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ABSTRACT
This investigation presents coupled analyses of an carth-dam problem including all aspects of fluid-
structure interaction (class 1 coupling) and soil-pore fluid-structure interaction (class II coupling)
under earthquake excitations using the finite element method and its comparison with the uncoupled
one. New software for predicting and analyzing coupled behaviour is established using the pressure
formulation for modelling of the fluid and the u-p formulation for modelling of the soil-pore fluid.
The staggered partitioned solution technique for coupled field problems is implemented and used in
the computer code. This scheme is incorporated in terms of a sequential execution for single-field
analvzers. The bounding surface plasticity model is used as a constitutive relationship for modelling
the clay core of a dam made up of Boston blue clay first and Baghdad brown silty clay later. The
general theoretical framework of the model and its numerical implementation with emphasis on
isotropic conesive soils are given. Also. the input material parameters are identified and the tests
required for delermining these parameters are clarified on Baghdad brown silty clay. Implicit-
Implicit Newmark's numerical integration scheme with o corrector !/ predictor algorithm is
employed lor time integraton ol the equativas o motion

The resuits show that the bounding surfade plasticity model can give @ logical impression lor the
behaviour of clayey soils under dynamic loads. Also. the earthquake design of structures generally
and dams, in particular, must take into account various interactions between the foundation, the
structure and the water in the reservoir in addition to site effects. Amplifications due to stratification
and dephasing (response lag) in the foundations of structures should also be considered.
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INTRODUCTHON

Soil plasticity problems are nonhmear and time-dependent and thus reguire more claborate solution
schemes fue such boundary value problems than simple linear elasticity cases. In general, all
techniques for nonlinear analysis can, with certain qualifications, be applied irrespective of the
constitutive law, although some of them are better suited to particular laws than others
(Naylor and Pande, 1981).

Several studies have considered the use of the bounding surface plasticity model as one of the
universal history-dependent constitutive models for clayey soils (Al-Damluji (1994) and his
coworkers at the University of Baghdad (Abbas (2003), Al-Ani (2001), Al-Busoda (2004), Al-
Ebady (2001), Al-Juboory (2003), Al-Nu'aimi (2004), Al-Sherefi (2000) and Al-Tae'e (2001)).
Dafalias (1975, 1980, 1986), Dafalias and Herrmann (1980, 1982, 1986), Herrmann et al. (1987),
Mroz and Zienkiewicz (1984) and Mroz et al. (1978, 1979).

FLUID-STRUCTURE AND SOIL-PORE FLUID INTERACTIONS

The dynamic analysis of soil-fluid-structure interaction. as depicted in carth dam analyses, includes
all aspects of both fluid and solid mechanics (i.c.. fluid-structure interaction (class 1 coupling) and
soil-pore-fluid interaciion (class 11 couplivg)). In o Duid phase. the viscosity ol the Tluid. the
magnitude ol the gradient ol the velociy Geld throughout the flow and whether the flud s
compressible or incompressible, depending on whether density variations are large or small, play a
key role in choosing the kind of formulation used. However, in the solid phase, the time scale and
the solver algorithm to be used depends on the loading rate and the permeability of the porous
medium (Al-Damluji et al, 2005). In this study, a non-flow problem is considered where the water
in the reservoir is impounded. Flow occurs only due to the application of the externally applied load
being an earthquake load under consideration herein.

Class | Coupling - Fluid-Structure Interaction
From mass conservation, the continuity equation for a flowing fluid is derived as (Frank ):

B +(p, %), =0 =g+ Viprk) (1)
or apr/dt+ alpr B Vax+ alpy tﬂ@, ey +8(pdg )dz=0

where: pr = the mass density. &= i ¥ < jde+k ¥ . 1, j. k-are unit vectors in x. y and z

directions, respectively, 'E’ = i{f?.-"r?- w) * j:r'i‘ﬁy] + b::{r’.?-':'t]x_:l. t =the time. and tﬁg\ th and
e, = the velocity components {(Tor the Auid) in x. v and 7 directions, respectively.
From momentum conservation of the inviscid fluid and for incompressible flow :
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L ¥ p
pr &= -Ptu ., (2)
Pressure Formulation
The linearized Navier-Stokes équation is given by {loseph )

