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ABSTRACT 

 

The dynamics of dual-spin spacecraft which containing a proposed nutation 

damper which consisting of a ring totally filled with a viscous liquid with offset center, 

to improve damping, is investigated. The equations of motion were developed using 

Newton-Lagrange approach resulting equations in terms of spacecraft’s and damper’s 

parameters , which are given in dimensionless form. The expression of the nutation 

angle and time constant in both modes are developed using zero-order approximation 

technique. The equilibria states and stability condition, and the analytical expression for 

residual nutation angle were derived. The analytical results were compared with those 

found numerically using computer simulation program named MATLAB, ver. 7.  

Also the effect of various spacecraft’s and damper’s parameters on the dynamic and 

damping characteristics are discussed. The three dimensional graphical representation 

of the first and the second relative equilibria states are introduced. The numerical 

results are compared with the analytical for both modes of motion, where the percentage 

error of the time constant for nutation mode is less than (3.6%), and for spin mode is 

less than (8%). As an important result its concluded that the proposed damper works 

better than that used by Alfriend
(2)

. 

 

 

 

 الخلاصة

ذن ذسلٍل دٌٌاهٍكٍح الأقواس الصٌاعٍح راخ الثشم الوزدوج والرً ذسوي على هخوذ ذشًسيً هتريشذ ٌري لن هيي زلتيح 

ذخوٍييذ للسشيييح الرشًسٍييح ل قويياس  أز يييهولييو ج يلٍييا ت ييارل وتوشيييز هييزاذ عييي هسييوس الييذوساى للسصييو  علييى 

سشيح وذن السصو  على هعادلاخ تذلالح هرغٍشاخ لاگشاًح لاشرتاق هعادلاخ ال-اسرخذهد طشٌتح ًٍوذي .الصٌاعٍح

وخيذخ الرعياتٍش  .زٍث ذن خعل هيزٍ الورغٍيشاخ تسٍيث ذكيوى لا تعذٌيح, التوش الصٌاعً وهرغٍشاخ الوخوذ الرشًسً

وثاتييد الييزهي لاييً ييين السييوسٌي تاسييرخذام طشٌتييح ذتشٌيية الوشذثييح  (Nutation angle)الخاصييح تزاوٌييح الرييشًر 

وييزل  ًوقتيد زيالاخ الاذيزاى وشيشوط الاسيرتشاسٌح الخاصيح ت يزٍ  (zero-order approximation)الصفشٌح 

ذن هتاسًح الٌرارح الرسلٍلٍح الو رسصيلح  .الأقواس؛ ويزل  ذن السصو  على الرعثٍش الشٌاضً لزاوٌح الرشًر الورثتٍح
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ًوقتيد  MATLAB 7لاً هذا الثسث هع الٌرارح العذدٌيح الو رسصيل علٍ يا تاسيرخذام الوسايياج تواسيسح تشًياهح 

أٌضا ذ ثٍش الورغٍشاخ الوخرلفح الخاصح تالتوش الصٌاعً وهٌظوهح الرخوٍيذ عليى الخيوال الذٌٌاهٍكٍيح والرخوٍذٌيح 

سد زاليح .للوٌضيوهح . الأتعياد  ثنثٍيح  سسيوم  هيي خين   والثاًٍيح الأوليى   الٌ يثٍح  الاسيرتشاسٌح   وأخٍيشا وضحي

(Three Dimensional Representation). .زٍث وخذخ , ذن هتاسًح الٌرارح العذدٌح هع الرسلٍلٍح لكن السوسٌي

 %(5)ولسوس الرزاهي الرذوٌوً اقل هي %( 5.3)ً ثح الخس  لثاتد الزهي لسوس الرزاهي الرشًسً اقل هي 

 

NOMENCLATURE 

Symbol        Description                                                                                Unit   

 A                    Principal transverse moment of inertia of the spacecraft                                  kg.m
2
 

b                      Ratio of the ring height to the ring mean radius                                                    - 

