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ABSTRACT

This study presents a reliable and effective idealization scheme for the free vibration analysis
of buried cylindrical storage tanks. The three dimensional problem is transformed into a two
dimensional one by using a semi analytical finite element procedure. Conical shell of
revolution element is used. to represent the cylindrical wall, top plate, and bottom plate of the
tank by an appropriate method. The Combined effect of structure-soil-fluid interaction is of
primary importance as concluded in this work. The soil medium is idealized by the elastic half
space model, that is, linear springs are assumed to represent the structure-soil interface, added
masses and viscous dampers of soil are also included. The liquid region is treated analytically;
also analytical integration is used to got the added stillness and mass matrices for hydrostatic
and hydrodynamic pressure effects, respectively. The free vibration characteristics of the
liquid storage tank are validated against experimen.tal and theoretical results available in
literatures.
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INTRODUCTION

Liquid storage tanks are important elements of lifeline and industrial facilities. These
structures come in a variety of configurations; they might be elevated, ground-supported,
partly or completely buried. In general, cylindrical storage tanks are widely used in practice as
compared to other types because they are simple in design, efficient in resisting primary
hydrostatic pressure, and can be easily constructed. The free vibration characteristics of liquid
storage tanks have been studied by using various methods such as finite element methods,
boundary integral techniques and variational methods. As the number and the sizes of these
tanks increased, their behavior under free vibration become a matter of concern and led to
investigations of their vibrational characteristics. The standard finite element models were
shown to be capable, in principle, of dealing with any two or three-dimensional problems.
Nevertheless, in cases where the geometry, and elastic, properties of the structure remain
independent of the circumferential coordinate, semi-analytical finite element technique can be
used to exchange the original Three-dimensional problem into several separate two-
dimensional problems by making use of Fourier series expansion in the circumferential
direction, The exchange is worthwhile because a single three-dimensional solution is usually
mach more expensive than several two-dimensional solutions. In buried tank analysis, there
are two aspects of interaction that must be considered:

- Interaction between the tank and the contained liquid.
- Interaction between the tank-liquid system and the surrounding medium.

The contained liquid is treated analytically as a continuum by the boundary solution
technique, where the number of unknowns is substantially less than in those analyses where
both tank components and liquid are subdivided into finite elements. A complete analysis of
the soil-tank system by the finite element method is expensive and complicated; however, an
elag.tio half-space model of the soil is employed with a finite clement model of the shell to
exhibit the fundamental dynamic characteristics of the overall system

and to assess the significance of the interaction on the free vibration response of tanks.

TANK GEOMETRY AND COORDINATE SYSTEM
A typical shape of tanks under consideration is shown in Fig. (1), it consists of a circular
cylindrical, thin-walled liquid containers of radius R, length L, and thickness t. The tank is

partly filled with liquid to a height, H.A cylindrical coordinate system is used with the center
of the base being tile origin. The radial, circumferential, and axial coordinates are denoted +,

&, and z, respectively, mid the corresponding displacement components of a point on the shell
middle surface are denoted by w, 1, and 1, respectively. To describe the location of a point on
the free surface during vibration, let & measure the superelevation of that point from the
quiescent liquid free surface.
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TYPES OF VIBRATIONAL MODES

The natural free vibrational modes of a circular cylindrical liquid storage tank can be viewed
as a combination of four distinct types of modes ©, and as follows:

- Lateral vibrational modes of the tank wall itself under the action of hydrodynamic pressure,
Fig.(2)

- Circumferential vibrational modes involving (sin(n#) & cos(né)) type modes as shown in
Fig. (3).

- Low frequency sloshing modes of the contained liquid, Fig (4)

- Natural modes associated with the motion of a compressible liquid.

The effects of sloshing motion and liquid compressibility are weak ) therefore, these effects
are assumed to be negligible for the purpose of present work.
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FINITE ELEMENT FORMULATION

Consider the conical shell of Fig. (5). The deformation in the shell can be .expressed in terms of
the middle Surface deformations u, 1» and w, that is, the meridional (axial), tangential and normal
displacements, respectively. It is assumed that, the displacement vector U(r, &,z) to vary
sufficiently smooth along the circumferential (i.e. 0) direction, such that /' may he expanded in a
finite number of terms of Fourier series along the & —ddirection ), viz.

.

( R r ' ™ e . s ay ”~ ~, ‘.."