VipP+E V? g #/c°  (Linearized-Navier-Stokes Equation) (3)

where: &' = 4p'/3 p¢%, p'= the dynamic viscosity of fluid and ¢ = (K/p)'” (the velocity of the
waves through the fluid) . :

For an inviscid fluid, the above equation reduces (o :

vip= , (4)

The equation of motion can be expressed, after spatial discretization, by two sets of second order
differential equations. However, in this study, the pressure formulation is used in which the coupled
fluid-structure equation can be expressed as:

M+ Coler Kou=f-M@+LP Lisa - (5)
M B B K P = £ - prL' (8 &) o (6)
where: ; _ : :
M= [N;pN,dO i (7a)
2
Com b, -'r:‘;i I (Ravleigh Damping ; { 7h
K,= [B'D,BdQ (7c)
0
fo= [Njtdr + [N{ pbdQ+ [B' D'de"dQ (7d)
e 0 : 0
L= fa B'8N;dQ (7e)
0
(M= [N, 1/g NydI' + j'H:.- 1/¢? Ny dQ (7)
e 0QF
(Crlij = jH; le* NydD (7g)
FR
Koy = J(VN,) (VN (7h)
(8] y o
{L: )i = JH:” n Npid I” (71}

Special Cases for Class 1 Coupling

Rigid structure and incompressible fluid
The assumption of a rigid structure implies that Equation (5) vanishes and that Equation (6) reduces
Lo:

KiP=—pL' (8)

Rigid structure and compressible fluid
Again consideration of a rigid structure implics that Equation (5) vanishes and Equation (6) reduces
1§

M, ﬁ Cy _ﬁz_- Ferdt e iy l_..’ﬁ ' (9
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Flexible Structure and Incompressible Fluid
For an incompressible fluid, the speed of sound ¢ in the fluid is taken to be infinity. The matrices
My and €y in Equation (6), therefore, vanish and the equations reduce to:

M. &+ Co&+ Kou=fi- M@ LP (10)
KiP=-piL'(&+ ) | Por, 1 e (1)
Solving Eguation (11) for I | gives:

P—p, Ki'L' (&) : (12)
and substituting equation (12) in Equation (10) gives:

Mr @+ Codet K u = fi — My @ (13)

where: Mgy = M + My and Mg = prL EF' LT (added mass).

Class 11 Coupling - Pore—Fluid—Solid Interaction (u-p Formulation)

When the seepage velocity relative to the solid skeleton is small compared with the motion of the
solid skeleton or if the permeability is low, the relative acceleration of the fluid with respect to the
solid can be neglected. With this approximation (i.e.. neglecting ¥& term) and replacing the
unknown w with the pressure P. the equilibrium equation of the fluid can be rewritten as (Paul,
1982):

W= -k VP +kpb—kp @ : (14)

which can be used to eliminate w from the continuity equation. Upon discretization, it is possible to
Write:

u=N,u : (15)

p= Ep s £ : (1G)

and using the standard Galerkin method. the resulting equations can be expressed as:

M, &+ C, ®+Ku=f~-M@+LP. (17)

Cr B Ko P =fp -L" er M. (18)

where: : .