C, Cp  Moment of inertia of the rotor and the platform along z-axis                         kg.m
2
 

d                      Distance of the offset.                                                                                              M 

Fd                    Drag force                                                                                                                   N  

ht               Transverse angular momentum  

htt              Total angular momentum       

[Is/c]                 Spacecraft inertia matrix                                                                                      kg.m
2
 

Iu, Iv, Iz          Moments of inertia of the damping viscous liquid 

                       measured along u, v, and z axes                                                                           kg.m
2   

Iuz                   Product moment of inertia of the fluid                                                                  kg.m
2
  

m                    Mass of the fluid                                                                                                        kg 

p, q, r         Dimensionless angular velocity components of the spacecraft   

                  about x,y and z, respectively. 

Qα              Generalized moment associated with the generalized coordinate α       N.m 

{Q}            Column matrix of the moment component of the  

                   non conservative forces                                                                     N.m 

R                Ring mean radius of the nutation damper                                             m 

T                Total kinetic energy of the spacecraft equipped with nutation damper  N.m 

t                  Time                                                                                                    sec 

x, y, z          Body fixed frame. 

 

Greek Symbol    

α                 Relative angular displacement between the fluid and the spacecraf      rad  

αo                Initial value of α in the spin-synchronous mode                                   rad 

~                Small variation in α in the spin-synchronous mode                              rad   



                Relative angular velocity of the fluid                                                   rad/s 

ε             Inertia ratio of the fluid to the transverse inertia of the spacecraft           -                          

η                 Damping constant of the damping fluid                                                   - 

θ                 Nutation angle of the spacecraft                                                            rad 

θn                Nutation angle in the nutation-synchronous mode                                 rad 
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θr                Residual nutation angle of the spacecraft                                               rad 

θs                Nutation angle in the spin-synchronous mode                                        rad 

σ                 Inertia ratio of the spacecraft (σ=C/A)                                                     - 

τ                 Dimensionless time                                                                                  - 

 

INTRODUCTION 

 The attitude control system of the spacecraft is to control the attitude and position of 

the spacecraft as it performs its mission. The techniques that provide attitude stabilization and 

control of spacecraft are; passive control system, semi-passive and active control system
(15)

. 

The type of the system adopted in the present study is the passive type system. Passive 

system does not require any external power source, once they are in place, they use gravity or 

momentum to create the necessary control forces and moments
(19)

.  

Dual-spin stabilization type is the method of attitude stabilization adopted in the present 

study. A spin and Dual-spin stabilized spacecraft, or spinners, utilizes its own spinning 

motion to keep it’s self aligned in a certain inertial direction. The spinning motion creates 

stiff angular momentum vector, which tend to resist external disturbance torques. A spinner is 

stable if it is spun about the axis of largest principal moment of inertia, if it is spun about a 

different axis, any disturbance could cause the spin axis to shift to the major axis. 

In single spin stabilization the whole body rotates about the axis of maximum principal 

moment of inertia. Early communication satellites, such Syncom I, ATS I, II and Inelsat I, II 

were single spin stabilized. Its advantages are simple, reliable, and long life time but the main 

limitations of these satellites are that they could not use earth oriented antennas. These 

limitations are overcome in a dual spin spacecraft. Whereas dual spin spacecraft consisting of 

spinning rotor producing gyroscopic stiffness and a platform rotating at a much slower rate in 

accordance with the desired attitude of the spacecraft. There are two types which are 

commonly known as the external rotor and body stabilized spacecraft, each type employs a 

different method of attitude stabilization. The external rotor type or “Gyrostat” uses spin 

stabilization where the rotor of relatively large moment of inertia rotates to provide 

gyroscopic stiffness, while the platform usually containing communication equipment and 

antennas are despun. 