22 " | cosl yith { 0 zmind) 0 i
i ! 'y :

N P P . = "~ g - | ] 5
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lwt ™ 0 cosing) O 0 sin{ &) [

- ¢ A
1’"
[ W, |

where each term of each series is called a harmonic (or a circumferential wave), n is the order nf
each harmonic. and N is the number of Fourier terms. The subscript (s) refers to symmetric

components of displacement while (a) applies to antsymmetric components; therefore, the
solution becomes capable, of representing the general non-axsymmetric case. The shape
functions associated with the axial and tangential displacements (i.e. i and 1) are taken to be
linear between the nodal points. However, those associated with the radial displacement (i.e.,
Hermitian polynomials to assure slope continuity at the nodes.

For each harmonic n, the displacement field vector, {U, 1, in terms of the coordinate z is:

—
ba

oo o0 O o0 0]
inwhich: [#]={0 0 1 2 0 0 0 0 (3)
o001 =z z
and the generalized coefficients vector {a} is

17 ] H 3 c
T —-|_r.J., @y @y .. dy A o&L g, ... . (d)

* 3 @ i B | trreeecartessasresean

Introducing the boundary conditions at z = 0 and z = L into Eq. (3) gives:
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inverted to establish the generalized coefficients vector {a} in terms of the

generalized nodal displacement vector, {U;,51, as follows:

fa

in which : [44]° = [,

[aa]ies !

1]

. Ii‘:lll ["‘I]-] :j.s_;h,’

and the submatrix [A]~* is of the form:
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Substituting Eq.k8) into Eq.(2) gives:

R 2 N

in which [N]is a matrlx of the interpolation functions given by

v l= NNVl [0
[,.]-[ " [\]J ........................

where the submatrix [NN] is of the form:

g, 0
[WM]=|0 5 0 o 0 5 o
- N

and 51,52, 1"'.'71, Ji:';l, J"'I'Tz and 1?2
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Substitute Eq.(11) irﬁo Ec‘|j(1) gives:
b
{ui=>10, JIN|{U,,)

o=

Strain-Displacement Relations
The strain of the middle surface in terms of the middle surface displacements are given by “*

(1 L1
O
o . ]. j
I =51n l'.p iy ";.-UH'-D
r Tl r
€, 1 & a 1
~ —— s a H
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where @ is the angle shown in Fig.(5)

and &, y and k denote normal strain, shear strain and curvature, respectively.
Substituting Eq.(15) into Eq.(16) gives:

Y= D el INCU LY (17)
==0
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or ¥i= 2B, =Y 4} een(18)
in which, 48} = [B] U b e ee, (19)
and [B]=[p][BIMN] [ [Bd, [B:] Jows (20

The submatrix [ B, ] refers to the symmetric part of the strain-displacement matrix and [ £ ] refers
to antisymmetric part.

CONSTITUTIVE RELATIONS

For linearly elastic homogenous and isotropic material, the force and moment resultants can be
expressed in terms of the normal and shear strains in the middle surface ., £5 and £,5; in terms
of midsurface changes in curvature k_ and kg and in terms o fthe midsurface twist, k_5, as
follows 9

.V [

1 } = [f--’ ]1# B e (21}

i which

ot =[N N, N, M M, M |
e S R - B B R - T o ) (22)

where N, and N, are referred to as the effective membrane shear force resultant and the effective

twisting moment resultant, respectively,
and the matrix [D] is of the form®:

[.r.:]—. S e (23)

Where [D] is the element constitutive matrix
and €= —F-l;- , Da=— EL ‘
—u 121 —w")
in which E,t, v denote the modulus of elasticity; thickness of the shell element and Poisson’s
ratio, respectively.
Substituting Eq.(18) into Eq.(21) gives:

o= 2 IDIUBIU LY 24

6250



A F. Ali Free Vibration Response Analysis
H. M. Ali of Buried Cylindrical Storage Tanks

STIFFNESS & MASS MATRIX FORMULATION

The strain energy of any system is given by &*°)
l lf_';'-ﬁ ‘ )
Uiy = P ( [ (e} {o}rdodz S S (25)
00
Substituting Eq.(18) and Eq.(24) into Eq.(25) gives:
] 'ljif r:ll N
U = [ 22 2400 T TN v dOdz o,
“ a an=Dn=0

For the n*" term, Eq.(26) may be expressed conviently in terms of the element stiffness matrix
[K], as:

; 13 _
Uy, == 2 AU K] UL}

In which, e is the subscript including “element”; NEL is the number of shell element along the
shell length.
and [K ], is of the form

'I' '\—
— BTN I A5
K1, .[ j ‘(buBjrdddz 28)
The kinetic energy of the shell, neglecting rotary inertia can be expressed as -*°
Ity = | JotiU" {Uyrdoaz -

e

1] J
In which g is the mass of the shell per unit volume; {U, } is the displacement vector defined by
Eq.(11) and the dots (") denotes differentiation with respect to the time t.
sub. Eq.(11) into Eq.(29) results in:

o LN T qearnoa o
e :‘2__-;."1'-“! ' (U} T[N [N} {Uno} dDAZ g

Eq.(30) can be written as:
MEL

T {U o }T[M] {U 0}

.................... (31)
In which, [M], is the conS|stent mass matrix of the element which can be defined by:

M]. =1 mf j INF[NldodZ - .
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MATHEMATICAL MODEL

The components of a typical buried cylindrical tank arc explained briefly as below:

- Tank wall: The geometrically axisymmetric shell is discretized as a series of frustums of
connected at their modal point circles. In the case of a cylindrical tank, the cone shall be changed
to a cylinder since the radius has a constant value. This means that, the angle ¢ indicated in
Fig.(5), becomes equal to zero. See Fig(6-a).

- Top and bottom plates: making use of the conical shell element, these plates shall be
represented by several elements after putting @ = 90. This concept is shown in Fig.(6-a). A

small hole at the center of plate is used to avoid the singularity at the center r=0.

- Contained liquid: the liquid region is treated by an analytical model taking into a count the

effect of the hydrodynamic pressure and the initial hoop stresses due to the hydrostatic pressure.
These effect are estimated by considerable details and will be discussed later.

- Surrounding soil. An elastic half space model is used to represent the soil-tank interaction. The

interaction system represented by a set of discrete 9lump0 mass springs, and dashpots as shown

in Fig.(7). The coefficient m, K and C, for this model are evaluated by the method of continuum

mechanics®

IDEALIZATION OF LIQUID
Equation Governing Liguid Motion
For the irrotational flow of an incompressible inviscid liquid, the velocity potential function,
@(r,8, Z,t) satisfying Laplace equation is giving by ®9:
Vid=0 e (33-0)
In the region occupied by the liquid (0 =+ =R, 0=8 =2n,0= Z = H)
in which

L & 1a 18 & o
s e o R i {33-b)
or riy - o )
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In addition to being a harmonic function, & must satisfy the proper boundary conditions.

The velocity vector of the liquid is the gradient of the velocity potential, and consequently, the
liquid-container boundary conditions can be expressed as follows ©:
- At the tank bottom (assumed rigid), Z=0, the liquid velocity in the vertical direction is zero.

P \
— (cOOt=0 (39
&

- The liquid adjacehfto the wall of the elastic shell r = R, must move radially with the same
velocity of the shell:
7 (70.6.2,1) = ~— (20 e (38

Cr dt
In which w(#&, Z, t) is the shell radial displacement of the tank shell.
- At the liquid free surface, Z = H + &(r#,t) two boundary conditions must be imposed. If the

sloshing free surface are neglected ®®”, only one condition need to be specified at the surface
namly:
D

The solution ®(r, &, Z,t) which satisfies the boundary conditions at the rigid bottom plate
Eq.(43), and the quiescent liquid free surface Eq.(36), can be expressed as:

(r.elLty=0 e 36)

C(r.Bz,t)=3"% [r‘m”iI , (o, rycos{o, z) cos(n HJ] e (3T
n=l -l
in Whigh u, 18 given by :
{2i~1)n
=X E A =12 :
TH : (=125 . R (32)

And [, is the modified Bessel function of the first kind of order n
The remaining boundary condition at the liquid shell interface, Eq.(35), can be written as:
2[.-1_"41 1 ta R heos{in, 2)] = 1.55,..[_;:,1) ___________________ (39)

After the appropriate algebraic manipulations of Eq.(39), the following expression for 4, .(t)
result:

’h - » ’
2} walz.t)cos( o z)de
o 17 T,'_.(-:L;R ) 1230 0]
in which I (e, R) is the relative of the modified Bessel function

the pressure distribution, P{r,&,Z,t) can be determined from the Bernoulli equation and is
given by:

A, =

e

8
r.B.Z. 1) =~ —I:-':- o — A1
P(r,0,Z,0) = —p, 5 P g(H-2Z) i (41)

in which p; is the mass density of the liquid and g is the acceleration of gravity.
The hydrodynamic pressure can therefore be expressed as:
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e > — e———— [ (o, R).cos{c, 12). cos(nB)
f 2= o J (a R) ‘ .{42)

HYDRODYNAMIC PRESSURE

Evaluation of the Added Mass Matrix

As a consequence of neglecting the free surface oscillation methods, the motion of the tank wall
can be analyzed by introducing an additional matrix in the matrix equation of shell motion, such
addition represents the effect of liquid dynamic pressure during vibration. The hydrodynamic
pressure exerted on the wall of the tank is given by Eq.(42) and therefore, the work done by such
pressure though an arbitrary virtual displacement, &w,, cos(nf) refers to symmetric component

of displacement, can be written as:
H 1z

SW = j J§P, (R, 0,2, 6) 5w, cos(rD)}R d8 d2
(%)

1]
s
o

ey =

o

= ~Zbﬂ {jiﬁ'.:;z COs{c, z)a'z}(j Wa COSIL, 2)d7) |
el 3 2 i ok AT
\ . TR fen T2 oo
m which, - 23Rp 1, (aR) R - = 3
) Ho I {a B

The work expression, Eq.(43), gives rise to the definition of the added mass matrix [DM]. In
order to compute its elements, one has to express the integral in Eq.(43) in terms of the nodal
displacement vector { U, ,}. With the aid of the finite element displacement modal, one can write:

L WERL . -
} Walz, L) coslozpdz = [-{.\Idn_:fﬂ‘ [aalt)}, coafe [z + (e—1DLYKIZ .. .(45)

Where NEH is the number of shell elemnt id contact with liquid.
By definition the vector {f'*'}, as the integrals
I ’
0y = J‘-:b-.'u.:zj;x} Teos{u [Z+(c-1L]1dZ
1l
=[0, 0, B £.9 0,0, 6% £Y, . (46-a)
and (NADY =10 0 Nz N@ 0 0 N,@) Ny@)|...(46-b)
The vector {f*'} can be defined as:

T =3 {f%y TSRO (47
!'l
one can rewrite Eq.(45) as follows:
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pil

'-J acos(o,z)dz = {F" V0wl L (48)

Therefore the expression of the work done, Eq. (43) becomes
b= _l,-r !I'J';w' {04"' ne ..1' PI F : : FI ' :'T H L ;

== {8, ¥ O b AR HF U ey . (49)
Eq.(49) leads to the definition of the added mass matrix, [DM], as:
[DM] "" b ATHHFYT e (B0

HYDRODYNAMIC PRESSURE

Effect of Initial Hoop Stress

Due to presence of the liquid, tank walls are subjected to hydrostatic pressure which cause hoop
tensions. The pressure of such stresses affects the vibrational characteristics of the shell,
especially the cos(nf) and sin (n8) mode types, these mode types are shown in Fig.(3).

To incorporate these effects, it is necessary to modify the strain energy expression of the
shell and to generalize accordingly the equations of motion. Upon using the finite element modal,
the matrix equation can be easily derived, and takes the familiar form with an added stiffness
matrix due to the presence of the stress field.

MODIFICATION OF POTENTIAL ENERGY OF SHELL

Consider a circular cylindrical shell acted upon by a static initial stress field which is in
equilibrium. The initial stresses in the shell result from the hydrostatic pressure. During vibration,
the shell stresses consist of the initial stresses plus additional vibratory stresses. In the subsequent
analysis, the bending stresses produced by the initial loading are neglected, i.e., only the initial
membrane stresses are considered

Since the initial stress state is in equilibrium, the potential energy of the system in this
state may be taken as the reference level. Thus, the internal strain energy of the shell can be
written as: _

=TI{) + LUyt . (51)
in WhICh U, (t) is the straln energy employed in derlvmg the stiffness matrix [K], of the shell

and it is defined by Eq.(25) and U, (t) is given by

I.(t)y= .{ J(\ JJRd8dZ e e (52)

in which N, is the initial membrane force resultant in the circumferential direction, and £g Is the
midsurface strain