K= [B'(Dy +«26Q5")B4Q (19a)
Q

Cp= [N, 1/Q N, d (19b)
£}

Kp= [(VN;)" k(VN,) dO (19)
0 .

fp = J'_N"’,. Pdl + _[("'T-"Hp )k prbhdQ: : : " (19d)
I'p 0 7

L'= Ja N, s BdQ (1))
¥ :

E: j[?HPJr K pr N, dQ2 (191)
Q

and where: N, and N, are the shape functions used for pore pressure and solid skeleton,
respectively. a and P are Rayleigh damping constants, Q = the domain. " = the boundary surface, B
= the strain displacement matrix and t = the surface traction. In this study, this formulation is
implemented and used in the computer program for coupled analysis. Uncoupled analysis would
imply the use of Equation (17) only without the last term on the right hand side of it.
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A STAGG%IRED SOLUTION SCHEME

Problems involving more than one field variable, such as soil-structure interactions, are often
partitioned into well defined fields which are distinct in behavior, material model or solution
technique. The staggered partitioned solution scheme for the coupled field problem is implemented
and used in the computer code used in the analysis herein.

A computer code was developed, implemented and verified depending on Equations (17-19) and
using the staggered time marching scheme (Al-Damluji et al, 2005 and Al-Nu'aimi, 2004). It is used
for analyzing the problem under consideration in the study herein.

A BOUNDING SURFACE PLASTICITY MODEL FOR CLAYS

The adoption of relined constitutive models lor the elay core is of essence for obtaining realistic
solutions of the behaviour of zoned earth dams under carthquake excitations. The bounding surluce
plasticity modgl is best suited for such problems (Al-Damluji and Al-lTa'ce, 2002 and
Al-Juboory, 2003). A two-surface model of this type is proposed by Mroz et al. (1978, 1979) for
clays and implemented by Kaliakin and others (1990 and 1987).

General Aspects of the Bounding Surface Concept

It is well known that the total strain rate &;can be divided into elastic and plastic parts as (Desai
and Siriwardane, 1984):

&= & + & (20)
where: a superposed dot indicates the rate, £; = strains due to stresses and the superscripts e and p
denote the elastic and plastic parts.

The constitutive law relating the elastic rates is given by:

"% =(..-1|_|LI &il 4 dlﬁvl & El_rl-.l %| 1 ’ . lzl}

where: Cjj. describes the components of the elasticity tensor. and Eji; is the inverse of Cjy . both are
fourth order tensors. The components of these moduli are assumed to be functions of the stress o
and directional properties.

Now, if L, = the loading direction, R ;= the direction of & and r, = the “direction * ol & . then
the plastic rate equations of evolution and the total strain rate-stress rate relations for an
elastoplastic state can he expressed by (Dafalias, 1986):

&= (L)R, = (22)
&={(L)r, (23)
&= Dr}:l ! (24)
Dy, = E._.u T l-l-lfl'}-B_I-P.i -Gu (25)
Q-ﬁ & ELII':' 'Ln s Pi_| B E-jnl'-'R:lh {zﬁ}
B = Kp +L.'||.|'E:'|Ix:|.|'RL1I v f:?}
1 e : .
Le =Lt o Quth 5 (28)
where: K_ﬂ - the |‘1.].'1ﬁl'l;_‘ muodidus. L= e loadinge.index., I_‘n; L) =the Heaviside step Funetion delined

as 1 forL>0and 0 at L < 0 and the Macauley brackets { ) defining the operation {L}= h(L)L .

The Radial Mapping Rule
Radial mapping is one pf the particular formulations of the bounding surface plasticity models. This
rule is defined as: for any certain direction on the boundary surface, the mapping rule associates the
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actual stress point within tor on) the bounding surface. W a corresponding “image” stress poinl on
the surface. as the intersection of the surface with the straight (radial) line connecling the origin
(always within the bounding surface) with the currens stress point.

The bounding surface can be described analvtically as (Dafalias. 1986):

F{Eu ‘_Eipqn)‘aﬂ {2‘}}
The concept of radial mapping, as proposed by Dafalias (1986) will take the form:
6; =blo,; —a;)+a; (30)

where b is = 1 and can be determined by inserting the G, from Equation (30) into the analytical
expression of F = 0. When ¢, = @,. bis equal to 1, i.e., the identity condition is satisfied and f = 0

ts identical to I = 0, while when o,=a,. b is equal to © and @ is indeterminate. Equation (30)

together with the assumption [f:. =E,i =

—

”Gij

define indirectly a loading surface { = 0. The
following form will be adopted (Datalias and Herrmann, 1982

5 :
{r—sa)

in which r = the distance of o, from o, H=a positive shape hardening scalar function of o, and

-/ b \ "

:KII-P'H\\E'“' t'r/' : (31)

K,=K, +H

q, . and s is the elastic factor that determines indirectly the “elastic nucleus™ which represents the
innermost of all loading surfaces.