Chang, and Liu
 (4)

, studied the dynamic and stability of an inertially symmetric, spinning, 

rigid body with a partial filled viscous-ring damper mounted normal to the spin axis. They 

used the nonlinear equations directly by using center manifold theory; they generated the 

stability criteria and the decay time constant. Then Alfriend
(2)

, studied the attitude stability of 
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Dual-spin spacecraft with a partial filled viscous-ring damper utilizing zero order 

approximation technique. Hamed
 (31)

, studied the ball in ring nutation damper, he utilized 

neon gas and many percentage of glycerin water mixture as damping fluid in his study.  

The present work represents an attempt to study the full filled viscous ring damper 

mounted normally to the spin axis with offset centre (d) from the spin axis.  

-EQUATION OF MOTION 

The total angular momentum can be written in terms of angular velocity component: 



h = [(A+Iu)ωu - Iuz(ωz+


 )]eu + [(A+Iv)ωv]ev + [Cωz + Iz(ωz+


 ) - Iuzωu + Cpωpz]ez         1 

When the external torque components are zero, the system referred to as a freely precessing 

system, then the principle of conservation of angular momentum can be applied, such that
(21)

: 

 

 

Fig. A: Body fixed coordinate system. 
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Fig. B: Rigid body angular momentum. 

 

Fig.C: Spacecraft model with viscous ring damper. 
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the equation which describes the motion of the fluid inside the ring, can be obtained by using 

Lagrange’s equation expressed in terms of quasi-coordinate. 











Q
TTT

dt

d

v

u

u

v 















                                                                                         3 

where Q is the generalized moment associated with the generalized coordinate  , and it is 

given by: 



 
2RCQ f                                                                                                                        4 

fC : coefficient of viscous friction between fluid and ring wall.(N s/m) 

The kinetic energy (T) of the system is in the form:  

 
































uzuzzzvvuuppzvu IIIICCAT  2
2

1
2

222222
   5 

Using Eqs.1, 4 and 5, then Eqs. 2 and 3 yields: 

 

   
0

1

5

1

4

1

321

1







 


D

A
r

D

A
q

D

pAArA
q

D

r
p

s
                                       6 

   
0)( 2

2

4

2

321

2







 


r
D

B
p

D

pBBrB
p

D

r
q

s
                                        7 

  0][321  pqrCpqCC                                                                            8 

04  Cr                                                                                                                         9 

where, (  )′ = (d/dt),  D1 & D2 are given in the appendix   

                                  

 

-SOLUTION OF THE PROBLEM 

Before developing the solution for the attitude equations of the spacecraft, the equation which 

is describing the nutation angle in terms of dimensionless parameters and variables, will be 

developed. 

tt

z

h

h
cos ,  

tt

t

h

h
sin ,   

222

zttt hhh constant,   
222

vut hhh               10a, b, c, d                                                                              

differentiate Eq. 10a and substitute in Eq. 10b gives: 

t

z

h

h


                                                                                                                        11 
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from Eq. 2, the time derivative of the spin axis angular momentum vector hz, may be given 

by (in dimensionless angular velocity variables (p, q)): 

vuz phqhh 


                                                                                                                  12 

Substitute Eq. 11  into Eq. 12, yields the following equation: 

 
t

uv

h

qhph 
                                                                                                                   13 

Substitute hu, hv, ht and huz into Eq. 13 yields (details in appendix): 

 

  
22

2

qp

qrbGpG







                                                                                              14 

apply zero-order approximation procedure to Eqs. 6, 7, 8, and 9 to get: 

 

  0 qrp s                                                                                                      15 

  0 prq s                                                                                                      16 

0r                                                                                                                                  17 

  0
2

2









 qr

bG
p

G
p

bGn 






                                                         18 

The solution of the angular velocity component r is obtained from Eq. 17, with the fact that 

the initial value of the r-components equal to 1, then the solution of Eq. 17 is: 

r=1                                                                                                                                      19 

substitute the solution of the r-component Eq. 19  in Eqs. 15 and 16, then one get:  

  0 qp n  ,     0 pq n                                                                      20, 21                                                                                                                                                                                                                                                                                                      

where,  

sn         

the solution of p and q are given by: 

   ntp cos ,    ntq sin                                                                     22, 23                                                                                                                                                                                                                                                                                                

substitute Eqs. 22 and 23  into Eq. 14, then Eq. 14 becomes: 

        nnt bGG sin1cos2                                                        24 

Now, it is required to express for t in terms of the nutation angle . 