Since the initial hoop stress may be large, it is necessary to use the second-order nonlinear
strain-displacement equation in the second term of Eq.(51) while using only the linear
relationship in the first term ©
This maintains the proper homogeneity in the order of magnitude of the terms in the integrands.
The midsurface strain in Eq.(52), therefore, it can be expressed as
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1] v 171 éhe 1: h, ! | aw A,

Bg=—|—1tw l--li _ | + W ‘ v— r .LFJ}
R > Jd 2 . el - J’ h .1| ] M . A

The initial force resultant, Ny and the liquid hydrostatrc pressure, P, are in equilibrium,
and therefore, it satisfies

N,
Ny=peR(H =70 —==0 (58

ot
EVALUATION OF THE ADDED STIFFNESS MATRIX
Since Ny is not a function of &, the strain energy U, (t) can be written as:
oS-l fr*»mnﬁ7mm“mmW”Hmﬁ;M

The strain- drsplacement relation Eq.(53) is the inserted into the strain energy expression,
Eq.(55-a). however, the linear terms of Eq.(53) do not contribute to U, (t) since

J‘_' cos{nl))dd = (M=1) . .. (53b)
Furthermore the terms can be expressed more conveniently in the following matrix form:

g :-,_—t_lrliu"} QoL o (56)

in which {U} is the displacement vector, Eq.(1) [P] is a differential matrix given by:

- | |

= A 0|

v :

1] . 0 !
A = | | —
U ] R v AR I | e s e e (‘ /)

ol

[} 1 —— §

il |

and the superscrlpt nL indicates “nonlinear:. With the aid of Eq.(1) and (57), Eq.(56) can be
expressed as:

L L R T SO
eg = IPI6, MU, 1 ([BI0, 1A, }) = - (U (. P 1EU, ) 58

in which,

[Pa | =716, ]

M s ks o 0 ncosl ng) 0 0
1] . " . ) ) | A
= - 0 neasind)  coal nd ) 4] - nsin @l sim(n@) |--- (39)
jm | » 'y ~ )
= !
0 s ndd nsing ne Q0 cos md) —ncas{ ol

Inserting Eq.(59) into the strain energy expression (Eq.55), one obtains
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R T Fain N _I . : |
T‘T?{t-:lz j_'{ N"{[‘] 1 ;T [ |pr| ] J [lln]dﬂ}‘:‘{’i n :i|d'£'
2 Ll 1 i, wit r

.

Ii
= ?I'_;\"J":-Nﬁmu}-lr“’n [{U_ 1 dZ atin b aea ai s s s a i e s e smn AKE)
nf 0 0 0 a " o0 ]
a nt n il ¥ n
inwhich, ..., |0 In n‘-l U L (61)
L il 0 il n* { i
y i 0 0 n*+1 =2n
¥ N i ] -2n ot +1
By using the displacement model, Eq.(11), one can write
MEH
ey oy - o1 > . )
[']:l"‘I::_) }..jh]l'lu-}-i‘ [l\_}_: L{l._.“_:.;' A B ”-_'.:213

ar gzl

In which [k], is the element added stiffness matrix which given by:

KL == N on(Nee ez 63

IDEALIZATION OF SOIL

The elastic half-space type is used to model the influence of the soil during vibration. The soil in
this model is assumed to be homogenous, isotropic, and elastic, and characterized by shear
modulus (. ) and Poisson’s ratio (v, ).

The soil is replaced by a set of an equivalent spring-mass-dashpot system as shown in Fig.

(7). There various method used for estimating the spring constant (Ks) viscous damper (Cs) and
added mass (mi) of the soil model. The most commonly used approach is to employ formulas
from the theory of elasticity, which is used in this study. Formulas tire given in Table (1)
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‘Table(1):Equivale

nt discrete EmEerﬂes for elastic hn]f-saacc )

Degree of [teedom Spring Constant Viscous Damper Added Mass
Vertical 4G L — et
oo 1.?91”']\_:[}:11'] l‘iparu
H'J'I IZLJIilﬁ] IB_E'}.—};_R_L; U _ LE :l 1-“81",'K I:",]:“ U.QEF‘J.T:IF
(2-uv)? st
Rocking ) — -
g 217Gy (Rel.45) {"471-:K;I.15l'.,5 il 49p.c,

Where
ry = radius of circular plate.
1y = Poisson’s ratio of the snil
0, = mass density of'the soil

G, = shear modulus of the soil which can be evaluated using fol lowing the
equation -