Bounding Surface Formulation for Isotropic Materials
Elastic isotropy is defined in terms of the tangent moduli Cy, and their inverse E, by Dafalias

and Herrmann (1982) as:
:Ir 2 -H "'\"'}
i\ﬁlkﬁ_ﬂ s ﬁrlﬁlk _Eﬁ“amj {...T_}
in which K and G are the tangent bulk and shear moduli. respectively,
Plastic isotropy implies that allq, are scalar valued. hence. dll state funections depend on the

F..i.i i I("(:"'iJaI;I +G

isotropic invariants of o,. Since all q are scalar valued. the projection center o, must be an
isotropic lensor with a principal value | on the l-axis in the stress invariani space, 1.e.,
a; = [IIB]I“SU. If" I, is as an isotropic back-stress, hence, the radial mapping rule (Equation (30))
will become:

T=b(-1,)+I, , (33)

§,=bs, > JT=bl, S=bS, & =0 (34)

Now, if I is equal to I, then Equation (33) will lead to I =1I; this assumption is employed for the
bounding surface applied onto a concrete model (Yang et al, 1985) where the surface has no

intersection with the positive l-axis. But if the bounding surface intersects the positive l-axis at [,
one can assume 1, =CI, with 0<C <1 where C is a constant or variable. Hence. Equation (33)
becomes:

1=b(1-Cl,)+Cl, : Ao - (35)
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Substitution of Equation (34) with values of §;, J.and S into stress invariant equations for s;, J
and S, respectively, give 61/86, = 8, and the derivatives of 1 and @ with respect to G,,. Recalling
that I, = Ly, = 9F/ 5, for the radial mapping model, the equations become:

F(1.T.0,k) = 0 # : (36)

F, b o ;{5)35 2 '
L.=F:.8, +—s. + ol B8 _3 | L-=§, 37
, gk k| Zcﬂshbj{lz P ik

in which a comma followed by the symbol of a quantity as a subscript implies the partial derivative
in reference to this quantity and k denotes the set of scalar valued q, . It will be convenient to

introduce a plastic potential U such that R =dU/5is obtained by Equation (37). Based on
Equation (32), Equations (26-28) become:

GF.. e 3[5]" 8 2
=3KF,. 8, +—-2s, + e ol et - 38
Q %% T Cos3a bl [ s - B o
B =K, +9K.F, Uy +G| Fyy Uy + 222e | (39)
(bl)” . '
L. = —!—[Fw.ﬁf I-'.I.,&}-'.l e .(&] = 1—]—(I['rt+ i-',l.:{t-'— K. ,q&): 9”15:{' 7 (46
K, e K, : B

Specific Formulation for Isotropic Cohesive Soils

The previous formulation for isotropic materials can be adjusted for isotropic cohesive soils by
specifying a number of undetermined functions appropriate for the modelling of them within the
critical state soil mechanics framework (Schofield and Wroth, 1968 and Wood, 1990). This can be
done after some modifications or assumptions without altering any of the previous equations
(Herrmann et al, 1987). As a first assumption, the associated flow rule is used which requires
setting U instead of F in all the previous equations.