Divide Eq. 10b by Eq. 10a and substitute th  and zh  then apply zero-order approximation to 

get: 
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n

t




 tan                                                                                                                          25                                                                                                         

where, sn    

sub. p given by Eq. 15  into Eq. 18 results: 

    01
2

2









 q

bG
p

GbG
n

n 









                                                   26 

 

DAMPER MOTION 

The symmetric rigid body, which is spinning about its axis of symmetry, has a constant 

nutation angle when no damping is present. The transverse angular velocity t  rotates at a 

rate of    cospp and the body rotates relative to t at a rate of   
pp 1 , 

when no damping is present, a plane containing the angular momentum vector 


h or t and 

the z-axis, called the nutation plane, is formed. the fluid is then moving at a constant rate of 

  
pp 1  (relative spin), with respect to the body. At the same time, the fluid 

subjected to centrifugal force due to the relative rotation (spin) about the z-axis. This type of 

motion is called "nutation-synchronous" motion. In this mode the fluid is moving at a 

constant rate with respect to the spacecraft (damper ring); hence the energy dissipation rate is 

constant. If  >1the nutation angle decreases which cause a decrease in the centrifugal force. 

Eventually the component of the centrifugal force is not large enough to balance the damping 

and friction forces, and the fluid begins to decelerate and oscillate until becomes at rest. This 

type of motion is called "spin-synchronous" motion.  

 

Nutation-Synchronous Mode 

Let   measure the position of the center of a portion of the fluid with respect to the 

nutation plane. Assuming that at 0,0   , then  

 n                                                                                                                        27 

Substituting for   in Eq. 26 and using Eqs. 22, 23 then Eq. 26 becomes: 

   
















2

22

2
sin1

nn

tn

nn bG
p

GbGbG


















                       28 

where, n refer to the damping constant in the nutation-synchronous mode. 
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Since that, the motion of the fluid in this mode is constant, then the solution of Eq.28 is,  

.cons   , so, 0  , substituting in Eq.28 and take into account that 

sn   and  1  , then 

  
2

2
2 sin1




 nn

tnbGpG                                                                            29 

substitute for s   and 0s into Eq. 24, then 24 becomes: 

   sntn bGG  sin1cos2                                                                            30                                                                   

where, n  refer to the nutation angle in the nutation-synchronous mode.  

Substituting for the left hand side of Eq.29  in Eq.30, and using Eq.25 then, 







n

nn

n 2

2

tan                                                                                                            31                                                                                                  

Carrying out the integration, then the nutation angle n   is given by: 

0coscos nn   ne




                                                                                                           32                                                                                                

where, 0n  is the initial value of n , n is the time constant of the system which it is given 

by: 






nn

n

n 2

2

                                                                                                                        33 

At the end of the nutation-synchronous mode, the system goes into the spin-synchronous 

mode and the nutation angle n gain its minimum value. Referring to Eq.29, to satisfy the 

condition of minimum value of the nutation angle in this mode, the angle s  should be equal 

to 
2


 substituting for this value and for t  from Eq.25, then; 





















s
n

n

bG 1

tan
3

2

                                                                                                  34                                  

Spin-Synchronous Mode  

In the Spin-Synchronous mode, the spacecraft becomes more closely to the state of 

pure spin about the spin axis (z-axis). Accordingly, the relative speed of the fluid, about the 

spin axis with respect to the spinning rotor, will be decreased. Eventually the relative speed 

between the fluid and the spinning rotor becomes zero, then the spacecraft spin axis is aligned 

with the initial direction of the total angular momentum vector. In the spin-synchronous 
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mode, it can be shown that the fluid is moving with a small variation in its speed with respect 

to the damper ring therefore it is necessary to find the solution for the motion of the fluid ( ) 

as a function of dimensionless time ( ), substituting for p  and q from Eqs.22 and 23  into 

