804 |

287.6000

0.600512

365.0000

0.314804

365.0000

~ 365.0000
365.0000

365.0000

__0.314804
r“| 314 "\r".d
8] J l"ll. L 4

T 0.314804

|

" 287.6000

0.600512

287.6000

" 287.6000

287.6000

287.8000

0.600512
0 P’""U':HL
060051

GBGDE12

365.0000

0.314804

287.8000

0. BDD512

365.0000

0.314804

287.8000

0. 600512

0600512 |

0.314804

287.8000

~ 0.600512

365.0000
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Table (5) Experimental Results of PsM GA3 and PsM GA4

PsM GA3 __ PsMGAd L)
| No. | Max. Gap of Max. __ Max. Gap of Max.
f_ "~ 275308 1.952322 599.4444 2156788
2 | 272.2000 1952322 614.8889 2.125369
F o 273.0222 1.952322 624.1111 ey
4 | 2758117 |+ 1952322 |« 6294444 1.764054
5 2765111, | 190437 . | 6304444 | 1041424 -
10 282 6667 1767365 | 6428889 1.041424
| 15 | 2849111 1657761 646 8889 1.041424
| 20 2880889 | 1657761 ° |  646.8889 - 1.041424
25 290.8222 1.000137 646.8889 1.041424 |
30 290.8222 1.000137 649.8889 0617272
35 290.8222 1.000137 649.8889 0.617272 |
40 292.7111 1.000137 649.8889 0617272 |
B 294 6000 1.000137 651.0000 0.617272 ' |
50 2946000 |  1.000137 652.0000 aptree |
55 294.6000 1.000137 653.0000 0.570144 |
60 294.6000 1.000137 653.0000 0.570144 |
| 65 | 2946000 | 1.000137 | .653.0000 0.570144 |
70 | 295.2000 1000137 |  653.4444 0570144 |
|75 | 2052000 [ 1000137 | 6534444 0570144 |
| 80 | 2952000 |  1.000137 | 6534444 0:570144 . |
| 85 295.2000 1.000137 |  653.7778 0570144
o0 Lo RS 2000 1.000137 H04.22221 14 o, DSTOT4E |
| 95 | 20852000 1.000137 - 6551111 | 0570144 |
[ 100 | - 2952000 |  1.000137 655.1111 0.570144 |
105 | 295.2000 1.000137 | 655.3333 0.570144
| 110 | 2952000 |  1.000137 657.3333 0.570144
| 115 | 295.2000 1.000137 657.3333 0.570144
120 295.2000 1.000137 657.5556 0.570144
125 295.2000 1.000137 657.5556 0.570144
130 295.2000 1.000137 | 657.5556 0.570144
| 135 | 2052000 | 1.000137 | 657.5556 0.570144 |
| 140 | 2952000 | 1.000137 . | 657.5556 0.570144 |
| 145 | 2052000 | 1000137 | 6576667 | 0570144
| 150 | 2952000 1.000137 |  657.6667 ~ 0.570144
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Tuble (6) Experimental Results ol PsM GAS and PsM GAD
PsM GAS _PsM GAG
No. Max. Gap of Max. Max. ~ Gap of Max.
1 | 7093778 |  2.529700 97.54445 |  0.634317
2 716.9000 |  2.407840 98.32222 0.634317
3 7188111 , | 2407840 |  98.32222 0.634317
4 722.0778 | 2407840 98.32222 0.634317
st r7e8ggaa -+ - 2407846 = | 98.7085¢ 0.634317 |
0 | 7450667 |  1.999608 99.10000 0.634317 |
15 756.9333 '1.999608 | 9910000 | 0634317
20 | 763.7222 |, 1.999608 99.10000 63431/
R5E DT 7647000 - 1.063515; 9910000 | (0634317 .
30 | 7703444 | 1810724 9910000 |  0.634317
350 TR 16E TN T TR e 99.10000 0634317
U YrE g T T4 a5 99.10000 | 0634317
45 “776.0111 | 1.747357 99.10000 | 0.634317
50 776.0222 1.746138 99.10000 0.634317
| 55 777.2222 1.746138 99.10000 0.634317
60 777.7333 1.746138 | 99.10000 0.634317
65 777.7333 1.746138 | 99.10000 0.634317
70 778.4667 1.746138 99.10000 0.634317
75 7784667 | 1.746138 99.10000 0.634317
80 7784667 | 1746138 99.10000 0.634317 |
EL 780.1889 1.746138 99.10000 0.634317
90 785.6111 1746138 99.10000 0.634317
95 | 7864778 | 1651087 |  99.10000 0654357
| 100 | 786.4778 |7 1651087 9910000 | 0.634317 |
| 105 | 7864778 | 1651087 | 9010000 | 0634317 |
o | 786478 L1 - 1851087 T T T 89.10000 "5 0634317
| 1S | “7eearie T 1851087 . T 1F R 10000 T U} T OES431T |
120 ] -7875667 | 1531664 |  98.10000 ~ 0.634317
125 787.5667 1.531664 | 99.10000 0634317
130 787.5667 1531664 | 99.10000 0.634317
17135 787 5667 1531664 | 99.10000 0.634317
- 140 788.3667 1.531664 |  99.10000 0.634317
145 788.3667 1.531664 99.10000 0.634317 |
150 788.3667 1.531664 99.10000 0.634317 |

CONCLUSION

As presenled in the Previous results, one can see that as correlation between item weight and value
lor example become strongly correlated.
finding betor auluumn. It may requires more number of generations to enhance their individuals.
Results may also be enhanced using other types of crossover, For example two — poinl crossover. or
even one can hybridize with special local improvement operators to improves results as possible.
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Also. we can draw the followime points:
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