Hardening, Elastic Constants and Bounding Plastic Modulus Kp

The bounding plastic modulus -F'{:p in terms of the state variables 1. J. @ and 1,(e”), on F = 0, has
been delined as (Dafalias and Herrmarin. 1980): '

.. ||I P :
= e . e
o =-;ji l—L—- ok BE. (P, JFE ) (41)
" A=k Vol -~ Iy ok

The tangent elastic bulk modulus is given as:

1+e
K=£~'~“—((l-]t)+l,) (42)

Bounding Surface

Fig. (1) shows a smooth surface consisting of two ellipses and one hyperbola with continuous
tangents at the connecting points H and B. Using a composite surface, rather than a single one,
yields a better description of the material response for heavily over-consolidated states
(Al-Ebady. 2001).

The following specific forms are adopled:

For ellipse 1:
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R=2

4

=2
F=(i-1ﬂ)(i+ 1, +{R-1}[I'L] -0 (43)

For the hyperbola:

2 - He
FNAE R L LI e
R N R/N R N Jj i
For ellipse 2:
F=(-Ti)[-(r+200,]+pi* =0 fids
T(Z + TF!) T : ‘
G e S e 45b
Y AITE T 24T (45b)
}’=E-: F'= 3 : Z:h(l+y—1ﬂl+y*) (45¢)
N J1+y? R
HYPERBOLA
ELLIPSE 2
ELasTic
NUCLEUS, /" ]
i B :’,."’
o =T
_ it

"Composite Form" of the Bounding Surface.
Fig. (1) A form of the radial mapping version of the bounding surface
model in the invariant stress space (Dafalias and Herrmann, 1986).

The Final Explicit Expressions of the Model

Equation (24) is written again for the sake of completeness:

& =D, & 5 (46)

Combining Equations (32, 37-40, 41 and 42) with R,=L, -and’ U, =F, etc. expressions,
representing the adoption of the assoviuted Tow rule: the explicit form ol the D, tensor can now

be deternuned as:

Djjs = G(8yi8y; +8,8, )+ [K_—G)E Ou

< i |
_hdy IKF 8, +SFy s, + 0 T S'"S”* s
B Bt J cos(3a) bl 2] 3
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[ 3
IKF, 8, + OF, s, + V3G F,, (s,sy 38 sy _ 2y s
J U cosGa) bI | b= 3
in which 1
G : *-’FG Foy leu %
3‘“’,:%*“ Fu u*s‘ﬁ**f- cos(3ct) bl M IE (48)

where K is the elastic bulk modulus given by Equation (42) and G is the elastic shear modulus
either defined independently or is computed from K and a specified value of Poisson’s ratio. The
plastic modulus K is’ebtained trom Fquation (31).

HEquation (47) can now be used as the constitutive matrix representing isotropic cohesive soils in
Equation (7¢) for Dy when substituted in Equation (17).

IDENTIFICATION OF THE INPUT MATERIAL PARAMETERS FOR AN IRAQI SOIL

The general version of the bounding surface model requires the determination of parameters which
define the initial state of the material, as well as (depending on which version of the bounding
surface is used) fifteen or seventeen separate model parameters associated with the elastoplastic
response Fig. (1). The values of several of these parameters can be determined from standard soil
mechanics parameters such as the compression index, the swell/ recompression index and the
effective friction angle. Furthermore, the values of other parameters fall within fairly narrow ranges.
Finally, the values, typically selected for many of these parameters are fixed for most soils; the total
number of parameters. therefore..is substantially reduced. The reason for having a large number of
parameters 1s the desire to account for even minute details of ihc stress-strain response. Simpler
models that employ a lesser number of parameters cannot account for such details. If such
perfection is pat desired. the actual number of model parameters can he reduced o as low as six.