Eq.26, yields: 

    0sin1
2









 







 ntn

n bG
                                                                35 

As mentioned above that the fluid moving with a small variation in its speed, then the 

following equation can be assumed: 

 ~
0                                                                                                                           36               

where, 0  is the initial value of   and ~  represent the small variation of the speed of the 

fluid such that  ~
0  , which gives the following expressions: 

        nn  000 sinsin,1~coscos,~~sinsin , 

    nn  0coscos                                                                                              37                                                                          

The basis of the above assumptions is that the change in  is small compared with n . 

Using the above assumption, then Eq.35 becomes: 

    0sin1 02









 







 ntn

n bG
                                                              38 

assume the forced oscillating solution of Eq.38  is given by 

 

    nn BA  000 cossin~                                                                 39 

to find the constants A and B, substituting Eq.39  in Eq.38, and after some mathematical 

manipulations we get: 
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substitute A and B in Eq. 39, and substitute for t , then the expression of  ~  becomes: 
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 nnsF 020 cossintan~                                                          40  

where s  referred to the nutation angle in the spin-synchronous mode and the constant F is 

given by: 
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The differential equation of the nutation angle rate Eq.24 is given by: 

 

       nnsns bGG  sin1costan2                                           41 

 

it was mentioned that ~ represents small variation in  such that 

 

 ~
0  , where  ~

0  .using the approximation of small angle, then  

 

   ~~sinsin 0  ,   1~coscos 0   ,   00 sinsin   , 

    000 2sin~2sinsin   ,                                                                                 42                     

 

using the above mentioned relations, then the expression of   nsin may be given by 

 

         nnnn sinsin~coscoscos~sin~sinsin 00000                                                                                                                                                                                                                                                                                              

                                                                                                                                            43 

Substituting ~  from Eq.40 in Eq.43 ( s  is small in the spin-synchronous mode ss  tan ), 

then (by expanding the trigonometric terms) Eq.41 becomes: 
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                                                                                                                                             44 

then Eq.44 is written as: 
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Eq.45 can be written in terms of spin-synchronous time constant as: 
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where, 
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one can see that the nutation angle time history consists of dominant exponential decay super 

imposed on it an oscillation of small amplitude represents the effect of the trigonometric 

terms. So that, the general solution of Eq.46 is given by: 

 

..IsPscs                                                                                                            48 

where, sc : is the complementary part of the, ..IsP : is the particular part of the solution. These 

solutions may be given by: 
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                                                                                                                        49 

 

    nnIsP BA  00.. cossin                                                                         50 

substitute Eq.50  in Eq.46 to get: 
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substituting the solution of Eq.50  in Eq.48 and using the initial condition ( 0ss   at time 

0  ) then the constant c is given by: 
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and from Eq.48  the complete solution of the nutation angle s  is given by: 
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RESULTS AND DISCUSSION 

         Figures (1) and (2) shows the nutation angle time history prepared in this work 

and that presented by Alfriend
(2)

 respectively, where figure (2) represent the experimental 

work of Alfriend
(2)

. One can see that the trend  of results of the present work is acceptable in 

comparison with Alfriend
(2)

. Figure (3) shows the comparison of the nutation angle time 

history of this work compared with that predicted by Alfriend
 (2)

, for nutation-synchronous 

mode. This figure shows that the time constant in this work is decreased compared with the 

time constant Alfriend
(2)

. In figure (4), the comparison of the nutation angle time history for 

both nutation-synchronous mode and spin-synchronous mode is shown. It is seen that the 

analytical solution very well agrees with the numerical solution. The time constant for 

nutation-synchronous mode obtained analytically is (99981) and numerically is (96428.5) 

which means that the percentage error is less than (3.6%), and this means that the analytical 

solution predicts the time constant very well, and for spin-synchronous mode, it could be seen 

the numerical is (866.66) and the analytical is (802.17), i.e. the percentage error is ( 8%). 