G =P Ve e (64)

inwhich V, ~ shear wave velocity

The radius () in Table (1) is directly used for calculations of the bottom circular plate, with

equivalent radius is needed for calculations of the cylintlrical wall for the tank. On basis of
equivalent areas, (surface area of the cylindrical wall is equal to the area of circular plate). The
equivalent radius may be determined from the following relationship®

-_— ] ™y " > .
I'n = 2REL  for herdzontal and vertical degrees of freedom
I,, 1y i

ad

= 4“: — l{or rocking dearce of fresdom
a

Circle Node

Ring Elensunt

{a)
Fig.(€) | Mathematical Model
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Fig.(7): Elastic half - space modeling for soil-tank
interaction

FREE VIBRATION RESPONSE ANALYSIS

A structure is said to be undergoing free vibration when it is disturbed from its static equilibrium
position and then allowed external dynamic excitation or support motion.

The undamped free vibration response of any system can be obtained as:

l 15 2 31 =t
[.lﬁrer_hr-'-!: L [.J'I. I:’-...;_ l:jll:.r} l--ll-||h|l||||.‘|--“1_-nblll
Where [M] and [K] are the mass and the stiffness matrices of the system, respectively; and {U} is
the displaecment vector.

Therefore, the natural frequencies {w) and the mode shape (¢) of any systtm governed by
Eq.(65) are solution of the eigenvalue problem represented by

[[&]_ w* [Af ]I.;ﬁ} =X} S [66)

For non trivial solution of Eq.(66),

[£)- o' Pa] =000 [87]
Equation (67) is called the frequency equation of the system. Expanding the determinant will give
an algebraic equation of mt degree in thequmy parameter ¢ for a system having. m degrees or

freedom. The roots of this equation (mf.mglm;,--- r:ufn.] represent the frequencies of the in

mode of vibration which are possible in the system.

If all m eigenvalue are required and m is relatively small (roughly m < 200), the Jacobi
method is a good choice® ; therefore, Eq.(66) is solved numerically by the Jacobi method given
in Ref(3) for all cases considered in the present study,

CYLINDRICAL STORAGE TANKS

Several cases of liquid storage tanks with widely different properties are presented to demonstrate
the applicability of the proposed idealization developed herein and to cover the free vibration
characteristics of these tanks. The analysis was applied to various case studies, which were
considered by other investigators to serve as a validation procedure for the formulation proposed
in the present work: and also to check the convergency of the solution. Examples of both broad
and tall tanks are analyzed for each of three cases:
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- EMPTY STORAGE TANKS

The properties of the tall and broad tanks are as follows

a- Tall Tank: Radius = 7.32m; length = 21.96m.

b- Broad Tank: Radius. = 18.29m; Length = 12:19m.
Both tanks are assumed to be opened at the top: fixed at the base and have as uniform

thickness of 0.0254m (1 in).

The tank's wall is made of steel having the following properties:

E = 2067 = 107kN/m*,v= 0.3 ,and p = 78.4 kN /m?

In Table (2), the three lowest natural frequencies of both tanks or the Fourier number (n=0 and n

= 1) are presented along with those r tats obtained by Haroun and Housner ® and by Haroun and

Tayel . Inspection of this Table shows excellent agreement between the values of these

frequencies.

(5,7).

- Partly Filled Tanks

The small tall and broad tanks described earlier are now assumed to be partly filled with water.
Calculations of the natural frequencies for different t?/Pes of liquid depths are presented in Table
(3) along the results obtained by Haroun and Houner ** for Fourier number (n = 1).

PARAMETRIC STUDIES
To study the effect of tank geometry, liquid depth variation and hydrostatic pressure on natural
frequencies, parametric studies for three different cases of soil types were carried out. The three
types of soil arc classified as follows:
a) Soil type 1: dense sand and gravel, » =17 kN/m*Vs=250 m/sec
b) Soil type 2: moist clay, o =18 kN/m®, V's=150 m/sec
c) Soil type 3: fine - grained sand, o =16.5 kN/m®, Vs=110 m/sec
The properties of material that is used in all cases of the parametric studies are taken as
follows:
a) Steel material is used fin both cover and walls of the tank whose properties are:
E = 2067 = 107kN/m*, v = 0.3 ,and p = 78.4 kN /m®. Both have a uniform thickness of
0.0508m.
b) Concrete material is used for base plate of the tank whose properties are ;
E = 20 = 10°%kN/m*, v = 0.15 ,and p = 78.424 kN/m®. The thickness of the plate is
0.4m.
c) Water is used as a storage liquid o r the tank having density of 10 kN/m®

EFFECT OF TANK HEIGHT TO DIAMETER RATIO
For this purpose two cases of storage tanks were considered, empty tank and completely full tank.
Diameter. D 20m and the tank height , Lt , was varied from 5 to 30m at 5m increments to
accommodate the aspect ratio (L/D) range of 0.25 to 1.5.