Testing Program

A comprehensive testing program, both in the field and laboratory, has been designed and executed
to establish the required input soil parameters for soil samples extracted from a site in Baghdad.,
Iraq (Al-Busoda, 2004),

Field Tests

A continuous flight auger was used to obtain highly undisturbed soil samples, according to the
procedures mentioned by Hvorslev (1949) and the US Corps of Engineers (1996). The samples
were extracted from a site inside the campus at the University of Technology in Baghdad. Iraq
(Figure 2) (Al-Busoda, 2004). Samples were taken from 3.5 to 7.5 meter depths.
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L

5 s (S

Fig. ti“]ﬁluﬁhﬁtmm flight auger sampling of a site in Baghdad
' { from Al-Busoda, 2004)

Laboratory Tests

A series of classification. engineering and ultrasonic tests were performed in the laboratories at the
Department of Civil ‘Engineering of’ the University of Baghdad and the National Center for
Engineering Laboratories and Research ol the Ministry of Construction and Housing, Irag.. The
engineering tests included standard consolidation Fig. (3), cyclic consolidation Fig. (4) and triaxial
tests. The stress conditions were according to the following:
- Isotropically consolidated undrained triaxial compression tests (ICUCT with OCR=1.

1.2 and 5) Fig. (5).
- Isotropically consolidated undrained triaxial extension tests (ICUET with OCR= 1.

1.2 and 5) Fig. (6).
- Ko consolidated undrained triaxial compression tests (KoCUCT with OCR = |

and 2) Fig. (7).
- Ko consolidated undrained triaxial extension tests (KoCUET with OCR = 1) Fig. (8).
Accordingly. the soil was classified as an inorganic silty clay of high plasticity following the
procedures adopted by the Unified Soil Classification System (L/SCS) (Al-Busoda [2004]). The soil
will be termed hencelorth as Baghdad brown silty clay. :
After conducting calibration procedures, the input parameters for the bounding surface plasticity
model for Baghdad brown silty clay obtained from field and laboratory tests are summarized in

Table (1) along with the same propertics fur Boston Blue clay.

] g e . B =l L o B i o e e R 1
0.64 -‘H_H““-w.,__ -~ o6 - =
| |
0,80 l ™ £ b
- g VO T =
= F. R AT T | R
g ek s g :
= F o .
2 1,50 4 b} 1
= . £ s iy
DA% B
= 0.40 [~
- -
‘ ‘EL
040 ¢ j Firrs) =
i1 P e P S el T | L,
| 1 1ot i citiy : 1 oo 1060 1t

Ruess (kTa) Siroas (kfa)

Fig. {3) Results of a standard Fig. (4) Results of a cyclic consolidation

consolidation test at depth (7-7.5m) test at depth (7-7.5m).
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Table (1) Input parameters of the bounding surface plasticity model for Bosten blue clay (set No.1)
(from’ Al-Ebady, 2001) and Baghdad brown silty clay (set No.2)
from Al-Busoda, 2004

_'.ﬂ..%_-:}__- = fa [P i
0.14 0.064 0.06

0.05 0.017 0.83
1.05 } 1.20 -0.10
(.81 0.676 ; 000

3.2 e i | 00
304 (klPa) ' .
101.4 (kPa) | 101.4 (kPa) : 2.0
2.68 2.70 0.75

A Loy | (L2

0.84 (.85 1.75
NUMERICAL EXAMPLE: EARTH-DAM ANALYSES
The lower San Fernando earth-dam under the horizontal excitation of the San Fernando earthquake
is analyzed. The real problem may be defined as a free fluid- pore fluid -solid interaction problem
(i.c., a three field problem with class 1 plus class Il couplings). The finite element mesh with
detailed dimensions. material type numbers of the earth-dam cross section and the San Fernando
earthquake record are shown in Fig. (9). The material properties of the zones representing the earth
dam are listed in Table (2). :

?:?‘ i
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3 L . [ [ [ [ r y
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(a): Finite element mesh and boundary conditions (all dimensions are in meters),

e e Syt
I
(b): Matenial type numbers.
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Fertard timee of recorvds =45.360 sces,
Peak acceleration = 6.12 myvec2,

0 2 4 6 ks N SRl e R e e
Time (sec.)
(¢): San Fernando earthquake, N18E component, Feb. 9, 1971 (from Paul. 1982),
Fig. (9) Finite element mesh, material tvpe numbers and San Fernando earthquake for an earth-
dam problem (Zienkiewicz et al, 1984).