Figures (5, 6, 7, 8, 9 and 10) show the variation of the time constant with the inertia ratio  , 

ring mean radius (R), and damping constant, respectively. The variation of the time constant 

with the ratio of the ring height to the ring mean radius (b) for spin-synchronous mode is 

shown in Fig. (11). In Fig. (12), the variation of the time constant with the distance of offset 

center (d) is shown. Figure (13) shows the degradation of p component while, the time 

history of the r component of the spacecraft angular velocity for the first relative equilibrium 

state is  shown in Fig. (14). A three dimensional visualization of the first relative equilibrium 

state is shown in Fig. (15). It is shown that even the system being at a point in neighborhood 

of the second relative equilibrium state, it will converge to the  first relative equilibrium state. 

This is because that the system parameters satisfy the stability condition of the first relative 

equilibrium state. 

 

CONCLUSIONS  

          From the results shown, it is concluded that a good agreement was obtained 

between the analytical and numerical solutions. The proposed damper overcomes the 

problems of the spreading and sloshing which occur in the partially filled nutation 

dampers. Utilizing fluids with high damping coefficient will decrease the time constant 

in both modes of motion. 
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Fig. (1). Nutation angle time history of 

present work. 

 

Fig. (2).Nutation angle time history of 

the ref.(2). 
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Fig. (3). Comparison of the nutation angle time history of 
present work with ref.(2) for the nutation-synchronous 

mode. 

 

Fig. (4). Comparison between numerical and 
analytical solution of the nutation angle time 

history. 

 

Fig. (5). Influence of the inertia ratio (σ) on the time 
constant for the nutation-synchronous mode. 

 

Fig. (6). Influence of the inertia ratio (σ) on the 
time constant for the spin-synchronous mode. 

 

Fig. (7) Influence of the ring mean radius on the time 

constant for nutation-synchronous mode. 

 

Fig. (8) Influence of the ring mean radius on the 

time constant for spin-synchronous mode. 
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Fig. (9) Influence of the damping constant on the time 

constant for nutation-synchronous mode. 

 

Fig. (10) Influence of the damping constant on the time 

constant for spin-synchronous mode. 

 

 

Fig. (11) Influence of the ratio of the ring height to the 

ring mean radius, b on the time constant for spin-
synchronous. mode. 

 

Fig. (12) Influence of the offset distance, d on the time 

constant for spin-synchronous mode. 

 

Fig. (13) Time history of dimensionless angular velocity 
component (p) for condition (p0, q0, r0)

T=(0.15, 0.3, 0.9)T. 

First relative equilibrium state. 

. 

 

Fig. (14)  Time history of dimensionless angular velocity 
component (r) for condition (p0, q0, r0)

T=(0.15, 0.3, 0.9)T. 

For the first relative equilibrium state. 
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Fig. (15)  Three dimensional visualization shows that the 

spacecraft diverge from second relative stability and reaches to 

the first relative stability,  =1.2, (po, qo, ro)
T=(0.15, 0.3, 0.9)T. 

 

 

Fig. (16) Time history of dimensionless angular velocity 
component (p) for condition (p0, q0, r0)

T=(0.01, 0.07, 

0.95)T. 

Second relative equilibrium state. 

 

Fig. (17)  Time history of dimensionless angular velocity 

component (r) for condition (p0, q0, r0)
T=(0.01, 0.07, 0.95)T 

For the second relative equilibrium state. 

 

 

Fig. (18)  Three dimensional visualization shows that the 

spacecraft diverge from first relative stability and reaches to 

the second relative stability,  =0.75, (po, qo, ro)
T=(0.01, 

0.07, 0.095)T. 
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