Results of natural frequencies are given in Plots of Figs.(8) and (9).for empty and
completely fill tanks , respectively.

From these Plots, it is observed that as the soil medium becomes weaker (having low
shear wave velocity) or as tank height increases, the natural frequency of the system, at all modes
or vibration for both two cases of the tank., decreases.
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It is also noticed by examination of these Tables and Plots, that the natural frequencies
of the empty tank are much larger than those of the full tanks regardless of the type or soil.
This can be explained by the fact that, the added liquid mass is much larger than that of the
shell, and since the natural frequencies are proportional to the square root of

the inverse of the mass, the frequencies of the full tank are reduced appreciably as compared
to those of the empty tank.

EFFECT OF LIQUID HEIGHT TO TANK LENGTH RATIO VARIATION.

To demonstrate the effect of liquid depth variation (H/Lt), two types of tanks (tall and broad)
were considered for this purpose. Different values of liquid depths for the same three types of the
soils were carried out of demonstrate the influence of liquid height on the dynamic
characteristics. The resulting natural frequencies are given in Plots of Figs.(10) and (11) for broad
and tall tanks, respectively.

It can be observed from these Plots that as the level of fluid increase, the natural
frequencies decreases for both types of tanks and for all three types of the surouding soil. This
behavior is obvious since the mass of the shell-fluid system increase with the level of fluid, while
the structure stiffness properties remain unchanged.

EFFECT OF INITIAL HOOP STRESS DUE TO HYDROSTATIC PRESSURE

To investigate the effect of initial hoop tension due to hydrostatic pressure on the dynamic
characteristics the. liquid storage tanks, two filled tanks: (broad and tall) were considered with
one type of soil (soil type 1 is chosen for this purpose) with different values of Fourier terms
number (n). The resulting natural frequencies for broad and tall tanks are given in Plots of Figs.
(12) and (13), respectively.

It can be concluded from these Plots that the initial hoop stress effect has significant
influence on the natural frequencies of vibration of tall tank while, the influence is almost
insignificant and negligible for most practical purposes in broad tanks. It is of interest to note that
the influence of the initial stress becomes more significant as the Fourier term number, n
increases.

EFFECT OF WALL THICKNESS VARIATION.
To demonstrate the effect of wall thickness variation, an empty tank of 15m height and 15m
diameter is studied for its free vibration characteristics when its wall thickness varies from 1cm to
4cm with one type of the surrounding soil (soil type 1 is also used herein). The resulting natural
frequencies are given in Plot of Fig.(14).

It can be seen clearly from these results that the thicker the wall of the tanks is, the higher
are the natural frequencies, since the wall’s stiffness increases with increasing its thickness.
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Table (2): Natural frequencies for empty broad and tall tanks
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Table (3) : Natural frequencies for partly filled broad and tall tanks
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CONCLUSIONS

The main conclusions that can he drawn from the present study are as follows:

The change of the three-dimensional problem into several separate two dimensional
problems using the semi-analytical technique is very useful to reduce the effort required,
computer time and memory needed in solving the problem or storage tanks under
dynamic loading_

A conical shell finite element is derived in the present work, which is best suited for the
analysis of circular plate, cylindrical arid conical shells. This element becomes more
general after including the contribution of symmetric and anti-symmetric turns in the
Fourier series expansion.

The soil-tank interaction was represented by an elastic half-space medium. Variations of
the properties of the. Surrounding soil medium are found to have an important influence
oil the free and forced vibrational response (earthquake response) of the buried storage
tanks.

It was found that, the .initial hoop stress due to hydrostatic pressure, becomes more
significant as the circumference wave number, n, increases, and these stresses have . more
influence on the frequencies of vibration of tail tanks than broad tanks.
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It is also found that, the natural frequency is proportional to the wall thickness of the tank.
This behavior is related to the fact that the dynamic stiffness of a tank is a function of its
wall thickness.
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