Table (2) Magerial properties of zones constituting earthen dam (Al-Tae e, 2001).

: Dynami | Dynamic | Strength parameters
Magerial. | e .. Pobsson’s | . (MNm’) Density
B AR R P e s SRIT
Pl ERYgaw o i g -7 = : e ---:_u: ol S
SN | S # e 4 R B S
1 | Alluvium 200 0.40 10 38 2.090
2 | Hydraulic fill sand 90 0.41 10 37 2.020
3 | Clay core 90 0.41 10 37 1.800
4 | Hydraulic fill sand 110 " 041 10 37 2.020-saturated
1.710-dry
5 | Rolled fill 61, o030 126 25 2.000
6 | Ground shale 90 L 04 10 37 2.020-saturated
Lopdalic fE el L f L ] e e

The analysis is performed in two stages: (1) Analysis ol the carthi-dam withoul pure pressure
calculation within the soil and excluding the action of water in the reservoir
(i.e., uncoupled solution). (2) Analysis of the earth-dam including the effect of water in the
reservoir as finite elements and pore pressure calculation within the body of the dam
(i.e., class I + II coupled solutions). The problem is solved by an implicit-implicit time marching
scheme in which both the fluid and the soil are implicitly integrated in a staggered fashion at a time
step length of At = 0.001 seconds. In these analyses, the clay core response is investigated by the
use of the linear elastic model first with properties presented in Table (2). After that, the bounding
surface plasticity model as described by section 4 of this paper using Boston blue clay and
Baghdad brown silty clay properties presented in Table (1) is adopted for the clay core.

Fig. (10) shows the time-dependent variation of crest displacements (nodal point 232 in Fig. (9a))
lor linear elastic and nonlinear bounding surface plasticity for Baghdad brown silty clay uncoupled
analyses. It is noticed from Fig, (10a) that the x-displacement for both linear and.nonlinear analyses
oscillates around the 7ero-displacement axis and reaches a maximum value of 40 em at 10 seconds
with a slight difference in amplitudes. However, Fig. (10b) shows a significant difference in the
amplitudes and phases.of the y-displacements compared with that of the x- one Fig. (10a) for the
elastic analysis. Also. the nonlinear analvsis shows a subsequent drop of the amplitudes due to the

593



SEISMIC ANALYSES OF AN EARTH DAM USING THE

{ e BOUNDING SURFACE PLASTICITY MODEL

permanent deformations in comparison to the evclic response observed in the case of linear
analysis. The maximum y-displacements are found to be -35 and -55 centimeters for linear and
nonlinear analyscs. respectively. The time-variation of crest displacements for linear and nonlincar
class | + Il coupling analyses arc shown in Fig. (11). It is clear that for the linear olustic analysis.
the x- displacements deerease signilicanily at the beginning o -8 em and then oscillate around -6 1o
-12 em displacements values in compaison o 40 em in the case of an clhistic uncoupled solution.
Also, in the nonlinear analysis. the displacement values decrease,
60 60

a- x-displacemnent S

\g 40 ffnfrapr d.rm.e'ﬁ:fg E a0 | -'b ¥ : d!fj'p face"?e"'r
' —— nonlinear analysis ! ingar analysis ;

20 - 20 ———— nonlinear analysis
5 0 E: p 0 4
% -20 -20
E -40 : g -40
: -6l -60

(1] 2 4 6 8 10 a 2 4 (¢} 8 10
Time (sec) Time (sec)

” R, S A e uiel
Fig (10) Variation of crest displacements with time for the uncoupled analvsis.

: o

? - .'i.'-i‘fl'.'t'}!fl‘d'(_‘#.ﬂu"ﬂf -:' - 1*-;};‘3.';1hﬁ_ﬂ;_!nh'nr =
‘E— -2 .-'r':.l.ru.l ottty sas S" -2 2 Firicear ool vy
§ 4 —— pemfinear analvsis - __4 monlinear analvsis
$ 6 5 -6
‘g. B
. -8 : g
s : et
E -10 g -10
e < ad -12

0 , 2 4 6 8 10 0 2 4 G 8 10

Time (sec) Time (sec)

i b
Fig. (11) Vaﬁaiié-n of crest displacements with time for class | + IL]’ja:;a Il couplings.

The comparison between Figs. (10) and (11) shows that when including the action of water. the
displacement response of the analyses is less than that without wates bemg considered, Logically.
this result is true duc o the Bailure of the dam tending to oceur towards the upstream side and the
reaetion of water represents a support (bal roduces the dispiacement respoie, Alse the water in the
pores shares the solid in carrying the applied load. However, as time progresses, the excess pore
water pressure which rises up and falls down under the applied loading becomes in a steadier state
within the body of the dam.

Figs. (12), (13) and (14) show the contour lines of the vertical total and effective stresses and the
excess pore water pressures for uncoupled and coupled analyses (at the end of 10 seconds). It is
observed that the nonlinear soil response causes a pore pressure build-up which may lead to failure
of the dam.
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Fig. (12) Contours of vertical total stress for (uncoupled solution).
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Fig. (13) Contours of vertical effective stress for (class I + II couplings)
_(refer to Table 1 for material property sets 1 and 2).
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Fig. (14) Contours of excess porc pressure build-up for (class 1 + Il couplings) ~
(refer to Table 1 for material property sets 1 and 2).
A similar procedure is also conducted by Al-Tae’e (2001) for the uncoupled problem on Boston
blue clay. The results of Al-Tac’e (2001) show that the dam fails after 2.5 seconds as the strain
exceeds 5 % which is not observed in the results of the present analysis. This exemplifies the
importance ol the inclusion of water effects i the.analvses.,

CONCLUSIONS

It is important to take into account all aspects of the problem when analyzing dams under
earthquake  loads. This must include proper field and laboratory testing programs, realistic
constitutive relations for modeling the dam materials under dynamic excitations and the inclusion of
effects of pore water and reservoir water in the analyses conducted. Proper evaluation of the dam
response and its stability may be reached by taking into account of these factors.
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LIST OF SYMBOLS
B = Strain —displacement matrix.
¢ = Speed of sound.
= Rayleigh damping matrix.
C =Compressibility matrix.
Cjj = Components of the elasticity tensor.
D, = Constitulive matrix.
& and & = Elastic and plastic void ratios, respectively.
e and p superscripts= Denotes the.elastic and plastic parts.
Eijn = Inverse of Cyy fourth order tensor.
(i = Shear modulus.
h(L) = Heaviside step function defined as | for b Gand Oatl £ 0,
H = Positive shape hardening scalar function of Gli. and ¢, .

- - -~

i, j, k =Unit vectors in x, y and z directions, respectively.
K = Bulk modulus .

K, = Stiffness matrix.

Ky =Flow matrix.

K, = Plastic modulus.

L = Coupling matrix .

L. = Loading index.

L, = Loading direction.

M. = Solid skelton mass matrix.

My =Fluid mass matrix.

N, = Shape functions lar pore pressurc.

N, = Shape functions for sohid skeleton displacements.

P, = Mass density.

P = Pressurc above the hydrostatic valuc.

qn = Plastic internal variables.

r, = Direction of & .

R = Distance of a; from o.

R, = Direction of & .-

s = Flastic factor that determines indirectly the “elastic nucleus”.
t = Surface traction.

T = Time.

& . & and ¥ = Velocity components in x. v and z directions, respectively.
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a and [} are Rayleigh damping constants.

g = Strains due to stresses and the superscripts.
I" = Boundary surface.

K = Swelling line slope.

». = Normal consolidation line slope.

i’ = The dynamic viscosity of fluid.
o, = Stress tensor, 5

0 = The domain,

{ ) = Macauley brackets defining the operation (1) = h(L)L .

A superposcd dot indicates the rate
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